パターンマッチング入門

2016年6月20日 明治大学·理工学部·情報科学科 笹尾 勤

Copyright 2016 Tsutomu Sasao

パターンマッチングとは

- データを検索する場合に、特定のパターンが 出現するかどうか、またどこに出現するかを 特定すること
- 応用
 - 検索
 - インターネット
 - アンチウイルス・ソフト
 - 迷惑メイル

Copyright 2016 Tsutomu Sasao

3種のパターンマッチング

- 厳密マッチ(Exact match)
 - ビットパターンが完全に一致したものを検出
 - 端末アクセス制御装置で使用
- 正規表現(Regular expression)マッチ
 - $-(0 \mid 1)*000 (0 \mid 1)*$
 - 迷惑メイル, ウイルス検出で使用
- 近似マッチング(Approximate match)
 - 最も似たパターンを探す

Copyright 2016 Tsutomu Sasao

厳密マッチング

・ 完全に一致しているパターンを見つける

101101

完全に一致

101101

Copyright 2016 Tsutomu Sasao

同じ顔はどれか?

Copyright 2016 Tsutomu Sasao

迷惑メイル

Copyright 2016 Tsutomu Sasao

- · viagra
- Viagra
- Vlagra
- VIAgra
- VIAGra
- VIAGRaVIAGRA

正規表現マッチング

- VIAGRA
- VIAGRa
- VIAGra

viagra

全部で64通り存在する.

(V|v)(I|i)(A|a)(G|g)(R|r)(A|a)

正規表現を使えば1行で表現可能

Copyright 2016 Tsutomu Sasao

正規表現

- ・ 文字列パターンの表記法.
- 通常の文字と、メタ文字と呼ばれる特別な意味を持った記号を組み合わせて利用.
- 文字列を直接指定せず,特徴パターンを指定できる.

Copyright 2016 Tsutomu Sasao

ght 2016 Tsutomu Sasao

8

迷惑メイル

- viaagra
- viaaagraa
- · viiagrra
- vviagra
- v+i+a+g+r+a+

近似マッチング

最も似ているパターンを見つける

Copyright 2016 Tsutomu Sasao

9

11

Copyright 2016 Tsutomu Sasao

最も似ている犬はどれか?

Copyright 2016 Tsutomu Sasao

近似マッチング

- 最も似ているパターンを見つける
- ハミング距離:異なっているビット数 ハミング距離

110110

101101

110011 4

101001 1

4

もとパターンとは緑のビットで異なっている

Copyright 2016 Tsutomu Sasao

12

近似マッチング

- ・スペルチェック
 - univercity

university

- · DNAのパターン
 - 欠損を認める

Copyright 2016 Tsutomu Sasao

13

完全一致の検出法

Copyright 2016 Tsutomu Sasao

問題

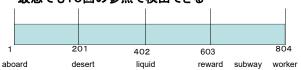
- subway という単語の意味を知るために単語 帳を参照する
- ・ 英文字6個の単語帳には, 単語が804語ある.
- 前から順に率直に調べると、最悪804回参照する必要がある.

Copyright 2016 Tsutomu Sasao

15

17

文字数6の単語帳(全部で804語)


- aboard abroad abrupt absent absorb accent accept
- · access accuse across acting action active actual adjust
- · admire adverb advice advise affair affect afford afraid
- agency agenda almost alumni always amount animal
- annual answer anyhow anyone anyway appeal
- · appear around arrest arrive artist ashore asleep
- aspect assign assist assume assure atomic attach
- attack attend august author autumn avenue awaken
- · ballet banana barber barely barrel basket battle beauty
- became become before behave behind belief belong
 beside better beyond biased bikini bishop bitter blonde
- bloody blouse boiler border boring borrow bother bottle
 bottom bought bounce branch breast breath breeze bridge
- bright broken bronze

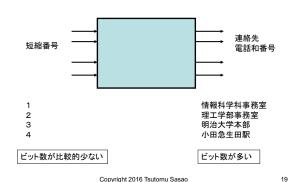
Copyright 2016 Tsutomu Sasao 16

高速な方法

- ・ 英文字を2進数に置き換える.
- a は00001, zは11010
- ・ 全ての単語を2進数に置き換える.
- 単語帳を予め、数字の小さい順に並べ換える.

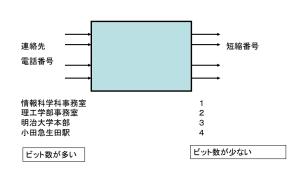
最悪でも10回の参照で検出できる

Copyright 2016 Tsutomu Sasao


もつと高速な方法

専用回路を使う

Copyright 2016 Tsutomu Sasao

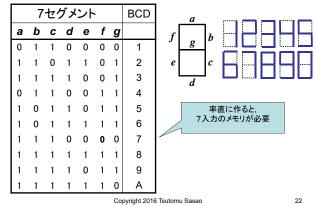

18

通常のメモリ

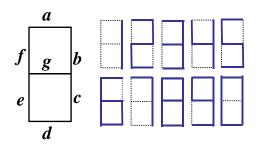
Copyright 2016 Tsutomu Sasao

連想メモリ

Copyright 2016 Tsutomu Sasao

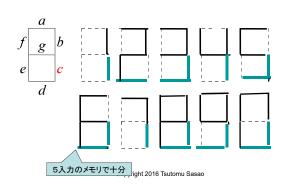

20

連想メモリは 率直に作ると, 非常に高価になる 安くつくる方法は?


Copyright 2016 Tsutomu Sasao

23

例: 7セグメント BCD変換回路



数字の区別に必要なグメントは?

Copyright 2016 Tsutomu Sasao

cとd以外のセグメント

14文字からなる英単語を 15個含む電子単語帳を作りたい.

なるべく小型に作る方法は?

Copyright 2016 Tsutomu Sasao

25

27

14文字からなる英単語の表

accommodations
 characteristic
 constitutional
 disappointment
 disappointment
 generalization
 identification
 recommendation
 representative

· transportation

Copyright 2016 Tsutomu Sasao

メモリで率直につくると

- 英文字 26文字 5ビット
- 14文字:5x14=70
- 70入力のメモリ:
- 2の10乗 1Kilo 10の3乗
- 2の20乗 1Mega 10の6乗
- 2の30乗 1Giga 10の9乗
- 2の40乗 1Tera 10の12乗
- 2の50乗 1Peta 10の15乗
- 20050来 IPela 100010来
- 2の60乗 1Exa 10の18乗

2の70乗 1Zeta
 10の21乗

Copyright 2016 Tsutomu Sasao

X	X	X	X	X	X	X	X	X	X	X	X	X	X	f
1	2	3	4	5	6	7	8	9	10	11	12	13	14	
а	С	С	o	m	m	О	d	а	t	i	o	n	s	1
а	d	m	i	n	i	s	t	r	а	t	i	o	n	2
С	h	а	r	а	С	t	е	r	i	s	t	i	С	3
С	o	n	g	r	а	t	u	I	а	t	i	0	n	4
С	o	n	s	t	i	t	u	t	i	0	n	а	I	5
d	i	s	а	р	р	o	i	n	t	m	е	n	t	6
d	i	s	С	r	i	m	i	n	а	t	i	0	n	7
g	е	n	е	r	а	I	i	z	а	t	i	0	n	8
i	d	е	n	t	i	f	i	С	а	t	i	0	n	9

Copyright 2016 Tsutomu Sasao

20

26

x

Copyright 2016 Tsutomu Sasao

Q: 英単語の区別に必要な 文字数は?

A: 3文字. *x*₃, *x*₆, *x*₁₃

5x3=15 ビットあればよい.

$$2^{15} = 32768 = 32Kilo$$

Copyright 2016 Tsutomu Sasao

DNAのパターンマッチング

- DNAは4つのシンボルで表現されている
 - Adenine (アデニン)
 - Cytosine (シトシン)
 - Guanine(グアニン)
 - Thymine(サイミン)
- ・ 高速パタンーマッチング回路を作る

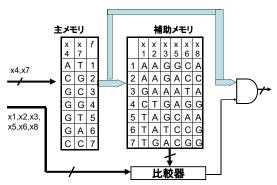
Copyright 2016 Tsutomu Sasao

31

DNAパターンの検出回路

		登	インデックス					
x1	х2	хЗ	X4	1 x	5 x	6 x	7 <i>x</i> 8	f
Α	Α	G	Α	G	С	Т	Α	1
Α	Α	G	С	Α	С	G	С	2
G	Α	Α	G	Α	Т	С	Α	3
С	Т	G	G	Α	G	G	G	4
Т	Α	G	G	G	Α	Т	Α	5
Т	Α	Т	G	С	С	Α	G	6
Т	G	Α	С	С	G	С	G	7

Copyright 2016 Tsutomu Sasao


32

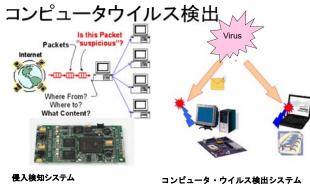
DNAパターンの検出回路

		登	インデックス					
x1 x2 x3 x4 x5 x6 x7 x8								f
Α	Α	G	Α	G	С	Т	Α	1
Α	Α	G	С	Α	С	G	С	2
G	Α	Α	G	Α	Т	С	Α	3
С	Т	G	G	Α	G	G	G	4
Т	Α	G	G	G	Α	Т	Α	5
Т	Α	Т	G	С	С	Α	G	6
Т	G	Α	С	С	G	С	G	7

Copyright 2016 Tsutomu Sasao

DNAマッチング回路

Copyright 2016 Tsutomu Sasao


34

36

メモリ量の削減

- 率直な方法
 - 入力数 8x2=16 ビット
 - 出力数 3ビット
 - メモリ量 3x2¹⁶=65536x3=196, 608
- 新しい方法
 - 主メモリ
 - 入力数 2x2=4ビット • 出力数 8 ビット
 - 補助メモリ
 - 入力数 3ビット
 - ・ 出力数 12 ビット
 - 総メモリ量3×2⁴+12×2³=144

Copyright 2016 Tsutomu Sasao

コンピュータ・ライルス使用ンス

Copyright 2016 Tsutomu Sasao

コンピュータウイルス検出エンジン

- ・パターン数:130万
- 検出速度: 毎秒3.2Giga パターン
- ・ 通常のコンピュータよりも、千倍以上速い
- ウイルスは、毎月増えている
- ・書き換えが可能

Copyright 2016 Tsutomu Sasao

37

ウイルスパターンの例

- DOS.Trivial.27.J=<u>b44ecd21</u>ba????b43dcd2 193b213
- HHH.1=50b9fb0f8b1e010181c3150180370 043e2fa
- INF.Autorun-28=<u>7368656c</u>6c65786563757 4653d72656379636c65645c*2e657865

Copyright 2016 Tsutomu Sasao

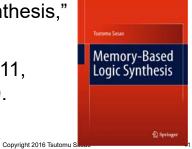
38

FPGAとSRAMで構成した コンピュータウイルス検出エンジン

3

参考文献

- 丸山正明
- ・ 産学官連携 大学がつくり出す 近未来
- 日経BP出版センター
- 2009/12/14



参考文献

T. Sasao, "Memory-Based Logic Synthesis,"
Springer,

March 2011, pp.1-190.

日常生活でのパターンマッチング

- ・お札の判定
 - 色、印刷
 - 磁気インク
- ・コインの判定
 - 磁性体の強弱

Copyright 2016 Tsutomu Sasao

4

生体認証

- 身体的特徴
 - 指紋
 - 静脈
 - 虹彩
 - 声紋
- 行動的特徴
 - 筆跡
 - まばたき

Copyright 2016 Tsutomu Sasao