

社団法人 電子情報通信学会 信学技報
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE
INFORMATION AND COMMUNICATION ENGINEERS

レイル数に制限のある LUTカスケードの論理合成法
－多出力論理関数の直接実現－

アラン ミシュチェンコ† 笹尾 勤‡

†ポートランド州立大学電気計算機工学科 米国コロラド州
‡九州工業大学 情報工学部，マイクロ化総合技術センター 〒820-8502 飯塚市大字川津 680-4

E-mail: †alanmi@ece.pdx.edu, ‡sasao@cse.kyutech.ac.jp

あらましあらましあらましあらまし 多出力論理関数を実現する LUTカスケード回路の実現法について述べる．多出力関数の表現法と
して，幾つかの方法について述べ，それを OR 分解する方法について示す．次に，レイル数（二つのセルの間の

線数）に制限がある場合のカスケード回路の設計アルゴリズムを示す．これより，メモリ量の削減が可能であり，
大規模かつ高速な回路の実現も可能となる．多数のベンチマーク関数に本手法を適用した結果を述べる．
．
キーワードキーワードキーワードキーワード プログラマブルロジック，ルックアップテーブル（LUT），論理合成，関数分解，二分決定グラフ

Logic Synthesis of LUT Cascades with Limited Rails
－ A Direct Implementation of Multi-Output Functions －

Alan MISHCHENKO† and Tsutomu SASAO‡

†Department of ECE, Portland State University, P.O. Box 751, Portland 97207, Oregon, USA
‡Center for Microelectronic Systems and Department of CSE, Kyushu Institute of Technology, Iizuka, Fukuoka,

820-8502 JAPAN
E-mail: †alanmi@ece.pdx.edu, ‡sasao@cse.kyutech.ac.jp

Abstract Programmable LUT cascades are used to evaluate multi-output Boolean functions. This paper shows several
representations of multi-output functions and introduces a new decomposition algorithm applicable to these representations.
The algorithm produces LUT cascades with the limited number of rails, which leads to significantly faster circuits and
applicability to large designs. The experiment shows that the proposed algorithm performs well on benchmark functions.

Keyword Programmable Logic, Look-Up Table (LUT), Logic Synthesis, Decomposition, Binary Decision Diagrams.

1. Introduction

In recent years, programmable logic devices receive more
attention due to their improved performance, flexibility, and low
production cost. An important aspect influencing the performance
of these devices is the speed of evaluation of complex logic
functions, which are programmed in them.

Several approaches to the fast evaluation of logic functions are
known, in particular, implementing them in hardware (FPGAs,
CPLDs) and realizing them in software (branching programs [1]).

In this paper, we discuss the third option, proposed in [16] and
further developed in [7][10][14]. This approach evaluates a logic
function using a series of fast memory lookups. To this end, the
Boolean function is implemented as a cascade of lookup tables
(LUTs). To find the value of the function for an assignment of the
input variables, the LUTs in the cascade are evaluated in a sequence.
The address word applied to each LUT is composed of the values

of the external input variables and the output values of the previous
LUTs. The last LUT in the cascade produces the value of the
function. A comprehensive survey of different types of cascades
and their expressive power can be found in [14].

Logic synthesis for the LUT cascade consists in determining the
actual contents of LUTs for the cascade to realize the given
multi-output logic function. Efficient synthesis methods have been
developed recently for this purpose. In particular, [15] discusses
functional representations for LUT cascade synthesis; [16]
discusses synthesis with no limit on rails; [7] and [10] discuss
memory encoding to reduce the number of LUTs.

The above synthesis methods work well when arbitrary large
LUTs are available. However, the functions to be implemented
may be beyond the capacity of available LUTs, or the size of LUTs
may be limited for practical reasons. In this case, some kind of
decomposition is needed to fit large functions into narrow cascades.

 2

In this paper, we consider the LUT cascade synthesis with the
limit on the number of rails. The present work makes the synthesis
methodology more versatile and robust. With a reasonable
overhead in the number of LUTs, it becomes applicable to designs
of any size.

The rest of the paper is organized as follows. Section 2 presents
related terminology. Section 3 briefly reviews the LUT cascade
logic synthesis flow. Section 4 discusses several representations of
multi-output Boolean functions and relationship among them.
Section 5 presents the main contribution of the paper, a
decomposition method to produce limited-rail cascades. Section 6
shows experimental results, and Section 7 concludes the paper.

2. Terminology
The functions considered in this paper are completely-specified

Boolean functions, unless stated otherwise. The reader is assumed
to be familiar with the basic concepts of Binary Decision Diagrams
(BDDs) [3].

A k-input Look-Up Table (LUT) implements any single-output
function of k input variables. A k-input u-output memory cell
composed of u k-input LUTs evaluated in parallel implements any
k-input u-output function. A LUT cascade is a sequence of s
memory cells evaluated one by one.

The wires connecting the outputs of each memory cell with the
inputs of the next cell are called rails. Memory cells with u outputs
produce a u-rail LUT cascade. Additional k-u inputs (side
variables) of each LUT are set to the values of the external input
variables. The first cell has all its k inputs set to the values of the
external input variables. The last cell produces the outputs of the
multi-output function. A u-rail LUT cascade of sufficient length can
simultaneously evaluate up to u outputs of the multi-output
function, as shown in Fig. 1.

Figure 1. A u-rail LUT cascade with s memory cells.

The sets of variables (X1, X2, … Xs), whose values are fed into
each cell can be either disjoint or non-disjoint giving rise to two
types of cascades, irredundant or redundant [14]. In this paper, we
consider irredundant cascades. The partitioning of variables into
disjoint sets (X1, X2, … Xs) is determined by the variable order in
the decision diagram used to synthesize the cascade.

3. LUT Cascade Synthesis Flow
The LUT cascade design process can be divided into several

steps, shown in Fig. 2. In this paper, we deal with the
OR-decomposition step, which was not considered in previous
publications on LUT cascade synthesis.

Figure 2. The outline of LUT cascade synthesis flow.

4. Representations of Multi-Output Functions
This section presents an overview of representations of

multi-output functions used in LUT cascade synthesis. A detailed
discussion and experimental results comparing these
representations can be found in [15].
4.1. SBDD+

A single-output function is represented by the BDD [3]. A
multi-output function is a set of single-output functions and can be
represented by the Shared BDD (SBDD). The SBDD is a more
compact compared to the set of unrelated BDDs because it shares
the isomorphic subfunctions belonging to different outputs.

Definition 1. [15] SBDD+ of a u-output function is a
single-output function constructed as follows:

1) Introduce d = �log2u� auxiliary variables above the
variables used in the SBDD.

2) Encode each output i of the function by a unique minterm
mi, depending on the auxiliary variables.

3) Add all the products of the output functions by the
corresponding encoding minterms.

The number of nodes in the SBDD+ is larger than that in the
SBDD because of the additional (possibly incomplete) binary tree,
which selects one output of the multi-output function.

Multi-Output Function

 Output Grouping

Variable Reordering

 OR-Decomposition

 Mapping into LUTs

 SBDD+ ECFN MTBDD+

 LUT Encoding

u

.

. .

X1
u

.

..

X2
u

.

..

Xs
u

.

.

f1
f2

fu

u

.

. . X1

 3

4.2. MTBDD+
A Multi-Terminal Binary Decision Diagrams (MTBDD) [4] can

represent a binary-input integer-valued-output function. MTBDDs
enjoy the same remarkable properties as the BDDs, for example,
canonicity.

A multi-output function can be represented by an MTBDD. For
this purpose, we create a binary-input integer-valued-output
function, with the number of output values equal to the number of
different combinations of the output values in the multi-output
function, under all possible combinations of the input variables.

The MTBDD can evaluate all outputs of the multi-output
function at the same time; however the size of MTBDD is in many
cases larger than that of SBDD or SBDD+.

Definition 2. The MTBDD+ of a u-output function is a
single-output function constructed as follows:

1) Create the MTBDD for the u-output function. This
MTBDD has at most 2u terminal nodes.

2) Introduce d = �log2u� auxiliary variables below the
variables used in the MTBDD.

3) For each terminal node of the MTBDD, create a unique
u-variable function depending on the auxiliary variables.
Such unique functions can always be created because there
are N = 22d

 ≥ 2u different Boolean functions depending on d
auxiliary variables.

4) Compute the sums of paths in the MTBDD leading to each
terminal node.

5) Find the sum of products of each set of paths by the
corresponding unique function.

It is possible to derive an MTBDD+ that is functionally
equivalent to an SBDD+, but unlike the SBDD+, the MTBDD+
has auxiliary variables ordered at the bottom. An MTBDD+ and an
SBDD+ are functionally equivalent if the encoding of the outputs
in the SBDD+ is compatible with the assignment of unique
functions to the terminal nodes in the MTBDD+.

Here is one way to make these encodings compatible:
1) In the SBDD+, select the codes for the output functions to

be equal to the binary representation of the integer numbers
of each outputs.

2) In the MTBDD+, select the unique functions for each
terminal node in such a way that the value of these
functions in each minterm is equal to the value of the
corresponding output in the given terminal node.

4.3. ECFN
Encoded Characteristic Function of Non-zero outputs (ECFN)

[13] is another representation of multi-output functions using
auxiliary variables. ECFN is derived in the same way as SBDD+ or

MTBDD+, without restriction on the order of the auxiliary
variables. The relationship among these three representations is
shown in Fig 3.

Figure 3. Relationship of BDD for ECFN, SBDD+, and
MTBDD+.

Because of the freedom to order the auxiliary variables, the BDD
for the ECFN has typically fewer nodes and smaller width
compared to both SBDD+ and MTBDD+ [15][16]. The
disadvantage of the ECFN is that each output of the given function
is evaluated independently.

Therefore, in the following sections, we concentrate on
MTBDDs. We address the issue of their potentially large size by
developing specialized decomposition methods.

Example 1. Consider a 1-bit adder with inputs a and b, and

outputs s0 and s1, s0 = a⊕ b, s1 = ab. The ECFN of the adder is:
F = z (a⊕ b) + zab, where z is the auxiliary variable. The SBDD
and the MTBDD of the adder are shown in Fig. 4. The SBDD+,
the BDD for ECFN, and the MTBDD+ are shown in Fig. 5.

Figure 4. SBDD and MTBDD for 1-bit adder.

Figure 5. SBDD+, BDD for ECFN, and MTBDD+ for 1-bit
adder.

SBDD+ MTBDD+

BDD for ECFN

SBDD+

z

a

b

0 1

a

z

b

0 1

a

b

z

0 1

MTBDD+

SBDD
s0

a

b

0 1

a

b

0

MTBDD
s1

1
0
0

1
0s0

s1

BDD for ECFN

 4

5. OR-Decomposition of Decision Diagrams
5.1. Background

Definition 1. The support of the function f is the set of variables
X, which influence the output value of the function.

In this paper, we consider a fixed order of the support variables
determined by its order in the decision diagram representing f.

Definition 2. For the function f and a subset of its support
variables, X1, the set of all different cofactors, {q1(X), q2(X),.. qµ(X)},
of f with respect to (w.r.t.) X1 is derived by substituting all possible
assignments of variables X1 into f and deleting duplicated functions.
The number of cofactors, µ, is called column multiplicity.

Definition 3. Given the partitioning of X into two disjoint subsets
(X1, X2), called the bound set and the free set, respectively,
Ashenhurst-Curtis decomposition of f is:

f(X) = g(h1(X1), h2(X1),…, hu(X1), X2).
Lemma 1. [2][6] The decomposition of f with functions h1(X1),

h2(X1),…, hu(X1) exists iff the number µ of different cofactors of f
w.r.t. X1 satisfies �log2µ� ≤ u.

The BDD representation of functions is convenient for the
computation of decompositions because the set of cofactor of F is
found by detecting the nodes in the BDD pointed by the nodes
above the cut separating X1 from X2 in the variable order [8][12].

Definition 4. [9] The width of the BDD at level k is defined as
the column multiplicity of f with the bound set composed of
variables above level k.

Definition 5. The width profile of the BDD is the ordered set of
integers representing the width of the BDD at levels, starting from
the topmost level 0 to the level of constant nodes.

The width profile of the BDD can be efficiently computed by
one traversal of the BDD, visiting all the BDD nodes exactly once.
The complexity of this algorithm is O(N), while the complexity of
the algorithm proposed in [9] is O(n*N), where n is the number of
variables and N is the number of nodes in the BDD.

During variable reordering the width of the BDD can be updated
by modifying the width profile on the level where two adjacent
variables are swapped.

Definition 6. Given the function f and the limit µ on the width of
the BDD of f, the OR-decomposition of f with the limited width is:

f(X) = f1(X) ∨ f2(X) ∨ … ∨ fm(X),
where the BDDs of fi(X) have the width no more than µ.

5.2. Decomposition Algorithm
In this subsection, we discuss the OR-decomposition algorithm

as applied to the BDD. This algorithm works on a multi-output
function represented by an SBDD+, an MTBDD+, or an ECFN. If
the multi-output function is represented by an MTBDD, the
decomposition is performed using the MTBDD+. In this case, the
auxiliary variables are not considered as the input variables of the

function.
The pseudo-code of the OR-decomposition algorithm is shown

in Fig. 6. The algorithm is iterative. In each iteration, it extracts a
dense subset of the BDD paths leading to the terminal node 1, in
such a way that the width of this subset does not exceed the limit.
The BDD minimization technique is the original Coudert’s restrict
algorithm [5] implemented in the CUDD package [17].

bdd_array OR_Decomposition(bdd F, int Limit)

{ bdd_array Result;

bdd DontCare, S;

DontCare = 0;

while (Width(F) > Limit) {

S = FindDenseSubsetOfPath(F);

AddToArray(Result, S);

DontCare = DontCare ∨ S;

F = BddMinimize(F, DontCare);

}

return Result;

}

Figure 6. Pseudo-code of BDD decomposition algorithm.

The AND-decomposition can be performed similarly, by applying

the OR-decomposition to the complement of the function. In the
case, the final result is selected to be the best of the two
decompositions.

Example 2. Consider a 1-bit adder introduced in Example 1 and
its MTBDD+ shown in Fig. 5 (right). The maximum width of the
MTBDD+ on the level of variable z is 3. The cascade with one rail
requires that the width of the MTBDD+ would not exceed 2.
Therefore, decomposition should be applied.

As a result of OR-decomposition, function f1 = abz is extracted.
This function contains one path to the terminal node 1, and has the
maximum width 2. The remaining function, f2 = (a⊕ b) z , also has
the maximum width 2. The LUT cascade for f can be implemented
as OR of LUT cascades for f1 and f2,

Figure 7. OR-decomposition of MTBDD+ for 1-bit adder.

f1

a

b

z

0 1

f2

a

b

z

0 1

 5

Example 3. The LUT for f2 is shown in Fig. 8. LUT-1 and LUT-2
of the cascade correspond to the upper and lower variables in the
BDD of f2 separated by the continuous line.

Figure 8. LUT cascade for function f2.

6. Experimental Results
The OR-decomposition algorithm is implemented in C using

BDD package CUDD Release 2.3.1 [17]. The algorithm is tested
on benchmarks used in [10][15][16]. For each benchmark, the LUT
cascade synthesis is performed using the ECFN for all outputs and
the set of MTBDDs derived for the groups of outputs.

The LUT cascade parameters are selected differently in the two
runs of synthesis. For the ECFN, we use 15-inputs LUTs with 14
rails because of the need to implement potentially wide BDDs. For
the MTBDDs, we use much smaller LUTs (13 inputs, 8 rails), to
show that out algorithm can fit large functions into cascades with
the limited rails. In both runs of synthesis, if the width of the
benchmark allowed for fewer rails than the given limit, the spare
LUT inputs were used for additional side variables.

The grouping of outputs for synthesis with the MTBDDs is
performed using a simple greedy algorithm. The group size is
defined by the user on the command line. A new group is started
with the output that has the largest support among the remaining
outputs. Other outputs are added iteratively in such a way that each
new output minimizes the increase in the support of the group after
including the given output.

The experimental results are shown in Table 1. The following
notations are accepted in the table. The benchmarks are described
by listing their names, the number of inputs (“Ins”) and the number
of outputs (“Outs”). The parameters of the ECFN are the number of
BDD nodes (“nodes”) and the average width (“width”). The
synthesis results for the ECFN contain the number of LUTs
(“LUTs”), the number of cells (“cells”), and the total amount of
memory in all LUTs, measured in megabytes (“mem”).

The grouping of outputs is described in Table 1 by showing the
group size (“size”), the number of groups (“grs”) and the maximum
support size of a group (“supp”). If the number of outputs in the
given benchmark is not divisible by the group size evenly, the last
group contains fewer outputs than the group size.

The DD parameters for the MTBDDs are similar to those for the
ECFN, the only difference being that the largest number of nodes
and average width among all groups are shown in the
corresponding columns of Table 1. Synthesis results for MTBDDs
contain some additional columns: the number of different branches
produced by the decomposition (“bran”), and the length of the
longest branch of the cascade measured in terms of cells (“max”).
When the number of different branches produced by
decomposition ("bran") is greater than the number of groups ("grs"),
OR gate(s) must be used to combine the sub-functions.

The total runtime of the decomposition algorithm used in
synthesis with MTBDDs for all benchmarks listed in Table 1 is
about 5 seconds on an Intel 2GHz Pentium 4 CPU with 256Mb
RAM under Microsoft Windows 2000. This time does not include
the time of reading the benchmarks from BLIF files and reordering
the variables to reduce the BDD width.

The results in Table 1 show that synthesis with MTBDDs on
average increases memory requirements by approximately 9%
compared to synthesis with the ECFN. However, for some large
benchmarks (for example, c880.blif and c2670.blif) the memory
was reduced about two times.

The main advantage of the new synthesis flow is the speed of
resulting LUT cascades. In the case of the ECFN, each output is
evaluated independently, and each evaluation takes as many
memory lookups as there are cells in the LUT cascade. In the case
of the MTBDDs, the evaluation is performed simultaneously for all
outputs and one evaluation time takes as many memory lookups as
there are cells in the longest branch of the cascade (the column
“max” in the synthesis results with MTBDDs).

Assuming that one memory lookup takes the same amount of
time for LUTs with any number of inputs, the experimental results
show that the overall speed up due to shorter LUT cascades and
simultaneous evaluation of outputs is about 100 times.

7. Conclusions
The LUT cascade provides an alternative way to realize

multi-output combinational logic functions, occupying an
intermediate position between hardware implementation (FPGAs,
CPLDs) and software simulation (branching programs).

Previous approaches to LUT cascade synthesis assumed the
availability of arbitrarily large LUTs to implement complex
multi-output functions. In this paper, we presented an algorithm to
synthesize LUT cascades with the limit on the number of rails.

The proposed algorithm allows for additional flexibility in
implementing large designs and leads to significantly faster circuits
at the cost of insignificant increase in memory consumption.
Experimental results show that the algorithm gives favorable
results on benchmark functions.

z

y=0

y=1

 a
b 0 1
 1 0

LUT-1
f2

f2

a
b

 y
z 0 1
 0 0

a

b

z

y

0 1

LUT-2

 6

8. Acknowledgements
The authors gratefully acknowledge the support from Kyushu

Institute of Technology under the 75th Commemoration Fund
Program for Foreign Researchers. This research is partially
supported by the Aid for Scientific Research from the Japan
Society for the Promotion of Science (JSPS), and a grant from the
Takeda Foundation.

References
[1] P. Ashar and S. Malik, “Fast functional simulation using branching

programs”, Proc. International Conference on Computer-Aided
Design (ICCAD 1995), pp. 408-412, Oct. 1995.

[2] R. L. Ashenhurst, “The decomposition of switching functions”. In
Proceedings of International Symposium on the Theory of Switching,
pp. 74-116, April 1957.

[3] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation”. IEEE Trans. Computers, C-35 (8), pp. 677-691,
August 1986.

[4] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, J. Yang, “Spectral
transforms for large Boolean functions with applications to
technology mapping”, Proc. Design Automation Conference, pp.
54-60, June 1993.

[5] O. Coudert, C. Berthet, and J. C. Madre, “Verification of
synchronous sequential machines based on symbolic execution”, in
Automatic Verification Methods for Finite State Systems. Berlin,
Germany: Springer-Verlag, 1989, pp. 365-373.

[6] H. A. Curtis, A New Approach to the Design of Switching Circuits, D.
Van Nostrand Co., Princeton, NJ, 1962.

[7] H. Gouji, T. Sasao, and M. Matsuura, “On a method to reduce the
number of LUTs in LUT cascades”. Technical Report of IEICE,
VLD2001-99, Nov. 2001 (in Japanese).

[8] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “EVBDD-based

algorithm for integer linear programming, spectral transformations,
and functional decomposition”, IEEE Trans. CAD, Vol. 13, No. 8, pp.
959-975, Aug. 1994.

[9] S. Minato, “Minimum-width method of variable ordering for binary
decision diagrams”, IEICE Trans. Fundamentals, Vol. E75-A, No. 3,
pp. 392-399, Mar 1992.

[10] A. Mishchenko and T. Sasao, "Encoding of Boolean functions and its
application to LUT cascade synthesis,” International Workshop on
Logic and Synthesis (IWLS 2002), New Orleans, Louisiana, June
4-7, 2002, pp.115-120.

[11] S. Nagayama, T. Sasao, Y. Iguchi and M. Matsuura, "Representations
of logic functions using QRMDDs," 32th International Symposium
on Multiple-Valued Logic (ISMVL 2002), Boston, U.S.A, May
22-24, 2002, pp.261-267.

[12] T. Sasao, “FPGA design by generalized functional decomposition”.
In T. Sasao (ed.), Logic Synthesis and Optimization, Kluwer
Academic Publishers, 1993.

[13] T. Sasao, "Compact SOP representations for multiple-output
functions: An encoding method using multiple-valued logic," 31th
International Symposium on Multiple-Valued Logic, Warsaw, Poland,
May 22-24, 2001, pp.207-212.

[14] T. Sasao, "Design methods for multi-rail cascades," (invited paper)
International Workshop on Boolean Problems (IWBP 2002),
Freiberg, Germany, Sept. 19-20, 2002, pp. 123-132.

[15] T. Sasao, Y. Iguchi and M. Matsuura, "Comparison of decision
diagrams for multiple-output logic functions," International
Workshop on Logic and Synthesis (IWLS 2002), New Orleans,
Louisiana, June 4-7, 2002, pp.379-384.

[16] T. Sasao, M. Matsuura, and Y. Iguchi, "A cascade realization of
multiple-output function for reconfigurable hardware," International
Workshop on Logic and Synthesis (IWLS 2001), Lake Tahoe, CA,
June 12-15, 2001. pp.225-230.

[17] F. Somenzi. CUDD package, Release 2.3.1.
http://vlsi.Colorado.EDU/~fabio/CUDD/cuddIntro.html

Table 1. Experimental results for LUT cascade synthesis using the ECNF and the MTBDDs with output grouping.

Benchmark Synthesis using ECFN, u=14, k=15 Synthesis using MTBDD, u=8, k=13
DD parameters Synthesis results Grouping DD parameters Synthesis results Name Ins Outs
nodes width LUTs cells mem,Mbsize grs supp nodes width bran LUTs cells max mem,Mb

c432 36 7 1081 48 20 4 0.078 8 1 36 1788 94 1 45 6 6 0.044
c499 41 32 27174 596 63 8 0.246 4 8 41 3566 84 10 367 59 6 0.358
c880 60 26 9768 256 64 9 0.250 1 26 45 1216 19 26 179 58 6 0.175

c1908 33 25 9266 265 35 5 0.137 4 7 33 4079 64 9 224 38 5 0.219
c2670 233 140 6635 108 204 30 0.797 2 70 119 916 8 70 355 135 12 0.347
c3540 50 22 39222 1151 104 11 0.406 1 22 50 11683 126 51 1380 263 8 1.348
c5315 178 123 3744 98 154 23 0.602 2 62 67 1386 16 62 1062 282 9 1.037
c7552 207 108 11139 169 219 29 0.855 4 27 194 2292 18 27 1077 260 18 1.052
apex3 54 50 1247 42 35 7 0.137 8 7 45 378 20 7 140 30 6 0.137
apex7 49 37 533 28 27 6 0.105 8 5 26 876 31 5 76 13 3 0.074

b9 41 21 224 14 15 4 0.059 8 3 20 244 14 3 30 6 2 0.029
dalu 75 16 1179 82 57 9 0.223 4 4 53 1708 51 6 163 32 7 0.159
des 256 245 4024 129 244 34 0.953 4 62 22 471 12 62 454 126 3 0.443

duke2 22 29 464 25 10 3 0.039 8 4 19 190 14 4 39 8 2 0.038
e64 65 65 757 17 27 7 0.105 8 9 65 92 5 9 118 45 6 0.115
ex4 128 28 597 20 39 9 0.152 8 4 34 486 16 4 38 10 4 0.037
k2 45 45 1815 57 30 6 0.117 8 6 44 545 24 6 150 29 6 0.146
rot 135 107 8090 164 128 18 0.500 4 27 60 3533 28 28 500 103 8 0.488

spla 16 46 579 34 7 2 0.027 8 6 16 196 12 6 55 12 2 0.054
Total 1482 224 5.788 360 396 6452 1515 119 6.300
Ratio 100.0 100.0 53.1 108.8

