oooo oooooooo

THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

oooo
TECHNICAL REPORT OF IEICE

oot vt oogogod
oooobooooboood

000 ooooooof

oo of

tO000000000DO0O0DbOO0O0DO0O0 Doboooo
1000000 0O00O0bO0O0bOo0ODOO0o0ObDOo0ObOOb O820-8502 00O UDOO 680-4

E-mail:

T alanmi @ece.pdx.edu,

1 sasao@cse kyutech.ac.jp

oooo0 oooboboooboobooLwrTobOOobOooboobobOboOobooboobobDOoOoboboooo

gooobooooooboboooooob orROUbDbOOoOoOobOOoOoOOobDOobDOOOODObOOODODOOO
gbobobooooobuoobgoooobobooboobobobobooboobooboboboobooboobon
oboboooboboooboboooboooobooobooobobooboobooboobOooboboboo

O

ooood obOobobooobobooboboobobootbLwToboboobobooboboooo

Logic Synthesis of LUT Cascades with Limited Rails
[0 A Direct Implementation of Multi-Output Functions [

Alan MISHCHENKO" and Tsutomu SASAO*

t Department of ECE, Portland State University, PO. Box 751, Portland 97207, Oregon, USA
T Center for Microelectronic Systems and Department of CSE, Kyushu Institute of Technology, lizuka, Fukuoka,
820-8502 JAPAN

E-mail: T alanmi @ece.pdx.edu,

Abstract

1 sasao@cse kyutech.ac.jp

Programmable LUT cascades are used to evaluate multi-output Boolean functions. This paper shows several

representations of multi-output functions and introduces a new decomposition algorithm applicable to these representations.

The algorithm produces LUT cascades with the limited number of rails, which leads to significantly faster circuits and

applicability to large designs. The experiment shows that the proposed al gorithm performs well on benchmark functions.
Keyword Programmable Logic, Look-Up Table (LUT), Logic Synthesis, Decomposition, Binary Decision Diagrams.

1. Introduction

In recent years, programmable logic devices receive more
atention due to their improved performance, flexibility, and low
production cogt. An important aspect influencing the performance
of these devices is the speed of evauation of complex logic
functions, which are programmed in them.

Severa gpproaches to the fagt evdudtion of logic functions are
known, in particular, implementing them in hardware (FPGAS,
CPLDs) and redlizing themin software (branching programs[1]).

In this paper, we discuss the third option, proposed in [16] and
further developed in [7][10][14]. This approach evauates a logic
function usng a series of fag memory lookups. To this end, the
Boolean function is implemented as a cascade of lookup tables
(LUT9). To find the value of the function for an assgnment of the
input variables, the LUTsin the cascade are eva uated in a sequence.
The address word applied to each LUT is composed of the vaues

of the externd input variables and the output val ues of the previous
LUTs The lagt LUT in the cascade produces the vdue of the
function. A comprehensive survey of different types of cascades
and their expressive power can befound in[14].

Logic synthesis for the LUT cascade consists in determining the
actud contents of LUTs for the cascade to redlize the given
multi-output logic function. Efficient synthesis methods have been
developed recently for this purpose. In particular, [15] discusses
functiond representations for LUT cascade synthesis [16]
discusses synthesis with no limit on rails; [7] and [10] discuss
memory encoding to reduce the number of LUTs

The above synthesis methods work well when arbitrary large
LUTs are avaldble. However, the functions to be implemented
may be beyond the capacity of available LUTS or theszeof LUTs
may be limited for practica reasons. In this case, some kind of
decomposition is needed to fit large functionsinto narrow cascades.



In this paper, we condder the LUT cascade synthesis with the
limit on the number of rails. The present work makes the synthesis
methodology more versatile and robust. With a reasonable
overheed in the number of LUTS, it becomes applicable to designs
of any sze.

The rest of the pgper is organized as follows. Section 2 presents
related terminology. Section 3 briefly reviews the LUT cascade
logic synthesis flow. Section 4 discusses severd representations of
multi-output Boolean functions and rdationship among them.
Section 5 presnts the main contribution of the paper, a
decomposition method to produce limited-rail cascades Section 6
shows experimentd results, and Section 7 condudesthe paper.

2. Terminology

The functions considered in this paper are completely-specified
Boolean functions, unless stated otherwise. The reader is assumed
to be familiar with the basic concepts of Binary Decision Diagrams
(BDD9) [3].

A k-input Look-Up Table (LUT) implements any single-output
function of k input varidbles A k-input u-output memory cell
composed of u k-input LUTs evaluated in parald implements any
k-input u-output function. A LUT cascade is a sequence of s
memory cellsevauated one by one.

The wires connecting the outputs of each memory cdl with the
inputs of the next cdl are caled rails Memory cdlswith u outputs
produce a ural LUT cascade Additiond k-u inputs (dde
variables) of each LUT are s&t to the vaues of the externd input
varigbles. The firg cdl has dl its k inputs st to the vaues of the
externd input variables The last cdl produces the outputs of the
multi-output function. A u-rail LUT cascade of sufficient length can
dmultaneoudy evauate up to u outputs of the multi-output
function, asshowninFHg. 1.
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FHgure 1. A ural LUT cascade with smemory cdlls.

The sats of varidbles (X, X, ... Xy, whose vaues are fed into
each cdl can be ather digoint or non-digoint giving rise to two
types of cascades, irredundant or redundant [14]. In this paper, we
condder irredundant cascades The partitioning of varigbles into
digoint sets (X3, X5, ... X9 is determined by the variable order in
the decison diagram used to synthesize the cascade.
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3. LUT Cascade Synthesis Flow

The LUT cascade design process can be divided into severa
seps shown in Fg. 2. In this paper, we ded with the
OR-decomposition step, which was not conddered in previous
publicationson LUT cascade synthesis.
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Fgure2. Theoutlineof LUT cascade synthesisflow.

4. Representations of Multi-Output Functions
This section presents an overview of representations of
multi-output functions used in LUT cascade synthesis. A detailed
discusson and  expeimentd  results  comparing  these
representations can befound in [15].
4.1. SBDD+
A dngle-output function is represented by the BDD [3]. A
multi-output function is a set of single-output functions and can be
represented by the Shared BDD (SBDD). The SBDD is a more
compact compared to the set of unrdated BDDs because it shares
theisomorphic subfunctions belonging to different outputs.

Definition 1. [15] SBDD+ of a u-output function is a
single-output function constructed asfollows
1) Introduce d = [logu| auxiliary varisbles above the
variablesused inthe SBDD.
2)  Encodeeach output i of the function by aunique minterm
m, depending on the auxiliary varigbles
3 Add dl the products of the output functions by the
corresponding encoding minterms.
The number of nodes in the SBDD+ is larger than thet in the
SBDD because of the additiond (possibly incomplete) binary tree,
which sdlects one output of the multi-output function.



4.2. MTBDD+

A Multi-Termind Binary Decison Diagrams (MTBDD) [4] can
represent a binary-input integer-vaued-output function. MTBDDs
enjoy the same remarkable properties as the BDDs, for example,
canonicity.

A multi-output function can be represented by an MTBDD. For
this purpose, we creste a binary-input integer-valued-output
function, with the number of output values equd to the number of
different combinations of the output vaues in the multi-output
function, under dl possible combinations of theinput variables

The MTBDD can evduate dl outputs of the multi-output
function at the same time; however the Sze of MTBDD isin many
cassslarger than thet of SBDD or SBDD+.

Definition 2. The MTBDD+ of a u-output function is a

single-output function constructed asfollows

1) Create the MTBDD for the uoutput function. This
MTBDD hasa most 2 terminal nodes

2 Introduce d = [logul auxiliary variables beow the
variablesused intheMTBDD.

3) For each termind node of the MTBDD, creste a unique
u-varigble function depending on the auxiliary variables
Such unique functions can aways be created because there
aeN=2""> 2" different Boolean functions depending ond
auxiliary varigbles.

4) Computethe sumsof pathsinthe MTBDD leading to each
terminad node

5) Find the sum of products of each st of paths by the
correponding unique function.

It is posshle to derive an MTBDD+ tha is functiondly
equivaent to an SBDD+, but unlike the SBDD+, the MTBDD+
has auxiliary variables ordered at the bottom. An MTBDD+ and an
SBDD+ are functiondly equivdent if the encoding of the outputs
in the SBDD+ is compatible with the assgnment of unique
functionsto thetermina nodesinthe MTBDD+.

Hereisoneway to makethese encodings compatible:

1) Inthe SBDD+, sdect the codes for the output functions to
be equd to the binary representation of the integer numbers
of each outputs

2) In the MTBDD+, sdect the unique functions for each
termind node in such a way that the value of these
functions in each minterm is equd to the vadue of the
corresponding output in the given termina node.

4.3. ECFN

Encoded Characterigtic Function of Non-zero outputs (ECFN)
[13] is another representation of multi-output functions using
auxiliary varigbles. ECFN isderived in the same way as SBDD+ or

MTBDD+, without redriction on the order of the auxiliary
varigbles. The rdationship among these three representations is
showninFg3.

BDD for ECFN

Fgure 3. Rdaionship of BDD for ECHN, SBDD+, and
MTBDD+.

Because of the freedom to order the auxiliary varidbles the BDD
for the ECFN has typicdly fewer nodes and smdler width
compared to both SBDD+ and MTBDD+ [15][16]. The
disadvantage of the ECFN is thet each output of the given function
isevauated independently.

Therefore, in the following sections, we concentrate on
MTBDDs We address the issue of their potentidly large Sze by

devel oping specidized decomposition methods

Example 1. Condder a 1-bit adder with inputs a and b, and
outputs § and s, § = allb, s, = ab. The ECFN of the adder is
F= Z (al0b) + zab, where z is the auxiliary variable. The SBDD
and the MTBDD of the adder are shown in Fg. 4. The SBDD+,
theBDD for ECFN, and theMTBDD+ are shown in FHg. 5.

SBDD

MTBDD

Fgure4. SBDD and MTBDD for 1-hit adder.

BDD for ECFN MTBDD+

Figure5. SBDD+, BDD for ECFN, and MTBDD+ for 1-bit
adder.



5. OR-Decomposition of Decision Diagrams
5.1. Background

Definition 1. The support of the function f is the st of variables
X, which influence the output vaue of the function.

In this pgper, we condder a fixed order of the support variables
determined by its order in the decison diagram representing f.

Definition 2. For the function f and a subset of its support
varigbles, Xy, the set of dl different cofactors, { ch(X), (X),.. q(X)},
of f with repect to (w.r.t)) X, is derived by subgtituting dl possble
assgnments of variables X, into f and deleting duplicated functions.
The number of cofactors, 1 is cdled column multiplicity.

Definition 3. Given the partitioning of X into two digoint subsets
(X3, Xp), called the bound st and the free st, regpectively,
Aghenhurgt-Curtis decompodtion of fis

fX) = g(hu(Xa), (X, hi(X), Xz ).

Lemma 1. [2][6] The decomposition of f with functions hy(X),
hy(Xy),... (%) exigs iff the number u of different cofectors of f
wirt, X, sttisfies] logoul < u.

The BDD representation of functions is convenient for the
computation of decompositions because the set of cofactor of F is
found by detecting the nodes in the BDD pointed by the nodes
abovethe cut separating X, from X; inthe variable order [8][12].

Definition 4. [9] The width of the BDD at leve k is defined as
the column multiplicity of f with the bound set composed of
variablesaboveleve k.

Definition 5. The width profile of the BDD is the ordered st of
integers representing the width of the BDD at levels, sarting from
thetopmog leve Ototheleve of condant nodes.

The width profile of the BDD can be efficiently computed by
onetraversd of the BDD, visting al the BDD nodes exactly once.
The complexity of this dgorithm is O(N), while the complexity of
the dgorithm proposed in [9] is O(n*N), where n is the number of
variablesand N isthe number of nodesinthe BDD.

During variable reordering the width of the BDD can be updated
by modifying the width profile on the level where two adjacent
variablesare swapped.

Definition 6. Given thefunction f and the limit £ on the width of
theBDD of f, the OR-decormpodition of f with thelimited wicthis

fO3) =1 Df(X) 0. Of(X),
wherethe BDDs of f,(X) have thewidth no morethan .

5.2. Decomposition Algorithm

In this subsection, we discuss the OR-decomposition dgorithm
as goplied to the BDD. This dgorithm works on a multi-output
function represented by an SBDD+, an MTBDD+, or an ECFN. If
the multi-output function is represented by an MTBDD, the
decomposition is performed using the MTBDD+. In this case, the
auxiliary variables are not conddered as the input variables of the

function.

The pseudo-code of the OR-decomposition agorithm is shown
in Fig. 6. The dgorithm is iterative. In each iteration, it extracts a
dense subset of the BDD paths leading to the terminal node 1, in
such away that the width of this subset does not exceed the limit.
The BDD minimization technique is the origind Coudert’s restrict
dgorithm[5] implemented in the CUDD package[17].

bdd_array OR Deconposition( bdd F, int Limt )
{ bdd_array Result;
bdd DontCare, S;
Dont Care = O;
while ( Wdth(F) > Limt ) {
S = FindDenseSubset Of Path( F );
AddToArray( Result, S);
Dont Care = DontCare 0O S
F = BddM ni mi ze( F, DontCare );
}
return Result;
}
Fgure 6. Psaudo-code of BDD decompodtion dgorithm.

The AND-decomposition can be performed smilarly, by goplying
the OR-decomposition to the complement of the function. In the
cax, the find result is sdected to be the best of the two
decompositions

Example 2. Condder a 1-bit adder introduced in Example 1 and
its MTBDD+ shown in Fg. 5 (right). The maximum width of the
MTBDD+ on the leve of variable zis 3. The cascade with onerall
requires that the width of the MTBDD+ would not exceed 2.
Therefore, decomposition should be gpplied.

As areault of OR-decompodtion, function f; = abz is extracted.
Thisfunction contains one path to the termind node 1, and hasthe
maximum width 2. The remaining function, f, = (adb) Z , dso has
the maximum width 2. The LUT cascade for f can be implemented

asOR of LUT cascadesfor f; and f,
f1
a . a
/
b l/ b
////
z // (O z
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Fgure 7. OR-decomposition of MTBDD+ for 1-bit adder.



Example 3. The LUT for f,isshownin Fig. 8. LUT-1and LUT-2
of the cascade correspond to the upper and lower variables in the
BDD of f, separated by the continuousline.

f2

LUT-1

o
=

LUT-2
B fs

o<
=

Fgure8. LUT cascadefor function .

6. Experimental Results

The OR-decomposition dgorithm is implemented in C using
BDD package CUDD Release 2.3.1 [17]. The dgorithm is tested
on benchmarks used in [10][15][16]. For each benchmark, the LUT
cascade synthesis is performed using the ECFN for dl outputs and
the sat of MTBDDs derived for the groups of outputs.

The LUT cascade parameters are sdected differently in the two
runs of synthesis. For the ECFN, we use 15-inputs LUTs with 14
rails because of the need to implement potentidly wide BDDs. For
the MTBDDs we use much smaler LUTSs (13 inputs, 8 rails), to
show that out dgorithm can fit large functions into cascades with
the limited rails. In both runs of syntheds if the width of the
benchmark alowed for fewer rails than the given limit, the spare
LUT inputswere used for additiond Sdevariables

The grouping of outputs for synthess with the MTBDDs is
performed using a smple greedy agorithm. The group size is
defined by the user on the command line. A new group is darted
with the output that has the largest support among the remaining
outputs. Other outputs are added iteratively in such away thet each
new output minimizes the increase in the support of the group after
incdluding the given output.

The experimenta results are shown in Table 1. The following
notations are accepted in the table. The benchmarks are described
by ligting their names, the number of inputs (“Ins’) and the number
of outputs (“Outs”). The parameters of the ECFN are the number of
BDD nodes (“nodes’) and the average width (“width”). The
synthesis results for the ECFN contain the number of LUTs
(“LUTS"), the number of cells (“cdls’), and the totd amount of
memory indl LUTs measured in megabytes (“mem’).

The grouping of outputs is described in Table 1 by showing the
group size (“9z€'), the number of groups (“grs’) and the maximum
support sze of a group (“supp’). If the number of outputs in the
given benchmark is not divisble by the group sze evenly, the last
group contains fewer outputs than the group sze.

The DD parameters for the MTBDDs are similar to those for the
ECFN, the only difference being that the largest number of nodes
and average width among dl groups are shown in the
corresponding columns of Table 1. Synthesis results for MTBDDs
contain some additiona columns: the number of different branches
produced by the decompostion (“bran”), and the length of the
longest branch of the cascade measured in terms of cdls (“max”).
When the number of diffeeent branches produced by
decompodtion ("bran") isgreater than the number of groups ("grs"),
OR gate(s) must be usad to combine the sub-functions.

The totd runtime of the decompostion adgorithm used in
synthesis with MTBDDs for dl benchmarks listed in Table 1 is
about 5 seconds on an Intd 2GHz Pentium 4 CPU with 256Mb
RAM under Microsoft Windows 2000. This time does not include
the time of reading the benchmarks from BLIF filesand reordering
the variablesto reduce the BDD wicth.

The reaults in Table 1 show that synthesis with MTBDDs on
average increases memory reguirements by gpproximatdy 9%
compared to synthesis with the ECFN. However, for some large
benchmarks (for example, ¢880.blif and c2670.blif) the memory
wasreduced about two times.

The main advantage of the new synthesis flow is the speed of
resulting LUT cascades In the case of the ECFN, eech output is
evauated independently, and esch evduation takes as many
memory lookups as there are cdllsin the LUT cascade. In the case
of the MTBDDs, the evaluation is performed smultaneoudy for all
outputs and one eva uation time takes as many memory lookups as
there are cdls in the longest branch of the cascade (the column
“max’ inthe gynthesisresultswith MTBDDS).

Assuming thet one memory lookup takes the same amount of
time for LUTs with any number of inputs, the experimental results
show that the overal speed up due to shorter LUT cascades and
smultaneous evauation of outputsisabout 100 times.

7. Conclusions

The LUT cascade provides an dternative way to redize
multi-output combinationd logic functions, occupying an
intermediate position between hardware implementation (FPGAS,
CPLDs) and software smulation (branching programs).

Previous approaches to LUT cascade synthesis assumed the
avalability of ahitrarily large LUTs to implement complex
multi-output functions. In this paper, we presented an dgorithm to
gynthesize LUT cascadeswith the limit on the number of rails

The proposed dgorithm alows for additiond flexibility in
implementing large designs and leads to sgnificantly fagter circuits
a the cog of indgnificant increase in memory consumption.
Experimental results show that the agorithm gives favorable
results on benchmark functions.
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