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Abstract— This paper presents multiple LUT cascade to real-
ize an address generator that produces unique addresses ranging
from 1 to k for k distinct input vectors. We implemented six kinds
of address generators using multiple LUT cascades, Xilinx’s CAM
(Xilinx IP core), and an address generator using registers and gates
on Xilinx Spartan-3 FPGAs. One of our implementations has 76%
more throughput, 29.5 times more throughput/slice, and 1.35 times
more throughput/memory than Xilinx’s CAM.

I. INTRODUCTION

An ordinary memory produces an output data value given an
input address value. On the contrary, an address generator pro-
duces an output address value corresponding to the applied input
data value. If the input data value is not stored, a special output
address is produced (e.g. 0). It is assumed that any data value
is stored at exactly one address. Therefore, an input data value
produces a unique output address value. The address generator
has a broad range of applications, including data compression,
routing tables in the internet [1], network switches, and dictio-
nary searching. Although an address generator can be imple-
mented by a content addressable memory (CAM) [2], the CAM
dissipates more power than a conventional RAM [3]. Xilinx [4]
provides a design for the CAM implemented with block RAMs
(BRAMs) of the Xilinx FPGA. Note that Xilinx’s CAM is an “IP
(intellectual property) core”. Another realization of the address
generator uses registers and logic gates. In this realization, the
interconnections tend to be very complicated.

Recently, Sasao has shown that a multiple-valued input ad-
dress generator can be realized by an LUT (look-up table) cas-
cade that uses conventional RAMs and gates [7].

In this paper, we propose an extension to an LUT cascade real-
ization for a two-valued input address generator: a multiple LUT
cascade realization that is easily reconfigured when additional
binary vectors are required. In the multiple LUT cascade archi-
tecture (Fig. 3), the inputs of each LUT cascade are common
with other LUT cascades, and the outputs of each LUT cascade
are connected to an encoder. The LUT cascades are used to real-
ize address generation functions and the encoder is used to gen-
erate the index from the outputs of cascades. Since both Xilinx’s
CAM and the multiple LUT cascade use BRAMs, it is interest-
ing to compare the multiple LUT cascade with Xilinx’s CAM
on the same FPGA. Our basis for comparison is address genera-
tion functions with 48 input-variables and 60∼63 registered vec-
tors implemented on a Xilinx Spartan-3 FPGA. First, by using
the multiple LUT cascade, we designed six address generators:
r3p12, r4p12, r4p12or, r5p11, r5p11or and r6p11. Then, we

used the Xilinx Core Generator tool to produce a CAM. Finally,
by using registers and logic gates, we implemented an address
generator called Reg-Gate. Reg-Gate has the smallest delay, but
requires many slices. In terms of the equivalent throughput, Reg-
Gate is lower than other implementations. The multiple LUT
cascade produces higher throughput, higher throughput/slice,
and higher throughput/memory than Xilinx’s CAM. r6p11 has
76% more throughput, 29.5 times more throughput/slice, 1.35
times more throughput/memory than Xilinx’s CAM. In addition,
if the area for one BRAM is less than or equal to the area for
64 slices, r6p11 is more efficient than Xilinx’s CAM in terms
of delay − area product, although it has 97% more delay than
Xilinx’s CAM.

The rest of the paper is organized as follows: Section 2 de-
scribes the multiple LUT cascade. Section 3 shows other real-
izations for the address generator. Section 4 presents the imple-
mentations of the address generator using an FPGA. Section 5
shows the experimental results. And finally, Section 6 concludes
the paper.

II. MULTIPLE LUT CASCADE

A. Address Generators

Definition 2.1 Let { �a1, �a2, ..., �ak} be a set of distinct binary
vectors of n bits. An n-input address generation function is
a mapping F (�x) : {0, 1}n → {0, 1, ..., k}, where

F (�xi) =
{

i if �xi = �ai

0 otherwise.

k is the weight of the function (the number of non-zero output
values). �ai is a registered vector. That is, F produces an address
ranging from 1 to k for the registered vectors, and produces 0
for all other (2n − k) input vectors.

Typical applications of address generators include:

• Data compression in communications - Used to produce an
equivalent, but shorter message. With an address generator,
the compressed data represents the same information using
fewer bits.

• Routing table in the internet - Used to generate the output
of the destination address from the incoming IP (Internet
Protocol) address. In the IPv4, an IP address is represented
by 32 bits, and the output address is represented by 8 to 16
bits.
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Fig. 1. Decomposition for the function F .
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Fig. 2. LUT cascade.

• Network switch - Used to process the address information
from the incoming packets. In this application, the output
address is usually 8 bits.

• Dictionary searching - Used to generate the indices from the
words in a dictionary. In an English word, each alphabetic
character can be represented by 5-bit.

In the above applications, the common properties of the ad-
dress generator include:

• Exactly one element of the domain maps to a non-zero ele-
ment of the range. Typically many elements of the domain
map to 0.

• The number of non-zero outputs is usually much smaller
than that of the possible input combinations.

• Data stored in the address generator can be updated.

• A high speed circuit is required.

B. Address Generators by an LUT Cascade

Functional decomposition [8] is a method where a given func-
tion is divided into functions with fewer inputs. For a given
function F (�x), let �x be partitioned as (�xA, �xB). The decom-
position chart of F is a table with 2nA columns and 2nB rows,
where nA and nB are the number of variables in �xA and �xB ,
respectively. Each column and row has its unique label with a
binary number, and the corresponding element in the table de-
notes the value of F . The column multiplicity, µ, is the number
of different column patterns of the decomposition chart. By us-
ing functional decomposition, a function F can be decomposed
as F (�xA, �xB) = G(H(�xA), �xB), as shown in Fig. 1, where the
number of rails (signal lines between two blocks H and G) is
�log2 µ�, where �a� denotes the smallest integer greater than or
equal to a. By iterative functional decompositions, the given
function can be realized by an LUT cascade shown in Fig. 2,
where each cell consists of a memory [5], [9].

Theorem 2.1 [7] An arbitrary n-input address generator with
weight k can be realized by an LUT cascade, where each cell
consists of a memory with p address lines and r outputs. Let s
be the necessary number of levels or cells. Then, we have the
relation:

s ≤ �n − r

p − r
�, (1)

where p > r and r = �log2(k + 1)�.

C. Address Generators by Multiple LUT Cascade

A single LUT cascade realization often requires many levels.
Since the delay is proportional to the number of levels in a cas-
cade, we seek to reduce the number of levels. According to (1),
if we increase p, then the number of levels s is reduced, but the
amount of memory is increased. However, as shown in Fig. 3, we
can use the multiple LUT cascade to reduce the levels s when p
is fixed. For an n-input address generation function with weight
k, let the number of rails of each LUT cascade be r. First, parti-
tion the set of vectors into g = � k

2r−1� groups of 2r − 1 vectors
each, except the last group, which has 2r − 1 or fewer vectors.
For each group of the vectors, form an independent address gen-
eration function with the same inputs. Then, for each group, re-
alize the corresponding address generator with a LUT cascade.
Finally, use a special encoder to produce the correct outputs of
the address generator. Let vi (i = 1, 2, ..., g) be the i-th input of
the encoder (i.e., vi is the output value of the i-th LUT cascade),
and let vout be the output value of the encoder. Then,

vout =
{

0 if vi = 0
vi + (i − 1)(2r − 1) if vi �= 0.

Example 2.1 For an n-input address generation function with
weight k, for k = 1000 and n = 32, by Theorem 2.1, we have
r = 10. Let p = r+1 = 11. When we use a single LUT cascade
to realize the function, by Theorem 2.1, we need �n−r

p−r � = 22
cells, and the number of levels of the LUT cascade is also 22.
Since each cell consists of a memory with 11 address lines and
10 outputs, the total amount of memory is 211 × 10 × 22 =
450K bits. Note that such cell does not fit in a single block RAM
(BRAM) of the Xilinx FPGA, which contains 18K bits.

However, if we use a multiple LUT cascade to realize the func-
tion, we can reduce the number of levels and the total amount of
memory, as well as the size of cells to fit in the BRAMs in Xil-
inx FPGAs. Partition the set of vectors into two groups, and
realize each group independently. Then, we need two LUT cas-
cades. For each LUT cascade, the number of vectors is 500, so
r = 9. Also, let p = r + 2 = 11. Then, we need �n−r

p−r � = 12
cells in each cascade. Note that the number of levels of the LUT
cascades is 12 and is smaller than the single LUT cascade real-
ization. Since each cell consists of a memory with 9 outputs and
at most 11 address lines, the total amount of memory is at most
211 × 9 × 12 × 2 = 442K bits. Also, note that the size of the
memory for a cell is 211×9 = 18K bits. This just fits the BRAMs
of Xilinx FPGAs.

Thus, the multiple LUT cascade not only reduces the num-
ber of levels and the total amount of memory, but also adjusts
the size of cells to fit into the available memory in the FPGAs.

(End of Example)
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Fig. 3. Multiple LUT cascade architecture.
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Fig. 4. Detailed design of the LUT cascade.

The multiple LUT cascade architecture is shown in Fig. 3,
and the realization with this architecture is called the multiple
LUT cascade realization. It consists of a group of LUT cas-
cades and a special encoder. The inputs of each LUT cascade
are common with other LUT cascades, while the outputs of each
LUT cascade are connected to the encoder. The LUT cascades
are used to realize address generation functions, while the en-
coder is used to generate the index from the outputs of cascades.

For an n-input address generation function with weight k, the
detailed design of the LUT cascade in the multiple LUT cascade
is shown in Fig. 4, where �xi (i = 1, 2, ..., s) denotes the primary
inputs to the i-th cell, �di (i = 1, 2, ..., s) denotes the data inputs
to the i-th cell and provides the data value to be written in the
RAM of the i-th cell, r denotes the number of rails and r ≤
�log2(k + 1)�, �cj (j = 2, 3, ..., s) denotes the additional inputs
to the j-th cell and is used to select the RAM location along with
�xj for write access. Note that �cj and �di is represented by r bits,
and the RAMs except for the last one have p address lines, but
the last RAM has at most p address lines. When WE is high,
the �cj is connected to the RAM to write the data into the RAMs.
When WE is low, the outputs of the RAMs are connected to
the inputs of the succeeding RAMs, and the circuit works as a
cascade to realize the function.

When the number of groups of the LUT cascades is small, we
can use the multiple LUT cascade OR architecture to simplify
the encoder, as shown in Fig. 5. The realization with this archi-
tecture is the multiple LUT cascade OR realization. In these
two architectures, only the last cells are different. Note that in
Fig. 5, the last cell in the LUT cascades except for the first row
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Fig. 5. Multiple LUT cascade OR architecture.

TABLE I
TRUTH TABLE FOR A 6-INPUT ADDRESS GENERATION FUNCTION

Inputs Outputs
x1 x2 x3 x4 x5 x6 out2 out1 out0
0 0 0 0 0 1 0 0 1
0 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 1
0 0 0 1 1 1 1 0 0
0 0 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 0

Other values 0 0 0

has more outputs than that in Fig. 3. This is because that the i-th
LUT cascade produces the values ranging from (i − 1)(2r − 1)
to i(2r − 1), where i = (1, 2, ..., g), r is the number of rails,
and g is the number of groups of the LUT cascades. In this case,
we can use OR gates instead of the encoder. Note that the total
amount of memory in the multiple LUT cascade OR architecture
is larger than the multiple LUT cascade architecture. However,
in FPGA implementation, if the memory size of the last cell is
smaller than the embedded memory size of the FPGA, the mul-
tiple LUT cascade OR architecture is a good choice since it is
faster than the corresponding multiple LUT cascade realization.

Example 2.2 Table I shows a 6-input address generation func-
tion with 6 registered vectors (weight 6).

Single Memory Realization: The number of address lines
is 6 and the number of outputs is 3. Thus, the total amount of
memory is 26 × 3 = 192 bits.

Single LUT Cascade Realization: Since the weight of the
function is k = 6, by Theorem 2.1, the number of rails is
r = �log2 (6 + 1)� = 3. Let the number of address lines for
the memory in a cell be p = 4. By partitioning the inputs into
three disjoint sets {x1, x2, x3, x4}, {x5}, and {x6}, we have a
cascade in Fig. 6, where the additional inputs to the cells are
ignored.

The total amount of memory is 24 × 3× 3 = 144 bits, and the
number of levels is s = 3. Note that it requires smaller amount
of memory than the single memory realization.
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Fig. 7. Multiple LUT cascade realization and multiple LUT cascade OR
realization.

Multiple LUT cascade Realization: Partition Table I into
two parts. This yields two functions. Since the weight of each
function is 3, the number of rails is �log2 (3 + 1)� = 2. Thus,
the number of groups of LUT cascades is � 6

22−1� = 2. Let the
number of address lines for the memory in a cell also be 4. By
partitioning the inputs into two disjoint sets {x1, x2, x3, x4} and
{x5, x6}, we obtain the realization in Fig. 7 (a), where the ad-
ditional inputs to the cells are ignored. The upper LUT cas-
cade realizes the upper part of the Table I, while the lower
LUT cascade realizes the lower part of the Table I. The contents
of each cell is shown in Table II. The encoder generates the
index (out2, out1, out0) from the pair of outputs, (z1, z2) and

TABLE II
TRUTH TABLES FOR THE CELLS IN THE MULTIPLE LUT CASCADE

REALIZATION

x1 x2 x3 x4 r1 r2 x5 x6 z1 z2

0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 1 1 0
0 1 0 1 1 0 0 1 1 1

Other values 1 1 × × 0 0
Other values 0 0

x1 x2 x3 x4 r3 r4 x5 x6 z3 z4

0 0 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1

Other values 1 1 × × 0 0
Other values 0 0

TABLE III
TRUTH TABLES FOR CELL 4 IN THE MULTIPLE LUT CASCADE OR

REALIZATION

r3 r4 x5 x6 z3 z4 z5

0 0 1 1 1 0 0
0 1 1 1 1 0 1
1 0 1 1 1 1 0

Other values 0 0 0

(z3, z4) :

out2 = z3 ∨ z4,

out1 = z1 ∨ z3z4,

out0 = z2 ∨ z3z̄4.

The total amount of memory is 24 × 2 × 4 = 128 bits, and
the number of levels is 2. Note that the multiple LUT cascade
realization uses less memory and fewer levels than the single
LUT cascade realization.

Multiple LUT cascade OR Realization: The design method
is similar to the multiple LUT cascade realization. Fig. 7 (b)
shows the architecture, where the additional inputs to the cells
are ignored. Table III shows the contents of the cell 4 only, since
the contents of the other cells are the same as the multiple LUT
cascade realization. The output part is simple, i.e., out2 = z3,
out1 = z1 ∨ z4, out0 = z2 ∨ z5. However, the total amount of
memory is 24 × 2× 3 + 24 × 3 = 144 bits that is larger than the
multiple LUT cascade realization. (End of Example)

III. OTHER REALIZATIONS

A. Xilinx’s CAM

Xilinx Core Generator system [10] provides two special de-
signs for the CAM. One design only uses the slices called SRL16
Implementation. The other design uses block RAMs called
Block SelectRAM Implementation. Both designs for the CAMs
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Fig. 8. Realize the address generator with registers and gates.

are parameterizable IP (intellectual property) cores. The SRL16
Implementation requires no BRAMs, but requires a longer clock
cycle time than the Block SelectRAM Implementation [11]. The
Block SelectRAM Implementation uses the block RAM as a
dual-port RAM [6], while the multiple LUT cascade uses the
block RAM just as a single-port RAM. It is interesting to com-
pare the multiple LUT cascade with the Xilinx’s CAM im-
plemented by Block SelectRAM Implementation on the same
FPGA. We use the following parameters provided by the Xilinx
Core Generator to customize the core for the CAM:

• Block SelectRAM Implementation.

• Depth- Number of words (vectors) stored in the CAM: k.

• Data width- Width of the data word (vector) stored in the
CAM: n.

• Match Address Type- Three options: Binary Encoded,
Single-match Unencoded, and Multi-match Unencoded.
We used the Binary Encoded option.

B. Registers and Gates

The realization in Fig 8 directly implements the address gen-
erator by registers and gates. The registers store the registered
vectors. The exclusive NOR (XNOR) gates and the AND gate
form an equivalence circuit whose output is 1 iff the stored vec-
tor is identical to the input vector.

For an n-input address generator with one registered vector,
we need an n-bit register, n copies of XNOR gates, and an n-
input AND gate. For an n-input address generator with k regis-
tered vectors, we need k copies of n-bit registers, nk copies of
XNOR gates, and k copies of n-input AND gates. In addition,
we need an encoder with k inputs and �log2 (k + 1)� outputs to
generate the output address. This circuit can be considered as
a special case of the multiple LUT cascade architecture, where
r = 1, p = 2, and g = k.

IV. FPGA IMPLEMENTATIONS

We implemented the address generators with 48 inputs
and 60∼63 registered vectors on a Xilinx Spartan-3 FPGA
(Xc3s4000-5) using the multiple LUT cascade, Xilinx Core

TABLE IV
FOUR REALIZATIONS USING MULTIPLE LUT CASCADE

Design Vectors r p Groups Levels
r3p12 63 3 12 9 5
r4p12 60 4 12 4 6
r4p12OR 60 4 12 4 6
r5p11 62 5 11 2 8
r5p11OR 62 5 11 2 8
r6p11 63 6 11 1 9
r: Number of rails
p: Number of inputs of the RAM in a cell
Groups: Number of LUT cascades
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Fig. 9. Architecture for r5p11.

Generator, and registers & gates. The FPGA device Xc3s4000-5
has 96 BRAMs and 27648 slices. Each BRAM contains 18K
bits and each slice consists of two 4-input look-up tables. For
each implementation, we described the circuit by Verilog HDL,
and then used the Xilinx ISE 7.1i design software to synthesize
and place & route.

First, we used the multiple LUT cascade to realize the ad-
dress generators. To use the BRAMs in the FPGA efficiently,
the memory size of a cell in the LUT cascade should not exceed
the BRAM size. Let p be number of address lines of the memory
in the cell. Since each BRAM contains 211 × 9 bits, we have the
following relation: 2p · r ≤ 211 × 9, where r is the number of
rails. Thus, we have the following: p = �log2 (9/r)	+ 11, where
�a	 denotes the largest integer less than or equal to a.

We designed six kinds of address generators r3p12, r4p12,
r4p12or, r5p11, r5p11or and r6p11 as shown in Table IV,
where the column Vector denotes the number of registered vec-
tors, the column r denotes the number of rails, the column p
denotes the number of inputs of the RAM in a cell, the column
Groups denotes the number of LUT cascades, and the column
Levels denotes the number of levels or cells in the LUT cascade.
Among these six designs, r4p12OR and r5p11OR are multiple
LUT cascade OR realizations and the others are multiple LUT
cascade realizations. Note that r3p12 contains 9 groups, and the
RAM size of each cell is 212×3 = 12K bits. We can estimate that
if we use the multiple LUT cascade OR architecture for r3p12,
we need 7 more BRAMs. Thus, r3p12 is unsuitable for the mul-
tiple LUT cascade OR architecture.

To illustrate Table IV, consider the design of r5p11 in Fig 9,
where the additional inputs to the cells are ignored. For r5p11,



TABLE V
COMPARISONS OF FPGA IMPLEMENTATIONS OF THE ADDRESS GENERATOR

Design Levels Slices Memory F clk tco/tpd Th. Th./Slice Th./Memory Delay

(BRAM) (MHz) (ns) (Mbps) (Mbps
slice ) ( Mbps

BRAM) (ns)

r3p12 5 87 45 107.227 21.831 643 7.37 14.30 68.461
(multiple) (tco)
r4p12 6 58 24 102.638 19.301 616 10.62 25.66 77.759
(multiple) (tco)
r4p12OR 6 48 24 110.205 18.203 661 13.78 27.55 72.647
(multiple) (tco)
r5p11 8 42 16 127.502 19.835 765 18.21 47.81 82.579
(multiple) (tco)
r5p11OR 8 41 16 136.147 19.429 817 19.92 51.06 78.189
(multiple) (tco) (best)
r6p11 9 24 9 131.822 15.142 791 32.96 87.88 83.416
(multiple) (tco) (best) (best)
Xilinx’s CAM 1 414 12 74.811 29.011 449 1.08 37.41 42.378

(tco)
Reg-Gate 3016 36.529 36.529

(tpd) (best)

since the number of rails is r = 5, the number of groups is
� 62

25−1� = 2. Thus, we need two LUT cascades and an encoder.
Since each LUT cascade consists of 8 cells, the levels of r5p11 is
8. To efficiently use BRAMs in the FPGA, the number of inputs
of the RAM in the cell is p = �log2 (9/5)	+ 11 = 11. Note
that the number of the primary inputs to the last cell is 1; this is
because 48 − 11 − 6 × 6 = 1. Although the RAM in the last
cell has 6 inputs, it still requires one BRAM. As for the special
encoder, let v1 be the values of the outputs of the upper LUT
cascade, let v2 be the values of the outputs of the lower LUT
cascade, and let vout be the values of the outputs of the encoder.
Then,

vout =
{

v1 if v1 �= 0
v2 + 31 if v2 �= 0.

The special encoder requires 6 slices from the FPGA. After syn-
thesizing and mapping, r5p11 required 16 BRAMs and 42 slices.

From Table IV, we can see that decreasing r, increases the
groups needed to implement the function, but decreases the lev-
els in the cascade.

Next, we used the Xilinx Core Generator system to produce a
Xilinx’s CAM with 48 inputs and 63 registered vectors. After
synthesizing and mapping, Xilinx’s CAM required 12 BRAMs
and 414 slices. Note that Xilinx’s CAM requires one clock cycle
to find a match.

Finally, we designed the address generator Reg-Gate by us-
ing registers and gates shown in Fig 8. Note that the number of
inputs is n = 48 and the number of outputs is �log2 (k + 1)� =
�log2 (63 + 1)� = 6. After synthesizing and mapping, it re-
quired 3016 slices.

V. PERFORMANCE AND COMPARISONS

In this section, we evaluate the performance of the multiple
LUT cascade realizations and the multiple LUT cascade OR
realizations (i.e., r3p12, r4p12, r4p12or, r5p11, r5p11or and
r6p11), and compare them with Xilinx’s CAM and Reg-Gate.

In Table V, the column Levels denotes the number of levels,
the column Slices denotes the number of occupied slices, the
column Memory denotes the amount of utilized memory, the
column F clk denotes the maximum clock rate, the column tco
denotes the maximum time to obtain the outputs after clock, and
the column tpd denotes the maximum propagation time from
the inputs to the outputs. The column Th. denotes the maxi-
mum throughput. Since the address generator has 6 outputs, it is
calculated by:

Th. = 6 · F clk.

For Reg-Gate, Delay denotes the maximum delay from the input
to the output and is equal to tpd. For the multiple LUT cas-
cade realizations, the multiple LUT cascade OR realizations and
Xilinx’s CAM, Delay denotes the total delay, and is calculated
by:

Delay =
1000 · Levels

F clk
+ tco,

where 1000 is a unit conversion factor. The column Th./Slice
denotes the throughput per slice, and the column Th./Memory
denotes the throughput per memory.

In Table V, the value denoted with best shows the best result.
Reg-Gate has the smallest delay, but requires many slices. Note
that Reg-Gate requires no clock pulses in the address generation
operation, while the others are sequential circuits requiring at
least one clock pulse. Since delay of Reg-Gate is 36.529 ns, the
equivalent throughput is (1000/36.529) × 6 = 164.25 (Mbps);
this is lower than all others.

r5p11OR has the highest throughput in Table V. All of
the multiple LUT cascade realizations, and the multiple LUT
cascade OR realizations have higher throughput, and higher
throughput/slice than Xilinx’s CAM. In terms of through-
put/memory, r5p11 and r6p11 are better than Xilinx’s CAM.
r3p12 has the smallest delay in the realizations using the multi-
ple LUT cascade, but is slower than Xilinx’s CAM.

r6p11 has 76% more throughput, 29.5 times more through-
put/slice, 1.35 times more throughput/memory, but 97% more



delay than Xilinx’s CAM. It is interesting to consider the rela-
tion of delay with the area for both the utilized slices and the
utilized BRAMs. Let α be an area factor between the BRAM
and the slice, i.e., (area for one BRAM) = α (area for one slice).
If α ≤ 64, then r6p11 is more efficient than Xilinx’s CAM in
terms of delay − area product.

VI. CONCLUSIONS

In this paper, we presented the multiple LUT cascade to re-
alize address generators. We illustrated the design methods by
address generators with n = 48 and k = 63. However, it can be
extended to any value of n and k.

We implemented six kinds of address generators (i.e. r3p12,
r4p12, r4p12or, r5p11, r5p11or and r6p11) on the Xilinx
Spartan-3 FPGA (Xc3s4000-5) by using the multiple LUT cas-
cade. For comparison, we also implemented Xilinx’s CAM by
using the Xilinx Core Generator and Reg-Gate by using regis-
ters and gates on the same type of FPGA. Reg-Gate has the
smallest delay, but requires many slices. All of the imple-
mentations of the multiple LUT cascade have higher through-
put, and higher throughput/slice than Xilinx’s CAM. In terms
of throughput/memory, r5p11 and r6p11 are better than Xil-
inx’s CAM. r6p11 has 76% more throughput, 29.5 times more
throughput/slice, 1.35 times more throughput/memory than Xil-
inx’s CAM. In addition, if the area for one BRAM is less than
or equal to the area for 64 slices, r6p11 is more efficient than
Xilinx’s CAM in terms of delay − area product although it has
97% more delay than Xilinx’s CAM.
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