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This paper shows a design method for a sequential circuit by us-
ing a Look-Up Table (LUT) ring. An LUT ring consists of memo-
ries, a programmable interconnection network, a feed-back regis-
ter, an output register, and a control circuit. It sequentially emu-
lates an LUT cascade that represents the state transition functions
and the output functions. We present two algorithms for synthesiz-
ing a sequential circuit by an LUT ring: The first one partitions the
outputs into groups, and realize them by LUT cascades. The second
one reduces the evaluation time by using unused memories. We also
compare the LUT ring with other methods to realize sequential cir-
cuits.

I. INTRODUCTION

The degree of integration of LSIs is constantly increasing with
the Moore’s law: Now we can integrate a hundred millions tran-
sistors into a chip. As a result, the design of LSIs require long
time. In addition, the LSI design have deep-submicron (DSM)
effects such as cross-talk noise and inductive effects that require
electro-magnetic design.

To solve these problems, regular and reconfigurable architec-
tures have been considered. Regular architectures have repeated
structures, hence the overall structure at the global level is uni-
form. Such a structure is more predictable in its delays. A re-
peated pattern can be hand-designed and extensively analyzed to
avoid internal DSM problems, since its scale is relatively small
and needs to be designed only once [1]. Reconfigurable archi-
tectures is rewritable, and can reduce the hardware development
time drastically.

Memory is the most important device that is regular and con-
figurable. Several methods exist to implement a sequential cir-
cuit by using memory. They include:

1. Direct Method
This method directly implements the combinational part by
a memory. It is simple, but to implement an n-input m-
output function, we need a memory with m2nbits, which is
impractical when n is large.

2. Memory and Multiplexers [2, 3, 4]
This method uses a memory and multiplexers to implement
the combinational part. It uses a property that in a sequen-
tial circuit, in many cases, the state transitions and output
functions depend on proper subsets of the input variables.
By using this property, we can reduce size of the memory.
However, if any function depends on n variables, then the
method requires a memory with n-bit address. For exam-
ple, it would be impractical to use the memory with a size

n = 40.
3. Logic Simulation

This method uses a microprocessor and a memory. Given
a logic circuit, it replace each gate with a fragment of pro-
gram code. Then, it evaluates the code by a general-purpose
microprocessor. This method stores both the data and the
program in the memory. The evaluation time is proportional
to the number of gates. The cost for the development is low,
but the power dissipation is high compared with its perfor-
mance.

4. Look-Up Table (LUT) Ring [8, 9]
This method uses a control circuit, memories, registers and
a programmable interconnection to emulate the sequential
circuit. This method first represents the logic function by
a BDD (Binary Decision Diagram), then transforms it into
an LUT cascade. And, finally it emulates the cascade by an
LUT ring. The LUT data are stored in a large memory. This
method is faster than the logic simulator, since the number
of memory references can be reduced.

In this paper, we will show a design method for a sequential
circuit by using a Look-Up Table (LUT) ring. This paper is or-
ganized as follows: Section 2 introduces the cascade realization
of logic functions. Section 3 shows the structure of LUT cas-
cades and LUT rings. Section 4 describes a method to estimate
the performance. Section 5 shows design algorithms for LUT
ring. Section 6 shows experimental results. Finally, Section 7
concludes the paper.

II. CASCADE REALIZATION OF LOGIC FUNCTIONS

In this section, we will show a method to realize logic func-
tions by a cascade of LUTs.

A. Representation of Multiple-output Logic Functions

Various decision diagrams (DDs) exist to represent multiple-
output logic functions. Among them, MTBDD (multi-terminal
BDD), BDD-for-ECFN (encoded characteristic function for
non-zero outputs), and BDD-for-CF (characteristic function) are
popular. In [12], we compared the evaluation time and the
amount of memory of these DDs. They have the following fea-
tures:

1. MTBDD: The width is too large to realize LUT cascades.
2. BDD-for-ECFN: The width is smaller than MTBDD, but

its evaluation time is large when the number of outputs is
large.



3. BDD-for-CF: The width of the BDD-for-CF is smaller than
MTBDDs, and it can represent many outputs simultane-
ously.

Therefore, in this paper, we use a BDD-for-CF to represent a
given multiple-output logic function.

B. Functional Decomposition using a BDD-for-CF [13]

Definition 2.1 Let �f = (f1(X), f2(X), . . . , fm(X)) be a
multiple-output function. Let X = (x1, x2, . . . , xn) be the input
variables, and Y = (y1, . . . , ym) be the output variables that
denotes the outputs. The characteristic function of a multiple-
output function is defined as

χ(X, Y ) =
m∧

j=1

(yj ≡ fj(X)).

The characteristic function of an n-input m-output function is
a two-valued logic function with (n+m) inputs. It has in-
put variables xi(i = 1, 2, . . . , n), and output variables yj

for each output fj . Let B = {0, 1}, �a ∈ Bn, �f(�a) =
(f1(�a), f2(�a), . . . , fm(�a)) ∈ Bm, and �b ∈ Bm. Then, the char-
acteristic function satisfies the relation

χ(�a,�b) = 1 (if �b = �f(�a))
= 0 (Otherwise).

Definition 2.2 The BDD-for-CF of a multiple-output function
�f = (f1, f2, . . . , fm) is the ROBDD for the characteristic func-
tion χ. In this case, we assume that the root node is in the top of
the BDD, and variable yj is below the support of fj , where yj is
the variable representing fj [5, 6, 7].

Definition 2.3 The width of the BDD-for-CF at height k is
the number of edges crossing the section of the graph between
xk and xk+1, where the edges incident to the same nodes are
counted as one.

Lemma 2.1 [13] Let (X1, Y1, X2, Y2) be the variable ordering
of the BDD-for-CF, representing a multiple-output function �f ,
and let W be the width of the BDD at the height n2 +m2. Then,
�f can be represented as

�f(X) = g(h1(X1), h2(X1), . . . , hu(X1), X2). (1)

In this case, �f can be realized by the network shown in Fig. 1,
where the number of lines between H and G is �log2W �.

The representation of �f in the form of Expression (1) is ref-
fered as functional decomposition.

Theorem 2.1 [8] Let µmax be the maximum width of the BDD-
for-CF that represents an n-input logic function �f . If u =
�log2 µmax� ≤ k − 1, then �f can be realized by a cascade of
k-LUTs as shown in Fig. 2. By applying functional decompo-
sitions s − 1 times, we have the circuit having the structure of
Fig. 2.
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Fig. 1. Functional Decomposition with Intermediate Outputs.

III. LUT CASCADE AND LUT RING

A. LUT Cascade [8]

An LUT cascade is shown in Fig. 2, where multiple-output
LUTs (cells) are connected in series to realize a multiple-output
function. The wires connecting adjacent cells are called rails.
Let ki be the number of inputs to the i-th cell, and let u i be the
number of rail outputs of the i-th cell, i.e., the number of the
rails between i-th cell and (i+1)-th cell. Let |Yi| be the number
of the external outputs of the i-th cell, i.e., the outputs that are
connected to the primary output terminals. Let s be the number
of cells in a cascade.

X1 X2 Xs

Y1 Y2 Ys

Cell Cell Cell1 2 s

u u u1 2 s-1

Fig. 2. LUT Cascade.

Lemma 3.2 The size of the i-th cell is 2ki · (ui + |Yi|). The
amount of memory necessary to implement the cascade is given
by

M(X1, Y1, X2, Y2, . . . , Xs, Ys) = w ·
s∑

i=1

2ki , (2)

where ki = |Xi| + ui−1, and ui + |Yi| ≤ w.

The LUT cascade is simple and fast, but the restricted nature of
its interconnections means it is not so flexible. Once the number
of rails, inputs and outputs of cells, and the number of the cells
are fixed, the number of functions realizable in the cascade is
limited.

B. LUT Ring for Sequential Circuit [9]

By adding feedback lines between outputs and inputs of the
LUT cascade shown in Fig. 2, we have an LUT ring. An LUT
ring for sequential circuit is shown in Fig. 3.

It sequentially emulates an LUT cascade. Although it is
slower than the LUT cascade, it has much more flexibility. In
the LUT ring, the numbers of rails, input and outputs of cells,
and the number of cells are flexible. We can consider an LUT
ring with multiple units. However, for simplicity, in this paper,
we will consider only the LUT ring with a single unit.
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Fig. 4. Double-rank flip-flop.

In the LUT ring, all data for the cells are stored in a memory.
The Input Register stores the values of the primary inputs; the
Feedback Register stores the values of the state variables; the
Output Register stores the values of external outputs; the MAR
(Memory Address Register) stores the address of the memory;
the MBR (Memory Buffer Register) stores the values of the out-
puts of the memory; the Memory for Logic stores the content
for cells of the cascades; the Programmable Interconnection
Network connects the Input register, the Feedback register, and
the MAR, also it connects the MBR and the MAR; the Mem-
ory for Interconnections stores data for the interconnections;
and the Control Network generates necessary signals to obtain
functional values.

To emulate the sequential machine, the LUT ring uses two
types of clock pulses: C Clock to evaluate each cell of the LUT
cascade, and S Clock for state transitions. We use Double-Rank
Filp-Flops in Fig.4 for the feedback register and the output reg-
ister. Set the select signals to high when all the cells in a cascade
are evaluated, and store the values into the latches L1. When all
the cascades are evaluated, the values of the state variables are
sent to the latches L2. This can be done by adding S Clock.

In an LUT ring, all the least significant k bits of the starting
address for k-input cells should be zeros. For example, the start-
ing address of a 10-input cell in a 32-kilo-word memory should
have the form xxxxx0000000000. Thus, the amount of memory
actually needed to implement the LUT ring may be larger than
the value obtained by Equation (2). We can reduce the number
of levels of the cascade and/or total amount of memory by using
cells with different numbers of inputs and/or by memory pack-
ing.

C. Emulation of a Sequential Circuit by an LUT Ring

A method to emulate a sequential circuit by the LUT ring is
as follows:

1. Partition the outputs of the combinational part, and then,
realize them by a set of LUT cascade. Since the combi-
national part of sequential circuit usually has many inputs
and outputs, a direct implementation by a single memory is
often impractical.

2. Emulate of the LUT cascade by the LUT ring. For example,
Fig.5(b) shows a realization of the LUT cascade with three
cells (Fig.5(a)) by an LUT ring.

3. In evaluating the outputs, for the outputs that becomes pri-
mary outputs, store them in the output register, while for
the outputs that becomes state variables, store them in the
feedback register.

4. When all the cascades are evaluated, transfer the values of
the feedback register into the programmable interconnec-
tion network. Also, transfer the values of the output register
to the primary outputs.
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Fig. 5. LUT Cascade and corresponding an LUT Ring.

Example 3.1 Fig.6 illustrates the emulation of the sequential
circuit whose combinational part realizes the LUT cascade in
Fig.5(a). In Fig.6, xi denotes the input variables, yi denotes the
state variables, zi denotes the primary output variables, and u i

denotes the rail variables.

time = 1 To evaluate the Cell 0, the two most significant bits
of the address are set to (0,0) to specify page 0. Also,
the input variables of Cell 0 (x5, y1, x4, x3) are set to the
lower address bits through the programmable interconnec-
tion network as shown in Fig.6(a). By reading the contents
of the page 0, the outputs of Cell 0 are stored in MBR. For
the outputs that becomes the primary outputs, store them in
the output register, while for the outputs that becomes state
variables, store them in the feedback register.

time = 2 To evaluate Cell 1, the two most significant bits of the
address are set to (0,1) to specify page 1. Also, the outputs
of Cell 0 (u1, u0) are connected to the middle address bits,
and the input variables of Cell 1 (x2, y0) are set to the least
significant bits through the programmable interconnection
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Fig. 6. Emulation of sequential circuit.

network, as shown in Fig.6(b). By reading the contents of
page 1, the outputs of the Cell 1 are stored in MBR. For
the outputs that becomes the primary outputs, store them in
the output register, while for the outputs that becomes state
variables, store them in the feedback register.

time = 3 To evaluate Cell 2, the two most significant bits of the
address are set to (1,0) to specify page 2. Also, the out-
puts of Cell 1 (u3, u2) are connected to the middle address
bits, and the input variables of Cell 2 (x1, x0) are set to the
least significant bits through the programmable intercon-
nection network, as shown in Fig.6(c). By reading the con-
tents of page 2, the outputs of Cell 2 are stored in MBR. For
the outputs that becomes the primary outputs, store them in
the output register, while for the outputs that becomes state
variables, store them in the feedback register.

Control Network sends the S Clock to the feedback register
and output register, and the values of feedback register are
transfered into the programmable interconnection network,
also the values of the output register are transfered to the
primary outputs. (End of Example)

IV. ESTIMATION OF THE PERFORMANCE AND THE AMOUNT

OF MEMORY

A. Lower Bounds on the Number of Levels of LUT Cascade

Theorem 4.2 Let µmax be the maximum width of the BDD-for-
CF that represents an n-input m-output function �f . If ui ≤ k−1
and ui + |Yi| ≤ w, then �f can be realized by a LUT cascade
with k-input w-output shown in Fig. 2. Let s be the number of
levels of the LUT cascade in Fig. 2. Then, we have the following
relation:

max
{⌈

n + u − 2
k − 1

⌉
,

⌈
m + u − 2

w − 1

⌉}
≤ s, (3)

where u = max{ui}, and ui ≤ �log2 µmax�. When n ≤ k, �f
can be realized by one cell.

Corollary 4.1 Let �f(X) represent an n-input m-output func-
tion. Suppose that �f(X) cannot be represented as �f(X) =
g(h(X1), X2), where (X1, X2) is a partition of X . Let s be
the number of k-input w-output cells to realize �f(X). Then, we

have the following relation: llow ≤ s, where

llow = max
{⌈

n − 2
k − 2

⌉
,

⌈
m − 2
w − 2

⌉}
. (4)

We can estimate the number of levels of the LUT cascade by
using expression (4).

B. Relation Between the Amount of Memory and the Number
of Cell Inputs

Theorem 4.3 Suppose that an n-variable logic function �f is re-
alized by the cascade of k-inputs shown in Fig. 2. Let L[bit]
be the total amount of available memory; µ be the width of the
BDD; k be the maximum inputs of cells; and w be the number
of output bits of the Memory for Logic. If �f has no non-trivial
simple disjoint decomposition, then we have

2k

k − 2
≤ L

w(n − 2)
, (5)

where n ≥ k.

Example 4.2 The benchmark function s208 has n = 18 inputs.
Let us realize it on a memory with L = 220(= 1Mbits), and
w = 16. From Theorem 4.3, it is sufficient to consider k with
values for k ≤ 16. (End of Example)

V. REALIZATION OF SEQUENTIAL CIRCUITS BY AN LUT
RING

A. Formulation of the Design Problem in an LUT Ring

For many benchmark functions, BDD-for-CFs are too large to
construct. Also, even if the BDD-for-CF is stored in a memory of
a computer, it can be too large to be realized by an LUT cascade
[13].

Definition 5.4 Assume that the output functions are partitioned
into r groups, and for each groups of outputs, and each LUT cas-
cade realize the functions in the group. Let li (i = 1, 2, . . . , r)
be the number of levels in each LUT cascade.

Note that, the total number of cells is l1 + l2 + · · · + lr.
We partition the outputs so that each set of outputs depends on

as small number of input variables as possible. Since the com-
putation time of an LUT ring is proportional to the total number



of cells in the cascades, we can formulate the design problem for
an LUT ring as follows:

Problem 5.1 Given a multiple-output function �f =
(f1(X), f2(X), . . . , fm(X)) and an ordering of the input
variables X, obtain the partition of X that satisfies the following
conditions:

1 . The total amount of memory is at most L0.

2 . The number of cells of the cascade is the minimum subject
to Condition 1.

3 . The total amount of memory is the minimum subject to
Condition 2.

B. Estimation of the Maximum Number of Outputs in Each
Group

Partitioning the outputs into groups after representing a large
single BDD-for-CF is inefficient: The number of nodes of the
BDD-for-CF is so large that the optimization of the BDD-for-
CF is very time consuming. Previous approach [13] reorders the
output functions so that the support will increase as slowly as
possible. Then, it finds an ordering of the input and output vari-
ables to construct a minimum BDD-for-CF. Finally, it generates
cascades form the BDD-for-CF. However, this approach requires
much computation time for variables ordering. Also, this ap-
proach generates cascades with large number of levels, since the
BDD-for-CFs with many outputs tend to have large widths, and
produce cascades with large number of levels. In this paper, we
use the strategy to make many short cascades rather than to make
a single long cascade. This strategy requires much shorter com-
putation time than the previous approach, and generates cascades
with smaller total number of levels. In the following algorithm,
the user must specify the maximum number of cell inputs.

We can estimate the total number of external outputs of cells,
except for the last cell as follows:

(the average number of external outputs of a cell)
×(the number of levels of LUT cascades− 1).

We designed LUT cascades, and obtained the statistical data
of the number of levels and external outputs for each cell for 25
MCNC89 benchmark functions. To obtain the statistical data,
we omitted the cascades consisting of only a single cell. We as-
sumed that the distributions of average number of cells and lev-
els are normal distributions, and calculated the 95% confidence
interval.

Fig.7 plots the average number of levels in an LUT cascade.
The vertical axis denotes the number of cells; the horizontal axis
denotes the number of cell inputs; arithmetic mean denotes that
of the number of cells; confidence interval denotes the 95% con-
fidence interval of the average number of cells; and alpha de-
notes the estimation for the number of levels Expression (4) mul-
tiplied by alpha, where α = 1.5. From Fig.7, the number of lev-
els per single cascade, that most inputs of cells are occupied by
external outputs, approaches the bound of Expression (7) in the
case of total number of levels are minimum. Also, the number of
LUT cascades increases compared with the previous approach.
Hence, the total number of levels of LUT cascades decrease even
if the number of LUT cascades increase. From this experiment,
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Fig. 7. Statistic of Levels.

we have an estimation of number of levels of an LUT cascade,
i.e., α multiplied by llow, where llow is given by Expression (4).

Fig.8 plots the average numbers of external outputs for each
cell. The vertical axis denotes the number of external outputs for
each cell; the horizontal axis denotes the number of cell inputs;
arithmetic mean denotes that of the number of external outputs;
confidence interval denotes the 95% confidence interval of the
average number of external outputs of cells; and beta denotes the
maximum number of rails k−1 multiplied by 0.25, i.e.,β(k−1),
where β = 0.25

From these results, we can introduce the parameter T that es-
timates the number of outputs in a group.

Definition 5.5 Given an n-input m-outputs logic function, let k
be the number of maximum inputs of cells, let w be the number
of outputs of a cell, let α, and β be the positive constants. Define
the parameter T that estimates the number of outputs in a group:

T = β(k − 1)(�llow� − 1) + w, (6)

where llow is given by the Expression(4).

The first term of Expression 6 estimates the total number of ex-
ternal outputs of cells except for the last cell. The second term
of Expression 6 estimates the number of outputs in the last cell.

C. Partition of the Outputs

Definition 5.6 The support of a function f is the set of vari-
ables on which f actually depends.

Definition 5.7 Let F = {f0, f1, . . . , fm−1} be the set of the
output functions, let G be a subset of F , and f i ∈ F − G. Then,
the similarity of the supports of fi with G is defined as follows:

Similarity(i, G, F ) = |Sup(fi) ∩ Sup(G)|, (7)

where Sup(F) denotes the set of supports of the functions in F.

We partition the outputs into groups using this similarity so
that each group of outputs depends on as small number of inputs
as possible.
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Algorithm 5.1 (Partition of Outputs and Realization of Cas-
cades) Let F = {f0, f1, . . . , fm−1} be the set of the output func-
tions to be realized. Let T be the maximum number of outputs
in a group, given by Expression (6). Let G be a subset of F ;
let Non Cas be the set of outputs not realized by cascade; let
nNon Cas group be the number of groups that are not realized by
cascade; and let maxn group be the maximal number of outputs
in a group. In the following algorithm, the user must specify the
maximum number of cell inputs k.

1. Read the data and parameters such as k. Compute T by
Expression (6).

2. F ← {f0, f1, . . . , fm−1}, maxn group ← T .

3. While F 	= φ do steps (a)(b), and (c)

(a) Non Cas ← φ, nNon Cas group ← 0.

(b) While F 	= φ do steps (i) through (v)

i. G ← ft, where ft ∈ F , and t is the suffix of the
function with the minimum |Sup(fj)|.

ii. While |G| ≤ maxn group − 1 do

A. Find fi with the maximum Similarity(i, G, F),
where fi ∈ F − G.

B. Let G ← G ∪ {fi}, and F ← F − {fi}.

iii. (Try to realize a cascade for the functions in G.)

iv. If (the cascade is not realized) then
if |G| = 1 then (write ‘Impossible to realize‘ and
Terminate.)
else (nNon Cas group ← nNon Cas group + 1,
Non Cas ← Non Cas ∪ G. )

v. F ← F − G.

(c) F ← Non Cas,
maxn group ← |F |/(nNon Cas group + 1).

4. Terminate.

D. Reduction of the Number of Levels Using Unused Memory

Although Algorithm 5.1 gives fairly good solutions, it does
not always produce LUT cascades with the minimum levels,

since it is a heuristic method. If there is any spare memory, we
can decrease the number of levels by using LUTs with more in-
puts. In this section, we show an algorithm to reduce the number
of levels using unused memory.

Algorithm 5.2 (Reduction of Levels) By Algorithm 5.1, obtain
the cascade for a given multiple-output function. Let r be the
number of LUT cascades, and let mem be the total amount of
necessary memory. Let GRPS = {G1, G2, . . . , Gr} be the set
of groups of the outputs, and lv Gi be the number of levels of the
LUT cascade for Gi. In the following ,the user must specify the
number of cell inputs klim, and the amount of available memory
memavail.

1. Read the parameters klim and memavail.

2. While GRPS 	= φ do steps (a)(b), and (c).

(a) For each Gi ∈ GRPS . Let bddcf be the BDD-for-CF,
representing Gi. Let, GRPS ← GRPS − {Gi}.

(b) Obtain the maximum number of cell inputs kmax by
Expression (5).

(c) For k ← klim until kmax do steps (i) through (iv)

i. Try to realize a cascade for the bddcf with the
maximum number of inputs k, let j be the levels
of cascade.

ii. Let mempack be the amount of necessary mem-
ory after memory packing.

iii. If (j < lvGi and mempack ≤ memavail) then
(lvGi ← j, and mem ← mempack)
else if (j = lvGi and mempack < mem) then
mem ← mempack.

iv. k ← k + 1.

3. Terminate.

VI. EXPERIMENTAL RESULTS

A. Implementation of ISCAS’89 Benchmark Functions with an
LUT Ring

We implemented Algorithms 5.1 and 5.2 in the C program-
ming language, and designed LUT rings for ISCAS’89 bench-
mark functions [14]. In the LUT ring, we assumed the following
conditions: The number of bits in a word of the memory for logic
is 16; and the number of the maximum cell inputs is 13.

Table I shows the number of levels and the amount of memory
for the LUT rings. Name denotes the name of benchmark func-
tion; In denotes the number of inputs; Out denotes the number
of outputs; FF denotes the number of flip-flops; Sup denotes the
maximum number of supports in the output groups; r denotes
the number of LUT cascades; s denotes the number of levels;
and Mem denotes the amount of memory (Mega Bits).

First, we obtained partitions without memory limitation
(Lower Bound) using relation (2). Second, we obtained the par-
titions of outputs by Algorithm 5.1, and we reduced the num-
ber of levels by Algorithm 5.2 with the memory limitation of 1
Mega Bytes (Limit 1MByte). Finally, we obtained the partitions
by Algorithm 5.1, and we reduced the number of levels by Al-
gorithm 5.2 with the memory limitation of 4 Mega Bytes (Limit



TABLE I
THE AMOUNT OF MEMORY AND THE NUMBER OF CELLS FOR LUT RINGS.

Name In Out FF Sup r Lower Bound Limit 1MByte Limit 4MByte
s Mem[Mbit] s Mem[Mbit] s Mem[Mbit]

Non-Pack Pack Non-Pack Pack Non-Pack Pack
s208 10 1 8 18 1 2 0.625 0.312 1 4.000 4.000 1 4.000 4.000
s344 9 11 15 21 1 3 0.312 0.312 3 0.312 0.312 3 0.312 0.312
s386 7 7 6 13 1 1 0.125 0.125 1 0.125 0.125 1 0.125 0.125
s420 18 1 16 34 1 5 0.281 0.156 3 2.500 1.500 2 36.000 32.000
s510 19 7 6 22 1 3 0.062 0.062 2 0.375 0.250 2 0.375 0.250
s641 36 23 19 37 2 11 1.188 0.813 7 5.250 4.750 6 14.000 13.500
s713 36 23 19 35 2 11 0.812 0.562 7 4.750 4.250 6 9.750 9.500
s820 18 19 5 23 1 3 0.093 0.062 3 0.093 0.062 3 0.093 0.062
s838 34 1 32 66 2 14 1.390 0.937 8 7.500 5.500 7 19.000 15.000
s1196 13 13 19 26 3 10 0.688 0.531 5 7.531 7.000 5 7.531 7.000
s1423 17 5 74 65 5 43 3.968 2.438 32 12.453 7.563 25 42.937 30.750
s5378 35 49 164 72 22 76 4.891 2.332 61 15.055 7.609 52 65.359 30.828
s9234 36 39 211 94 41 136 6.998 2.102 121 17.271 7.875 95 101.859 31.546
ratio 1.00 0.73 0.66

4MByte). In this experiment, we used two algorithms: the algo-
rithm to find a partition of inputs that minimizes the number of
levels [10], and the algorithm for memory packing [10].

In the columns of Mem, Non-Pack denote the sizes of mem-
ory without memory packing, and the Pack denote the sizes of
memory with memory packing. In the case of Limit 1MByte, we
achieved a reduction in the number of levels to 73%. Further-
more, in the case of Limit 4MByte, we achieved a reduction in
the number of levels to 66%. Therefore, with the enough amount
of memory, we can considerably reduce the number of levels.

B. Comparison with Other Method

B.1 Memory Size

Implementation using Memory and Multiplexers [4] Con-
sider the sequential circuit, where n is the number of the external
input variables, m is the number of the external output variables,
and s is the number of the state variables. The straightforward
implementation of the transition functions and the output func-
tions by memories requires s · 2n+s bits and m · 2n+s bits, re-
spectively.

However, we can often reduce the necessary amount of mem-
ory by using properties of the given sequential circuits. In many
case, the transition functions and output functions of sequential
circuit depend on the proper subset of the input variables. Let q
be the maximal number of the input variables for which the next
state depends. Then, we can use q qualifier variables instead of
the external input variables. In this case, we use current state to
select the external input variables. Also, we need 2s:1 multiplex-
ers to select the qualifier variables from the external inputs.

Example 6.3 Consider the state transition table shown in Table
1. In this table, the number of external inputs is three, but each
state depends on at most two external inputs. Thus, by using
the circuit in Fig. 9, we can implement Table II. In Fig. 9, two
8:1 multiplexer select qualifier variables. Note that with this
implementation, the size of memory is reduced from 3 · 23+3 to
3 · 22+3 bits. (End of Example)

Logic Simulation using Microprocessor The LCC [15] is a
kind of logic simulator that assigns a fragment of program code
to each gate of logic circuits. It evaluates codes from the inputs

TABLE II
EXAMPLE OF STATE TRANSITION TABLE.
�x �ycurrent �ynext

x1 x2 x3 y1 y2 y3 y′
1 y′

2 y′
3

1 - - 0 0 0 0 0 1
0 0 - 0 0 0 1 0 1
0 1 - 0 0 0 1 0 0
- - 1 0 0 1 1 0 1
- - 0 0 0 1 0 1 1
0 - - 1 0 1 0 1 1
1 1 - 1 0 1 1 0 1
1 0 - 1 0 1 0 0 1
- 1 0 1 0 0 1 0 1
- 0 0 1 0 0 0 0 1
- - 1 1 0 0 0 1 0
- - - 0 1 1 0 0 1
- 0 - 0 1 0 0 1 0
- 1 - 0 1 0 0 0 0

q1q2

8:1
101
011
010
001
001
011
---
---

100
011
010
001
010
011
---
---

001
101
000
001
101
001
---
---

001
101
000
001
010
101
---
---

000
001
010
011
100
101
110
111

00 01 10 11y1y2y3

MUX
8:1

MUX

DQ
y3

DQ
y2

DQ
y1

y’1
y’2
y’3

y1
y2
y3

x2

x3
x2

. . ..
.

x1
x2

x2
x3
x1

-

-
-

-
-

-
-

-

Fig. 9. Implementation of Table II using memory and multiplexers.

to the outputs in a topological order. To produce the executable
code, we converted the ISCAS’89 benchmark circuits into the
program code, and compiled it by gcc compiler with option -O2.

Table III compares LUT rings and other three method. In Ta-
ble III, Name denotes the name of benchmark function; In de-
notes the number of inputs; Out denotes the number of outputs;
FF denotes the number of state variables; Direct denotes the size
of memory that is directly implemented by a single memory.
Mem+Mux denotes the amount of memory by using multiplexers
[4]. LCC denotes that the size of executive code. Ring denotes
the amount of memory for the memory for logic in Fig.3. We
found the partition of the inputs that minimizes the number of
levels, and did packing [10].



TABLE III
COMPARISON OF MEMORY SIZES[MBIT] TO EMULATE SEQUENTIAL

CIRCUITS.
Name In Out FF Direct Mem+Mux LCC Ring
s298 3 6 14 2.500 1.250 0.015 0.187
s344 9 11 15 416.000 208.000 0.015 0.187
s382 3 6 21 432.000 216.000 0.015 0.156
s386 7 7 6 0.102 0.025 0.016 0.125
s400 3 6 21 432.000 216.000 0.015 0.156
s820 18 19 5 192.000 0.188 0.019 0.503

s1494 8 19 6 0.391 0.049 0.025 0.500

Table III shows that the method using Memory and Mul-
tiplexer realizes the benchmark functions with small memory
sizes, when the number of state variables or FFs is small. How-
ever, when the number of state variables is large, the necessary
amount of memory becomes too large. LCC and Ring can re-
alize the benchmark functions with smaller amount of memory
than Direct and Mem+Mux methods.

B.2 Evaluation Time.

Table IV compares the LUT rings with the LCC logic simula-
tor with respect to the evaluation time. In this table, we gener-
ated one million random test vectors on an IBM PC/AT compat-
ible machine using a Pentium III 800MHz microprocessor with
256MBytes of memory. We obtained average evaluation time
per one vector, and we considered it as the LCC evaluation time.
Also, from the expression in [11], evaluation time for the LUT
Ring was estimated as follows:

Evaluation time [ns] = 4.5 × Number of levels + 5.9.

In Table IV, Name, In, Out, and FF denote the same things as
Table III. And LCC, and LUT Ring denote evaluation time (ns)
for correspond methods.

TABLE IV
COMPARISON OF EVALUATION TIME FOR LCC AND LUT RING.
Name In Out FF LCC[ns] LUT Ring[ns]
s208 10 1 8 740 10.4
s349 9 11 15 1200 14.9
s420 18 1 16 1510 14.9
s510 19 7 6 2140 14.9
s641 36 23 19 1800 32.9
s713 36 23 19 2170 32.9
s820 18 19 5 4080 19.4

s1196 13 13 19 5430 28.4
s1494 8 20 6 7830 14.9
s5378 35 49 164 19860 239.9
s9234 36 39 211 38400 275.9

Table IV shows that the LUT ring is about 100 times faster
than the LCC. Note that the LCC stores both the data and the
program in a memory, and execute by a general-purpose proces-
sor. For these benchmark functions, LUT rings efficiently realize
sequential circuits using the reasonable amount of memory in a
reasonable evaluation time.

VII. CONCLUSION

In this paper, we presented a method to realize sequential cir-
cuits by using Look-Up Table (LUT) rings. This method parti-

tions output functions into groups, represents them by BDD-for-
CFs, and emulates by an LUT ring. The strategy presented in this
paper reduced the design time drastically. And, we could reduce
the number of levels for LUT rings by using unused memory.
Also, the LUT ring is faster than microprocessors.
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