436 - [148] Degawa, K., Aoki, T., Higuchi, T., Inokawa, H. and Takahashi, Y. (2004) A Single-Electron-Transistor Logic Gate Family for Binary, Multiple-Valued and Mixed-Mode Logic Circuits, IEICE Transactions on Electronics, E87-C(11), 1827-1836. - [149] Inokawa, H., Takahashi, Y., Degawa, K., Aoki, T. and Higuchi, T. (2004) A simulation methodology for single-electron multiple-valued logics and its application to a latched parallel counter, *IEICE Transactions on Electronics*, E87-C(11), 1818–1826. - [150] Hiratsuka, M., Ikeda, S., Aoki, T. and Higuchi, T. (2004) A redox microarray An experimental model for molecular computing integrated circuits, *IEICE Transactions on Electronics*, E87-C(11), 1804–1808. - [151] Degawa, K., Aoki, T. and Higuchi, T. (2004) Prototype Fabrication of Field-Programmable Digital Filter LSIs Using Multiple-Valued Current-Mode Logic – Device Scalling and Future Prospects, Journal of Multiple-Valued Logic and Soft Computing (to be published). - [152] Natsui, M., Homma, N., Aoki, T. and Higuchi, T. (2004) Design of Multiple-Valued Logic Circuits Using Graph-Based Evolutionary Synthesis, Journal of Multiple-Valued Logic and Soft Computing (to be published). L of Mult-Valued Logic & Soft Computing., Vol. 11, pp. 437-465 ©2003 Old City Publishing, Inc. Reprints available directly from the publisher Published by license under the OCP Science imprint, Photocopying permitted by license only # Exact and Heuristic Minimization of the Average Path Length in Decision Diagrams Shinobu Nagayama*, Alan Mishchenko[†] Tsutomu Sasao*, and Jon T. Butler§ *Department of CSE, Kyushu Institute of Technology, lizuka 820-8502, Japan. †Department of EECS, UC Berkeley, Berkeley CA 94720, USA. †Center for Microelectronic Systems, Kyushu Institute of Technology, lizuka 820-8502, Japan. †Department of ECE, Naval Postgraduate School, Monterey, CA 93943-5121, USA over an existing algorithm in both APL and runtime. Experimental results for 2-valued cases and 4-valued cases are shown. but produces comparable APLs. Both algorithms yield an improvement show that the heuristic algorithm is much faster than the exact one variables that reduce the APL of multi-valued decision diagrams (MDDs) an exact and a heuristic algorithm to determine the pairs of binary where selected pairs of variables are swapped. This paper also proposes branch-and-bound. Our heuristic algorithm uses dynamic reordering this paper, we propose an exact and a heuristic algorithm to determine over all assignments of values to variables. Smaller APL values result number of nodes on a path from the root node to a terminal node for a 4-valued input 2-valued output function. Experimental results the variable order that minimizes the APL. Our exact algorithm uses For some functions, the APL depends strongly on the variable order. In in faster evaluation of the function represented by a decision diagram In a decision diagram, the average path length (APL) is the average Keywords: BDD, MDD, average path length (APL), node traversing probability edge traversing probability, branch-and-bound, sifting algorithm. #### 1 INTRODUCTION Binary decision diagrams (BDDs) [5] and multi-valued decision diagrams (MDDs) [15] are extensively used in logic synthesis [10], logic simulation [1, 13, 17], software synthesis [2, 14], and pass transistor logic (PTL) [3, 29, 30]. These applications use decision diagrams to evaluate logic functions, and the evaluation time is proportional to the average path length (APL) in the decision diagram. Therefore, minimization of the APL leads to faster evaluation of the logic function. Particularly, in logic simulation using decision diagrams [1, 13, 17], minimization of the APL reduces the simulation time substantially because logic functions are evaluated many times with different test vectors. Minimization of the APL can also be applied to logic synthesis. A method for functional decomposition [32] uses BDDs to detect Boolean divisors. The quality of a divisor is measured by the number of don't-cares it provides for the minimization of the quotient. The don't-cares are generated by the paths in the BDD that lead to the terminal nodes. The shorter the paths, the more don't-care minterms they contain. Therefore, minimizing the APL in BDDs can improve the quality of decomposition. In pass transistor logic (PTL) synthesis, the circuits are derived directly from BDDs representing logic functions. In this case, the longer paths in BDDs cause larger voltage drop and larger delay. This problem can be solved by inserting buffers in long paths [3]. Minimizing the APL in the BDD can reduce the number of buffers that must be inserted. In this paper, we propose an exact APL minimization algorithm based on the branch-and-bound algorithm. This algorithm finds an optimum variable order much faster than exhaustive search, which enumerates all possible variable orders. However, the exact method is time-consuming for functions with many inputs. To minimize the APL of such functions in a reasonable time, we propose a heuristic algorithm based on dynamic variable reordering. This paper is organized as follows. Section 2 contains the necessary terminology and definitions. Section 3 introduces lower bounds on the APL. Section 4 proposes an exact and a heuristic minimization algorithm for the APL. Section 5 considers the paired ordering of binary variables. Section 6 shows the efficiency of the algorithms using benchmark functions. Experimental results for 2-valued cases and 4-valued cases are shown. The Appendix includes the proofs of theorems. #### 2 PRELIMINARIES We assume that the reader is familiar with the basic terminology of reduced ordered binary decision diagrams (ROBDDs) [5] and reduced ordered multi-valued decision diagrams (ROMDDs) [15]. In the following, a BDD and an MDD mean an ROBDD and an ROMDD. DD means either BDD or MDD. **Definition 2.1** Let x be an r-valued variable, and let $c \in \{0, 1, ..., r-1\}$. Then, P(x = c) denotes the probability that x has value c. **Definition 2.2** In a DD, a sequence of edges and non-terminal nodes leading from the root node to a terminal node is a **path**. The number of edges in the path is the **path length**. Note that the sequence of edges in a path p_i of a DD corresponds to an assignment of values a_i to the specific variables associated with those edges in the DD. We say that such an assignment a_i selects path p_i . Similarly, if an assignment of values c_i to all variables agrees with a_i for all variables assigned in a_i , we also say c_i selects path p_i . **Definition 2.3** In a DD for an n-variable function, the path probability of a path p_i , denoted by $PP(p_i)$, is the probability that the path p_i is selected in all assignments of values to the r-valued variables. $PP(p_i)$ is given by $$PP(p_i) = \sum_{\bar{c} \in C_i} P(x_1 = c_1) \times P(x_2 = c_2) \times \ldots \times P(x_n = c_n),$$ where C_i denotes the set of assignments of values to the variables selecting the path p_i , $\vec{c} = (c_1, c_2, ..., c_n)$, each $c_j \in \{0, 1, ..., r-1\}$, and $P(x_j = c_j)$ is the probability x_j has value c_j . Definition 2.4 The average path length, or APL, in a DD is given by: $$APL = \sum_{i=1}^{N} PP(p_i) \times l_i,$$ where i indexes the paths, N denotes the number of paths, and l_i denotes the path length of path p_i . **Definition 2.5** The node traversing probability of a node v, denoted by NTP(v), is the probability that an assignment of values to the variables selects a path that includes the node v. **Definition 2.6** The edge traversing probability of an edge e, denoted by ETP(e), is the probability that an assignment of values to the variables selects a path that includes the edge e. Note that the node traversing probability of the root node in a decision diagram is 1.0, since all paths start from the root node. **Lemma 2.1** [27] The node traversing probability of node v is the sum of the edge traversing probabilities of all incoming edges to v. Also, the node traversing probability of node v is the sum of the edge traversing probabilities of all outgoing edges from v. **Proof.** See Appendix. From Lemma 2.1, the following relation holds: $$ETP(e) = P(x = c) \times NTP(v),$$ | <i>p</i> 10 | B | P ₈ | p, | <i>P</i> 6 | <i>p</i> 5 | P 4 | <i>p</i> 3 | p_2 | p_1 | Path p_i | |-------------|--------|----------------|--------|------------|------------|------------|------------|-------|-------|----------------| | 0.125 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.125 | 0.0625 | 0.0625 | 0.125 | 0.25 | $PP(p_l)$ | | ω | 4 | 4 | 4 | 4 | w | 4 | 4 | w | 2 | Path length li | FIGURE 1 (b) PPs and path lengths Example of node traversing probability in a BDD. where P(x = c) is the probability x has a value c, v is a node representing a variable x, and e is an outgoing edge corresponding to the value c of v. **Theorem 2.1** [27] The APL is equal to the sum of the edge traversing probabilities of all edges. Also, the APL is equal to the sum of the node traversing probabilities of all the non-terminal nodes. Proof. See Appendix. From Theorem 2.1, we have the following: $$APL = \sum_{i=1}^{\infty} ETP(e_i) = \sum_{j=1}^{\infty} NTP(v_j),$$ where N_e and N_v denote the number of edges and non-terminal nodes, respectively. **Example 2.1** Consider the BDD in Fig. I(a), where solid lines and dotted lines denote 1-edges and 0-edges, respectively. For simplicity, assume that $P(\mathbf{x}_i = 0) = P(x_i = 1) = 0.50$ (i = 1, 2, 3, 4). This BDD has 10 different paths: path p_1 is (v_1, e_1, v_2, e_3) , path p_2 is $(v_1, e_1, v_2, e_4, v_4, e_7)$, ..., and path p_0 is $(v_1, e_2, v_3, e_5, v_5, e_{10})$. The $PP(p_i)$ and path length of each path p_1 are listed in Fig. I(b). Therefore, by Definition 2.4, $$APL = \sum_{i=1}^{\infty} PP(p_i) \times l_i = 3.125.$$ By using node traversing probabilities, we can compute this APL as follows:
First, we have $NTP(v_1) = 1.00$ for root node v_1 . Then, $NTP(v_2) = ETP(e_1) = P(x_1 = 0) \times NTP(v_1) = 0.50$ and $NTP(v_3) =$ FIGURE 2 Partition of MDD. $$ETP(e_2) = P(x_1 = 1) \times NTP(v_1) = 0.50$$. Similarly, $$NTP(v_4) = P(x_2 = 1) \times NTP(v_2) + P(x_2 = 0) \times NTP(v_3) = 0.50,$$ $$NTP(v_5) = P(x_2 = 1) \times NTP(v_3) = 0.25$$, and $$NTP(v_6) = P(x_3 = 1) \times NTP(v_4) + P(x_3 = 0) \times NTP(v_5) = 0.375.$$ Thus, we obtain $$APL = \sum_{i=1}^{6} NTP(v_i) = 3.125$$ Similarly, we can compute the APL using the edge traversing probabilities. (End of Example) Consider a multiple-output function $F = (f_0, f_1, \ldots, f_{m-1})$: $\mathbb{R}^n \to \mathbb{R}^m$, where $R = \{0, 1, \ldots, r-1\}$, and n and m denote the number of input and output variables, respectively. In this paper, we use shared MDDs (SMDDs) to represent multiple-output function F. For reasons that will be clear later, we view the APL of an SMDD as the sum of the APLs of the individual MDDs for each component function f_i . ### 3 LOWER BOUNDS ON APL In this section, we derive lower bounds on the APL. Such bounds are used to reduce the computation time in the algorithm, as discussed later. **Definition 3.1** Suppose an MDD is partitioned into two parts as shown in Fig. 2. Here, X_{upper} denotes the variables above or in level i, X_{lower} denotes the variables below or in level i + 1, and Cut(i) denotes a set of edges connecting the nodes above or in level i with the nodes below or in level i + 1. 443 Note that the nodes are indexed by i starting with the root node at level 1. The nodes just below have i = 2, etc.. **Definition 3.2** ETP(Cut(i)) denotes the sum of edge traversing probabilities of edges in Cut(i), and is given by $$ETP(Cur(i)) = \sum_{e \in Cur(i)} ETP(e).$$ **Lemma 3.1** Suppose an SMDD represents a multiple-output function $F = (f_0, f_1, \ldots, f_{m-1})$. Then, $$ETP(Cut(i)) = m_U,$$ where m_U is the number of the root nodes of the multiple-output function F above or in level i. Proof. See Appendix. **Corollary 3.1** Suppose an MDD represents a single-output function f. Then, $$ETP(Cut(i)) = 1.0.$$ #### Lemma 3.2 Let $Cut'(i)=\{e \mid e \in Cut(i), such that e is incident to only non-terminal nodes\}.$ Then, for every permutation of X_{upper} , $$ETP(Cut'(i)) = c_i,$$ where $c_i \leq m_U$. Proof. See Appendix. **Theorem 3.1** Consider an SMDD for multiple-output function F. Let L be the sum of the node traversing probabilities of the non-terminal nodes below or in level i+1. Let m_L be the number of root nodes for F below or in level i+1. Then, for any permutation of X_{lower} and any permutation of X_{upper} . $$ETP(Cut'(i)) + m_L \leq L.$$ **Proof.** See Appendix. **Theorem 3.2** Consider an SMDD for multiple-output function F. Let U be the sum of the node traversing probabilities of the non-terminal nodes above or in level i. When the order of X_{upper} is fixed, $$U + ETP(Cut'(i)) + m_L \le APL$$. Proof. See Appendix. Corollary 3.2 Consider an SMDD of multiple-output function F. Let U and L be the sums of the node traversing probabilities of the non-terminal nodes above and below or in level i, respectively. Then, $$max\{L, U\} \leq APL$$ ### 4 MINIMIZATION OF APL Since the APL in a DD (BDD or MDD) depends on the variable order, the APL minimization problem can be formulated as follows: **Problem 4.1** Given a DD for a logic function f, find a variable order that produces the minimum APL. # 4.1 Change of the APL during Swapping Two Adjacent Variables Our APL minimization algorithms go from one variable order to another variable order by a sequence of steps that swap pairs of adjacent variables. A part of the algorithms that has a significant effect on computation time is updating the APL after swapping each pair of adjacent variables. This section describes a fast method to update the APL after the swap of two adjacent variables. **Theorem 4.1** Let U be the sum of the node traversing probabilities of non-terminal nodes above or in level i-1, and let L be the sum of the node traversing probabilities of non-terminal nodes below or in level i+2. Then, after the variable swap of level i with level i+1, U and L remain unchanged. Proof. See Appendix. Theorem 4.1 shows that the previously computed node traversing probabilities need not be repeated in computing the new APL caused by the swap of two adjacent variables. Fig. 3 illustrates a subgraph of level i and level i + 1 in the BDD when two adjacent variables are interchanged. Since the principles of variable swap for the binary case and the multi-valued case are the same, we describe only the binary case. The details of variable swaps for the multi-valued case are discussed in [18]. A subgraph composed of BDD nodes involved in the variable swap belongs to one of the six classes shown in Fig. 3. For each class, the figure on the left occurs before the swap, while the figure on the right occurs as a result of the swap. In Fig. 3, only cases (e) and (f) do not change the APL, while other cases change the APL. For example, in case (a), the node traversing probabilities FIGURE 3 Six cases of exchanging two adjacent variables. of nodes v_2 and v_3 are changed as a result of the swap. Before the swap, the node traversing probabilities of v_2 and v_3 are given by: $$NTP(v_2) = ETP(e_0) = P(x_i = 0) \times NTP(v_1)$$ $NTP(v_3) = ETP(e_1) = P(x_i = 1) \times NTP(v_1),$ where e_0 and e_1 denote the edges from v_1 to v_2 and from v_1 to v_3 , respectively. On the other hand, after the swap, the node traversing probabilities of v_2 and v_3 are: $$NTP(v_2) = P(x_{i+1} = 0) \times NTP(v_1)$$ $NTP(v_3) = P(x_{i+1} = 1) \times NTP(v_1).$ When $P(x_i = 0) = P(x_{i+1} = 0)$ and $P(x_i = 1) = P(x_{i+1} = 1)$, the node traversing probabilities of v_2 and v_3 do not change after the swap. Therefore, in case (a), the APL is changed by the edge traversing probabilities of Example of the update of the APL outgoing edges from v_i . Similarly, in other cases except for (e) and (f), the APL is changed by the edge traversing probabilities of outgoing edges from the root node of a subgraph. Note that from Theorem 4.1, we consider only the edges from the root node to nodes in level i + 1 to update the APL. We summarize the strategy for updating the APL as follows: - 1 Before the swap, for each subgraph involved in the swap, the edge traversing probabilities of the edges from the root node of a subgraph to nodes in level i + 1 are subtracted from 1) the APL and from 2) the node traversing probabilities of nodes in level i + 1. - 2 After the swap, for each subgraph, the edge traversing probabilities of edges from the root node of a subgraph to nodes in level i + 1 are re-calculated. - 3 The calculated edge traversing probabilities are added to 1) the APL and to 2) the node traversing probabilities of nodes in level i + 1. **Example 4.1** Fig. 4 shows BDDs for logic function $f = x_1x_4 \lor x_2x_4 \lor x_3$. Fig. 4(a) shows the BDD with the variable order (x_1, x_2, x_3, x_4) , top to bottom. For simplicity, assume that $P(x_i = 0) = P(x_i = 1) = 0.50$ (i = 1, 2, 3, 4). Then, the APL of the BDD in Fig. 4(a) is 2.875. In this BDD, we consider the swap of variables x_2 and x_3 . During such a swap, case (b) applies to node v_2 and case (f) applies to node v_4 . Performing the swap leads to the BDD shown in Fig. 4(b). Note that the swap decreases the APL by 0.25 because the node v_4 after the swap does not have the incoming edge from node v_2 . The node traversing probabilities associated with nodes v_2 and v_3 do not change. The overall APL decreases from 2.875 to 2.625. (End of Example) Another example of the update of the APL **Example 4.2** Fig. 5(a) shows the BDD with the variable order (x_2, x_3, x_1) for logic function $f = x_1(x_2 \lor x_3)$. Assume that $$P(x_1 = 0) = 0.6$$, $P(x_1 = 1) = 0.4$, $P(x_2 = 0) = 0.3$, $P(x_2 = 1) = 0.7$, $P(x_3 = 0) = 0.8$, $P(x_3 = 1) = 0.2$. The APL of the BDD in Fig. S(a) is 2.06. For the swap of variables x_3 and x_1 , case (d) applies to node v_2 and case (f) applies to node v_3 . Performing this swap yields the BDD shown in Fig. S(b). It changes the node traversing probabilities of v_3 and v_4 (a new node). Before the swap, the edge traversing probability of edge from v_2 to v_3 , 0.06, is subtracted from the APL and from the node traversing probabilities of v_3 . After the swap, the edge traversing probability of edge from v_2 to v_4 , 0.12, is added to the APL and to v_4 . The overall APL increases from 2.06 to 2.12. #### 4.2 Symmetric Variables **Definition 4.1** A logic function $f(x_1, x_2, ..., x_i, ..., x_j, ..., x_n)$ is symmetric with respect to x_i and x_j if the interchange of x_i and x_j does not change f. x_i and x_j are called symmetric variables. In a DD, swapping symmetric variables x_i and x_j does not change the graph structure. **Definition 4.2** Let π_1 and π_2 be permutations of the variables. If the positions of variables in π_1 are the same as in π_2 except for symmetric variables, π_1 and π_2 are called symmetric orders. Since symmetric orders produce DDs with the same graph structure, the DDs have the same APL when $P(x_i = 0) = P(x_j = 0)$, $P(x_i = 1) = P(x_j = 1)$, ..., and $P(x_i = r - 1) = P(x_j = r - 1)$ for symmetric variables x_i and x_j . Therefore, in such a case, detection of symmetric orders can reduce the computation time for an APL minimization algorithm. **Example 4.3** Consider the logic function $f = x_1x_4 \lor x_2x_4 \lor x_3$ (Fig. 4). Let variable orders π_1 and π_2 be (x_1, x_2, x_3, x_4) and (x_2, x_1, x_3, x_4) , respectively. Since x_1 and x_2 are symmetric variables, π_1 and π_2 are symmetric orders. The BDDs for the two orders are the same except the labels x_1 and x_2 are interchanged, and have the same APL
and the same number of nodes. (End of Example) ## 4.3 Exact Minimization Algorithm ordering(DD, (x_5, x_4) , 2) obtains the order $(x_5, x_4, x_1, x_2, x_3)$ in 7 swaps where "*, *, *" represents x_1 , x_2 , and x_3 in some order. Then, procedure variable order of the DD into the given order from the top to the specified variable orders. In lines 11 and 31 of Fig. 6, procedure ordering changes the has been proposed. This algorithm finds an optimum variable order much the first time an APL minimization algorithm based on branch-and-bound of computation allows a top-down algorithm. To our knowledge, this is the changes in APL can be calculated at each node locally. This locality MDD) as the cost function. By using the node traversing probability (NTP), as the cost function, while our algorithm uses the APL of a DD (BDD or algorithm (JANUS) in [9]. JANUS [9] uses the number of nodes in a BDD optimum solution using a branch-and-bound method, similar to the top-down Fig. 6 shows a pseudo-code to solve Problem 4.1. This algorithm finds an given level (level). The initial values of array cost in Fig. 6 are set to infinity variable exchanges to reduce computation time. In line 21, NTP(level) set of candidates. In line 19, Theorem 3.2 is used to eliminate the unneeded are same for the symmetric variables, the current order is excluded from the and the current variable order of the DD are symmetric, and all P(x = c)s checks symmetry of adjacent variables [22]. When the variable order of level. For example, let the current variable order be $(x_1, x_2, x_3, x_4, x_5)$. faster than the exhaustive search method, which enumerates all possible denotes the sum of the node traversing probabilities of the nodes on the X'_{sub} , which has already been stored in array "order[X'_{sub}]" as a candidate, from the order $(x_1, x_2, x_3, x_4, x_5)$. Procedure symmetry_check in line 15 We seek the order (x_5, x_4) at level two. That is, we seek $(x_5, x_4, *, *, *)$ ## 4.4 Heuristic Minimization Algorithm The exact minimization algorithm in Fig. 6 obtains an optimum solution for Problem 4.1. However, when the number of input variables is large, finding the optimum variable order may require much computation time. Exact and Heuristic Minimization of the APL in Decision Diagrams ``` 26: 24: 23: 22 21: 20: 29 28 27 25 15: 16: 14: 13: 12: 11: 19: 17: 5. 6. 7. 9. 8. 9. 9. minimize_APL (DD, input variables X, # inputs n) { ordering(DD, order[X], n); order[X_{sub}] = \phi; cost[X_{sub}] = 0 ; X_{sub} = \phi; min_apl = APL for initial DD; S_{next} = \{X_{sub}\} ; for (level = 1; level \le n; level++) S_{cur} = S_{next}; for (each X_{sub} \in S_{cur}) { S_{next} = \phi; ordering(DD, order[X_{sub}], level - 1); for (each x_i \in \{X \setminus X_{sub}\}\) { if (\text{new_cost} < \text{cost}[X'_{sub}]) { new_cost = cost[X_{sub}] + NTP(level); if (lower_bound(level) > min_apl) if (\operatorname{order}[X'_{sub}]) and current order are symmetric symmetry_check(DD, level) ; Move x_i to level; X'_{sub} = X_{sub} \cup \{x_i\} ; Update min_apl; if (X'_{sub} \notin S_{next}) \operatorname{order}[X'_{sub}] = \operatorname{current} \operatorname{order}; cost[X'_{sub}] = new_cost; continue; continue; && all P(x = c)s are same) S_{next} = S_{next} \cup \{X'_{sub}\} ; ``` FIGURE 6 Exact APL minimization algorithm. In this section, we show a heuristic minimization method using variable sifting [23]. The sifting algorithm repeatedly performs the following basic steps: ``` 27: 26: 25: 23: 22: 20: 24 19: 18: 15: 14: 12: 13: 17: 16: =: <u>.</u> 9 00 6 sifting_APL (DD, #rounds of sifting R) { cost = APL for initial DD; for (r = 0; r < R; r++) { for (each x_i \in X) \{ Move x_i to best_p; start = current position of x_i; for (each position p to the other extreme) { for (each position p from start to the closer extreme) { best_p = start; if (cost \leq U \text{ (or } L)) Move x_i to p; if (APL < cost) { if (cost \leq U \text{ (or } L)) Update U (or L); if (APL < cost) { Update U (or L); Move x_i to p cost = APL; break; break; best_p = p; cost = APL; best_p = p; ``` FIGURE 7 Heuristic APL minimization algorithm. The proposed sifting algorithm uses APL as the cost function. It was shown in Section 4.1 that the APL can be efficiently updated after the swap of two adjacent variables. As a result, the time needed to compute the cost in our sifting algorithm is comparable to the time needed to update the number of nodes in the classical sifting algorithm, which minimizes the number of nodes. Fig. 7 shows the pseudo-code of the heuristic minimization algorithm. In this algorithm, each variable x_i is sifted across all possible positions to determine its best position. First, x_i is sifted in one direction to the closer extreme (top or bottom). Then, x_i is sifted in the opposite direction to the other extreme. In lines 10 and 20 of Fig. 7, Corollary 3.2 is ¹ Change the variable order. ² Compute a cost. used to eliminate unneeded sifting of x_i . When variable x_i moves down to the bottom, we use U equal to the sum of the node traversing probabilities of the nodes above x_i . If $cost \le U$, sifting of x_i further down to the bottom cannot lead to a smaller APL than cost. In such cases, there is no need to continue sifting to the bottom. Similarly, when variable x_i moves up to the top, we use L equal to the sum of the node traversing probabilities of the nodes below x_i . This lower bound for the APL is similar to the one introduced for the number of nodes during the classical sifting [8]. ## 4.5 Initial Ordering of the Binary Variables The initial ordering of variables influences the effectiveness of the heuristic minimization algorithm described in the previous section. An analysis of variable orders that produces the minimal APL in several known classes of functions [6,28] leads to a heuristic to find a good initial variable order. In this section, we propose an initial variable order using Walsh spectrum [12] for binary logic functions. The value of a first-order Walsh spectral coefficient expresses the correlation between the variable value with the function value. For n-variable logic function f(X), the first-order Walsh spectral coefficient can be computed as follows [7]: $$R_i = \frac{|\bar{x}_i \oplus f|}{2^{n-1}} - 1,$$ where $|\bar{x}_i \oplus f|$ denotes the number of assignments of values to the variables X such that the values of x_i and f(X) are equal. The initial variable order is found by placing the variables in descending order of the absolute value of R_i . For variables with identical absolute values of R_i , we arbitrarily choose the order. All spectral coefficients can be computed by scanning the nodes beginning at the root node and ending on the terminal nodes using a fast algorithm [31]. The first-order coefficients can be computed by a simplified version of the general algorithm. **Example 4.4** Consider the logic function $f = x_1x_4 \lor x_2x_4 \lor x_3$ in Example 4.1. For each binary variable x_i , the value of $|\overline{x}_i \oplus f|$ is given by: $$|\bar{x}_1 \oplus f| = 9$$, $|\bar{x}_2 \oplus f| = 9$, $|\bar{x}_3 \oplus f| = 13$, $|\bar{x}_4 \oplus f| = 11$. The value of each R_i corresponding to x_i is as follows. $$R_1 = \frac{1}{8}, \qquad R_2 = \frac{1}{8}, \qquad R_3 = \frac{5}{8}, \qquad R_4 = \frac{3}{8}.$$ Therefore, we have an initial variable order x_3 , x_4 , x_1 , x_2 , and APL = 1.875. This is the minimum APL for f. (End of Example) ## PAIRED ORDERING OF BINARY VARIABLES Unfortunately, there are no standard benchmark functions for multi-valued logic. Thus, 4-valued input 2-valued output functions obtained by pairing binary variables of 2-valued benchmark functions are often used for experiments for the multi-valued case [11,18,24]. Especially, [11,24] show that 4-valued MDDs can represent binary logic functions more compactly than BDDs, by considering paired orderings of binary variables. 4-valued MDDs can be implemented efficiently using LUT-based FPGAs. In Section 6.2, we also use the 4-valued input 2-valued output functions for experiments of the multi-valued case, and show that 4-valued MDDs can reduce the APL, as well as the number of nodes efficiently. To do this, in this section, we define a paired ordering of binary variables. **Definition 5.1** Let f(X) be a 2-valued logic function, where $X = (x_1, x_2, ..., x_n)$ is an ordered set of binary variables. Let $\{X\}$ denote the unordered set of variables in X. Let $X_i \subseteq X$. If $\{X\} = \{X_1\} \cup \{X_2\} \cup ... \cup \{X_u\}, \{X_i\} \cap \{X_j\} = \phi \ (i \neq j)$, and $|X_i| = 2$, then $(X_1, X_2, ..., X_u)$ is a **paired ordering** of binary variables X, and each X_i can be represented as a 4-valued variable. And then, a 2-valued logic function f(X) can be represented by the mapping $f(X_1, X_2, ..., X_u)$: $\{0, 1, 2, 3\}^u \rightarrow \{0, 1\}$. For *n*-variable functions, if n < 2u (i.e. *n* is an odd number), we use an additional redundant binary variable called a **dummy variable**. The set of binary variables with the dummy variable if it exists, is denoted by $\{X'\} = \{x_1, x_2, ..., x_n, x_{n+1}\}$, where |X'| = n + 1 = 2u. Note that f is independent of x_{n+1} . **Theorem 5.1** The number of different paired orderings of binary variables $X = (x_1, x_2, ..., x_n)$ to consider is $$\frac{n!}{2^n}$$ where u denotes the number of 4-valued variables obtained by the pairing, and is given by $$u=\frac{n}{2}$$. Note that we assume that n = 2u. #### Proof. See Appendix. In [11,24], heuristic paired ordering algorithms for node minimization have been proposed. However, in this paper, we consider the paired ordering When n is an odd number, we use a dummy variable. problem considering the paired orderings of binary variables as follows: algorithms for APL minimization. We formulate the APL minimization of binary variables X that produces an MDD with the minimum APL. **Problem
5.1** Given a binary logic function f(X), find a paired ordering ## 5.1 Exact Paired Ordering Algorithm algorithm in Fig. 6. In lines 6 and 38 of Fig. 8, procedure pairing produces pairing binary variables in *level* and *level* + 1. sum of the node traversing probabilities of the MDD nodes obtained by variable order of given BDD. In line 26, pairing_NTP(level) denotes the the APL of MDD obtained by making pairs of binary variables from the optimum solution for Problem 5.1 using branch-and-bound, similar to the Fig. 8 shows a pseudo-code to solve Problem 5.1. This algorithm finds an binary variables from the given variable order. In line 7, min_apl is set to an MDD for 4-valued input 2-valued output function by making pairs of ## 5.2 Heuristic Paired Ordering Algorithm paired ordering algorithm, called pair-sifting algorithm, consists of the following four basic steps: In this section, we show a heuristic paired ordering algorithm. The heuristic - 1 Apply the sifting algorithm for APL minimization presented in Section 4.4 to the BDD of the given binary logic function. - 2 Make pairs of binary variables from the variable order obtained by the sitting algorithm. - 3 Construct an MDD for the 4-valued input 2-valued output function - 4 Apply the sifting algorithm to the MDD. of nodes in an MDD. This strategy is similar to one used in [24], which minimizes the number ### 6 EXPERIMENTAL RESULTS environment: Experiments using MCNC benchmarks were conducted in the following - CPU: Pentium4 Xeon 2.8GHz - L1 Cache: 32KB - L2 Cache: 512KB Main Memory: 4GB - Operating System: redhat (Linux 7.3) - C-Compiler: gcc -O2 $(r-1) = \frac{1}{r}$ for r-valued input functions. In this section, we assume that $P(x_i = 0) = P(x_i = 1) = \dots = P(x_i = 1)$ ``` 36: 37: 35: 34 32: 33: 31: 30: 223 224 225 226 227 227 228 20: 21: 19: 18: 17: 16: 15: 1: 14: 13: 12: 10: 9 pairing_APL (BDD, binary variables X, # inputs n) { pairing(X, order[X]); ordering(BDD, order[X], n); cost[X_{sub}] = 0 ; S_{next} = \{X_{sub}\} ; order[X_{sub}] = \phi; for (level = 1; level \le n; level += 2) { min_apl = APL for initial MDD obtained by pairing; pairing(X, order[X]); X_{sub} = \phi; S_{next} = \phi; S_{cur} = S_{next}; for (each X_{sub} \in S_{cur}) { ordering(BDD, order[X_{sub}], level - 1); for (each x_i \in \{X \setminus X_{sub}\}) { symmetry_check(BDD, level) ; Move x_i to level; X'_{sub} = X_{sub} \cup \{x_i\} ; for (each x_j \in \{X \setminus X'_{sub}\}) { if (\text{new_cost} < \text{cost}[X''_{sub}]) { new_cost = cost[X_{sub}] + pairing_NTP(level); if (lower_bound(level + 1) > min_apl) Update min_apl; if (order[X''_{sub}] and current order are symmetric symmetry_check(BDD, level + 1) ; Move x_j to level + 1; X''_{sub} = X'_{sub} \cup \{x_j\}; cost[X''_{sub}] = new_cost; if (X''_{sub} \notin S_{next}) \operatorname{order}[X_{sub}''] = \operatorname{current order}; continue; continue; && all P(x = c)s are same) S_{next} = S_{next} \cup \{X_{sub}''\} ; ``` Exact paired ordering algorithm for APL minimization #### 6.1 Binary Case contain the relative values to the results of "(a) Min Nodes". of input variables and single-output functions, respectively. Columns Nodes columns "(b) Min_APL", "(c) Liu [16]", and "(d) sifting" of this row APL, and Time assuming the values of "(a) Min Nodes" to be 1.00. The SBDD. Two rounds of sifting are performed in all experiments. The row the number of nodes and APL in Table 1 are different from those of the the variable order. To make our results compatible with the results in the number of nodes and the APL in BDDs for incompletely specified specified functions. We omitted incompletely specified functions because benchmark functions as the experiment in [16] except for incompletely BDDs in this table use complemented edges. Table 1 includes the same sifting" was obtained using Walsh spectrum described in Section 4.5. The Section 4.3, the heuristic APL minimization in [16], and the heuristic APL minimization algorithm in [9], the exact APL minimization algorithm in "(b) Min_APL", "(c) Liu [16]", and "(d) sifting" show the exact nodes time of the algorithm in [16] is unavailable. Columns "(a) Min_Nodes" time of three algorithms coded by us, in seconds. Unfortunately, the CPU contain the number of non-terminal nodes. Columns Time contain the CPU Name lists the names of benchmark functions. In and Out lists the numbers heuristic APL minimization algorithm presented in this paper. In the table labeled Average of ratios represents the normalized averages for Nodes, independently, and obtained the sum of the values over all outputs. Thus, [16], we optimized each output of the multiple-output benchmark functions functions depend on the assignment of values to don't cares, as well as minimization in Section 4.4, respectively. Initial variable order for "(d) (b) exact minimization of the APL; (c) the algorithm in [16]; and (d) the four different methods: (a) exact minimization of the number of nodes Table 1 compares the number of nodes and APL of BDDs optimized using The heuristic method in [16] obtained BDDs with the exact minimum APLs in 5 out of 17 benchmark functions. However, for alu4, cm151a, and cm85a, the algorithm in [16] obtained BDDs with much larger APLs than the exact minimum APLs. On the other hand, our heuristic method in Section 4.4 obtained BDDs with the exact minimum APLs in 11 out of 17 benchmark functions. For five of the remaining functions, the APLs in the column labeled "(d) sifting" are smaller than or equal to the APLs in "(c) Liu [16]". For cm162a, our sifting algorithm obtained BDDs with slightly larger APLs than the exact minimum APLs. An exhaustive search algorithm finds the minimum APLs for the functions with up to 14 inputs within a reasonable computation time. Meanwhile, our exact minimization algorithm in Section 4.3 found the minimum APL for functions with 25 inputs (vg2) within a reasonable computation time. for functions with 25 inputs (vg2) within a reasonable computation time. Table 2 shows the results for larger MCNC benchmarks and the effectiveness of the initial variable order using the Walsh spectrum. In TABLE 1 Minimization of APL for individual BDDs | Name | In | Out | (a |) Min_Ne | odes | (1 | b) Min.A | PL | (c) Liu | ı [16] | (| d) sifting | | |---------|---------|-----|-------|----------|---------|-------|----------|---------|---------|--------|-------|------------|------| | | | | Nodes | APL | Time | Nodes | APL | Time | Nodes | APL | Nodes | APL | Time | | 5xp1 | 7 | 10 | 66 | 34.13 | 0.01 | 81 | 31.28 | 0.01 | 91 | 31.31 | 79 | 31.28 | 0.01 | | alu4 | 14 | 8 | 448 | 41.75 | 22.76 | 547 | 39.69 | 28.71 | 899 | 47.54 | 516 | 39.97 | 0.01 | | b12 | 15 | 9 | 64 | 23.86 | 0.03 | 68 | 21.84 | 0.01 | 81 | 22.22 | 71 | 21.88 | 0.01 | | con1 | 7 | 2 | 14 | 6.06 | 0.01 | 16 | 5.94 | 0.01 | 16 | 6.06 | 16 | 5.94 | 0.01 | | cordic | 23 | 2 | 73 | 13.74 | 416.57 | 89 | 9.43 | 1006.08 | 259 | 11.82 | 88 | 9.47 | 0.01 | | sao2 | 10 | 4 | 99 | 10.90 | 0.26 | 116 | 10.59 | 0.06 | 128 | 10.71 | 121 | 10.59 | 0.01 | | vg2 | 25 | 8 | 202 | 31.00 | 6431.83 | 222 | 29.91 | 376.78 | 230 | 30.37 | 204 | 30.16 | 0.01 | | misex I | 8 | 7 | 54 | 23.22 | 0.01 | 57 | 21.97 | 0.02 | 68 | 22.16 | 64 | 21.97 | 0.01 | | cm150a | 21 | 1 | 32 | 3.50 | 1106.23 | 32 | 3.50 | 1510.58 | 33 | 3.50 | 32 | 3.50 | 0.01 | | cm151a | 12 | 2 | 32 | 6.00 | 0.38 | 32 | 6.00 | 0.28 | 36 | 6.50 | 32 | 6.00 | 0.01 | | cm162a | 14 | 5 | 41 | 11.76 | 0.06 | 52 | 11.70 | 0.05 | 59 | 11.70 | 48 | 11.71 | 0.01 | | cm163a | 16 | 5 | 35 | 11.70 | 0.01 | 38 | 11.70 | 0.01 | 42 | 11.70 | 36 | 11.70 | 0.01 | | cm85a | 11 | 3 | 38 | 7.72 | 0.05 | 38 | 7.72 | 0.01 | 47 | 8.28 | 38 | 7.72 | 0.01 | | mux | 21 | 1 | 32 | 3.50 | 1098.72 | 32 | 3.50 | 1410.57 | 33 | 3.50 | 32 | 3.50 | 0.01 | | z4ml | 7 | 4 | 28 | 18.25 | 0.01 | 30 | 16.38 | 0.02 | 32 | 17.13 | 28 | 16.38 | 0.01 | | f51m | 8 | 8 | 51 | 28.08 | 0.01 | 65 | 27.33 | 0.02 | 76 | 27.45 | 64 | 27.45 | 0.01 | | pcle | 19 | 9 | 79 | 22.50 | 0.11 | 84 | 22.50 | 0.03 | 89 | 22.50 | 79 | 22.50 | 0.01 | | Average | of rati | os | 1.00 | 1.00 | 1.00 | 1.12 | 0.95 | 0.93 | 1.40 | 0.99 | 1.10 | 0.95 | 0.40 | TABLE 2 Minimization of APL for shared BDDs for larger functions | Name | In | Out | classic | al sifting | Coef. | Withou | t Walsh sp | ectrum | With | Walsh spec | ctrum | |---------|-----|-----|---------|------------|-------|--------|------------|--------|-------|------------|-------| | | | | Nodes | APL | Time | Nodes | APL | Time | Nodes | APL | Time | | C432 | 36 | 7 | 1063 | 86.58 | 0.01 | 1081 | 86.24 | 0.15 | 1899 | 82.09 | 0.83 | | C499 | 41 | 32 | 25873 | 782.66 | 0.02 | 32105 | 641.16 | 7.12 | 32105 | 641.16 | 7.11 | | C880 | 60 | 26 | 4122 | 140.42 | 0.01 | 41701 | 123.85 | 4.48 | 91767 | 122.22 | 52.12 | | C1908 | 33 | 25 | 5532 | 254.65 | 0.01 | 16634 | 179.20 | 0.96 | 13868 | 171.96 | 2.73 | | C2670 | 233 | 140 | 1882 | 303.34 | 0.05 | 2755 | 278.17 | 1.30 | * | * | * | | C3540 | 50 | 22 | 24231 | 209.15 | 0.10 | 25162 | 208.44 | 7.44 | 56898 | 212.73 | 75.21 | | C5315 | 178 | 123 | 1728 | 460.78 | 0.05 | 1820 | 446.26 | 0.26 | * | * | * | | C7552 | 207 | 108 | 2212 | 485.03 | 0.05 | 2207 | 471.54 | 0.87 | * | * | * | | apex3 | 54 | 50 | 931 | 188.58 | 0.01 | 900 | 158.82 | 0.04 | 905 | 158.73 | 0.03 | | apex7 | 49 | 37 | 242 | 113.88 | 0.01 | 277 | 82.44 | 0.01 | 280 | 82.45 | 0.02 | | Ъ9 | 41 | 21 | 108 | 61.16 | 0.01 | 131 | 55.25 | 0.01 | 129 | 55.39 | 0.01 | | dalu | 75 | 16 | 688 | 102.67 | 0.01 | 990 | 78.81 | 0.08 | 1069 | 78.81 | 35.31 | | des | 256 | 245 | 3297 | 1209.50 | 0.18 | 3343 | 1081.13 | 0.47 | 3886 | 1077.63 | 2.15 | | duke2 | 22 | 29 | 360 | 87.89 | 0.01 | 386 | 77.52 | 0.01 | 392 | 77.52 | 0.02 | | e64 | 65 | 65 | 128 | 128.00 | 0.01 | 128 | 128.00 | 0.01 | 573 | 128.00 | 0.05 | | ex4 | 128 | 28 | 497 | 51.38 | 0.01 | 629 | 47.26 | 0.02 | 630 | 47.26 | 0.03 | | frg2 | 143 | 139 | 1379 | 607.00 | 0.04 | 1580 | 322.89 | 0.15 | 2189 | 321.75 | 0.23
 | k2 | 45 | 45 | 1257 | 181.80 | 0.01 | 1426 | 177.52 | 0.07 | 1418 | 177.50 | 0.10 | | rot | 135 | 107 | 7891 | 446.47 | 0.05 | 16164 | 312.08 | 5.61 | 18503 | 308.68 | 30.34 | | Average | | | 1.00 | 1.00 | 0.03 | 1.87 | 0.85 | 1.53 | 3.01 | 0.84 | 12.89 | ^{*}Memory overflow precluded computation of these values. assuming the values of "classical sifting" to be 1.00. The columns "Without represents average of Time and normalized averages of Nodes and APL shows the results of our sifting algorithm, where the initial variable orders the results of "classical sifting". Walsh spectrum" and "With Walsh spectrum" show the relative values to not be constructed due to memory overflow. The row labeled Average C2670, C5315, and C7552, BDDs with the initial variable orders could first-order Walsh spectral coefficients R_i , in seconds. Unfortunately, for "Coef. Time" denotes the CPU time needed to calculate the values of were obtained using Walsh spectrum shown in Section 4.5. The column obtained by "classical sifting". And, the column "With Walsh spectrum" APL, where the initial variable orders are the variable orders of BDDs spectrum" shows the results of our sifting algorithm, which minimizes the minimizes the number of nodes in BDD. The column "Without Walsh nodes and APL for BDDs obtained by the sifting algorithm [23] which functions. In Table 2, the column "classical sifting" shows the number of this table, we used SBDDs with complemented edges for multiple-outpu For some benchmark functions, for example, C1908, frg2, and rot, the APLs are reduced drastically. For C7552, the number of nodes is reduced as a byproduct of the APL minimization. However, for most functions, the number of nodes is increased by the APL minimization. The comparison of "Without Walsh spectrum" and "With Walsh spectrum" shows the effectiveness of the initial variable order using Walsh spectrum. For 8 out of 19 benchmark functions, the APLs in the column "With Walsh spectrum" are smaller than the APLs in "Without Walsh spectrum". The computation time to calculate the values of R_i is short. However, for most functions, the computation times of sifting for "Without Walsh spectrum" are significantly longer than that for "Without Walsh However, for most functions, the computation times of sifting for "With Walsh spectrum" are significantly longer than that for "Without Walsh spectrum" because the number of nodes in BDD with initial variable order computed using Walsh spectrum is large. When the number of nodes in the BDD is large, swapping one pair of adjacent variables takes a longer time because the time needed for the swap is roughly proportional to the number of nodes present on the given levels in the BDD. Tables 1 and 2 show that the proposed heuristic minimization minimizes the APL in short computation time. For small benchmark functions in Table 1, the heuristic minimization could obtain BDDs with near-minimum APLs. For large benchmark functions in Table 2, the heuristic algorithm reduces APLs to 84% on the average. #### 6.2 Multi-Valued Case There are no standard benchmark functions for multi-valued logic. Thus, by pairing binary variables of 2-valued benchmark functions, we obtained 4-valued input 2-valued output functions. Table 3 compares the number TABLE 3 Comparison of APLs for SBDDs and SMDDs | | | BDD | | | | | | MDD | | | | | |---------|-------|-------|-------|-------|----------|--------|-------|---------|--------|-------|-------------|--| | | | | | l | Min_Node | es | | Min_APL | | р | air-sifting | <u>, </u> | | Name | Nodes | APL | Time | | 5xpl | 68 | 32.00 | 0.01 | 37 | 20.69 | 0.01 | 37 | 20.69 | 0.02 | 37 | 20.69 | 0.01 | | alu4 | 462 | 40.70 | 47.96 | 247 | 27.49 | 77.46 | 290 | 23.26 | 101.64 | 393 | 27.00 | 0.01 | | b12 | 66 | 22.77 | 2.26 | 39 | 22.84 | 387.21 | 50 | 16.83 | 5.11 | 55 | 19.00 | 0.01 | | con1 | 18 | 6.31 | 0.01 | 11 | 4.63 | 0.01 | 11 | 4.06 | 0.01 | 13 | 5.69 | 0.01 | | cordic | 94 | 9.46 | 3996 | * | * | * | 43 | 5.21 | 3587 | 70 | 5.81 | 0.01 | | sao2 | 102 | 10.64 | 0.12 | 46 | 9.98 | 0.21 | 58 | 6.57 | 0.07 | 55 | 6.79 | 0.01 | | misex 1 | 46 | 22.84 | 0.02 | 22 | 15.50 | 0.01 | 28 | 12.75 | 0.01 | 30 | 15.41 | 0.01 | | cm150a | 32 | 3.50 | 5972 | * | * | * | 13 | 2.25 | 19509 | 26 | 2.47 | 0.01 | | cm151a | 32 | 6.00 | 0.47 | 16 | 5.50 | 0.13 | 22 | 4.00 | 0.80 | 22 | 4.00 | 0.01 | | cm162a | 38 | 11.70 | 0.86 | 19 | 8.73 | 0.55 | 27 | 8.44 | 0.56 | 23 | 8.66 | 0.01 | | cm163a | 40 | 11.70 | 1.98 | 19 | 12.25 | 19.60 | 22 | 8.16 | 1.11 | 19 | 8.16 | 0.01 | | cm85a | 37 | 7.72 | 0.08 | 15 | 6.28 | 0.08 | 16 | 5.38 | 0.16 | 25 | 5.84 | 0.01 | | mux | 32 | 3.50 | 6334 | * | * | * | 13 | 2.25 | 13811 | 26 | 2.47 | 0.01 | | z4ml | 26 | 16.38 | 0.01 | 10 | 9.13 | 0.01 | 10 | 9.13 | 0.01 | 10 | 9.13 | 0.01 | | f51m | 76 | 28.02 | 0.03 | 39 | 18.81 | 0.02 | 41 | 17.38 | 0.03 | 41 | 18.81 | 0.01 | | pcle | 83 | 22.50 | 34.46 | * | * | * | 50 | 16.50 | 29.56 | 48 | 20.92 | 0.01 | | Average | 1.00 | 1.00 | 1.00 | 0.50 | 0.79 | 15.89 | 0.59 | 0.64 | 1.28 | 0.63 | 0.70 | 0.34 | ^{*} Memory overflow precluded computation of these values. where the values of "BDD" are set to 1.00. The SBDDs and SMDDs in Table 1, because in this table, SBDDs without complemented edges are this table do not use complemented edges. Note that the values (Nodes, row labeled Average represents normalized averages of Nodes, APL, and results could not be obtained because of memory overflow. The bottom in Section 5.2, respectively. The symbol '*' in this table denotes that the Time for all functions except for 4 functions (cordic, cm150a, mux, pcle), algorithm for APL minimization in Section 5.1, and the pair-sifting algorithm paired ordering algorithm for node minimization, the exact paired ordering denote the exact APL minimization algorithm in Section 4.3, the exact for MDDs. Columns "BDD", "Min_Nodes", "Min_APL", and "pair-sifting" of the APL for MDDs; and (d) the heuristic APL minimization algorithm minimization of the number of nodes for MDDs; (c) exact minimization of nodes and the APLs of the BDDs and the MDDs optimized using four algorithms: (a) exact minimization of the APL for BDDs; (b) exac Time) of BDDs in this table are different from the values in The pair-sifting algorithm obtained MDDs with the exact minimum APL for 4 functions. On the average, the pair-sifting algorithm reduced the APL to 70% of "BDD". For con1, the pair-sifting algorithm obtained larger APL than that of "Min_Nodes" due to heuristic pairing algorithm. However, this algorithm can obtain a smaller APL and fewer nodes than those of the corresponding BDD. Although the exact paired ordering algorithms for nodes and APL can reduce both nodes and APL drastically, they are time-consuming. On the other hand, the pair-sifting algorithm quickly reduces both Nodes and APL. Table 4 shows the results for larger MCNC brockwork for since the content of cont Similarly, we obtained 4-valued input 2-valued output functions binary variables. Column "Node pair-sifting [24]" denotes the heuristic paired ordering algorithm for the node minimization method proposed in [24]. The number of nodes in an MDD obtained by the paired ordering algorithm for node minimization is smaller than or equal to the corresponding BDD [24]. However, since the MDDs in this table do not use complemented edges, some MDDs are larger than the BDDs with complemented edges in Table 2. The bottom row labeled Average represents normalized averages of Nodes, APL, and Time assuming the values of "Node pair-sifting [24]" to be 1.00. For these benchmark functions, the pair-sifting algorithm reduced the APL to 83% of "Node pair-sifting [24]", on average. Especially, for fig2, the APL was reduced to 48% of "Node pair-sifting [24]". The pair-sifting algorithm cannot always find an MDD with the minimum APL, because it is a heuristic algorithm. For C3540 and C7552, the APLs are slightly larger than that in "Node pair-sifting [24]". However, Tables 2 and 4 show Minimization of APL for SMDDs for larger functions | Name | Node | pair-sifting | [24] | A | APL pair-sifting | 00 | |---------|-------|--------------|------|-------|------------------|-------| | | Nodes | APL | Time | Nodes | JAV | Time | | C432 | 617 | 59.84 | 0.03 | 721 | 58.75 | 0.15 | | C499 | 13541 | 407.23 | 1.52 | 16397 | 339.73 | 9.23 | | C880 | 3025 | 118.99 | 0.30 | 34730 | 107.89 | 9.35 | | C1908 | 4390 | 167.42 | 0.55 | 15287 | 124.36 | 1.49 | | C2670 | 2336 | 276.19 | 0.31 | 3945 | 260.65 | 1.99 | | C3540 | 22519 | 155.06 | 7.33 | 24241 | 157.57 | 19.16 | | C5315 | 1947 | 398.53 | 0.23 | 2258 | 393.20 | 0.49 | | C7552 | 2292 | 420.69 | 0.45 | 2236 | 431.77 | 1.86 | | apex3 | 628 | 143.66 | 0.03 | 694 | 96.72 | 0.06 | | apex7 | 200 | 99.82 | 0.02 | 257 | 73.29 | 0.01 | | 69 | 126 | 55.90 | 0.01 | 173 | 51.66 | 0.02 | | dalu | 523 | 70.55 | 0.03 | 644 | 42.93 | 0.13 | | des | 2685 | 934.38 | 0.55 | 2994 | 911.44 | 1.04 | | duke2 | 272 | 65.99 | 0.02 | 288 | 51.50 | 0.01 | | e64 | 96 | 96.67 | 0.01 | 993 | 86,44 | 0.03 | | ex4 | 420 | 46.00 | 0.02 | 482 | 39.45 | 0.05 | | frg2 | 1179 | 544.34 | 0.10 | 1457 | 260.11 | 0.20 | | 23 | 1055 | 168.17 | 0.05 | 912 | 108.42 | 0.11 | | rot | 5615 | 393.57 | 1.29 | 14898 | 284.22 | 9.52 | | Average | 1.00 | 1.00 | 1.00 | 2.40 | 0.83 | 4.66 | that the pair-sifting algorithm can find an MDD with smaller APL than APL of corresponding BDD. ## 7 CONCLUSION AND COMMENTS We have proposed an exact and a heuristic algorithm for the minimization of the APL in BDDs and MDDs. The experimental results using MCNC benchmark functions show that: 1) The exact minimization algorithm finds BDDs with the minimum APL for the function with up to 25 input variables within a reasonable computation time. 2) Using the node and edge traversing probabilities to compute and update the APLs after the swap of two adjacent variables, the proposed sifting algorithm can heuristically
minimize the APLs as fast as classical sifting, which minimizes the number of nodes. 3) Using an initial variable order computed using Walsh spectral coefficients increases the quality of the results of APL minimization algorithms. However, in some cases the initial variable order leads to BDDs with a large number of nodes, which slows down APL minimization. 4) MDDs produced by pairing binary variables have smaller APL and fewer nodes than corresponding BDDs. #### **ACKNOWLEDGMENTS** This research is partly supported by the Grant in Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS), and the funds from Ministry of Education, Culture, Sports, Science, and Technology (MEXT) via Kitakyushu innovative cluster project. We also thank the reviewers for constructive comments. #### REFERENCES - [1] Ashar, P. and Malik, S. (1995). Fast functional simulation using branching programs, ICCAD'95, 408-412. - [2] Balarin, F. Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Sangiovanni-Vincentelli, A., Sentovich, E. M. and Suzuki, K. (1999). Synthesis of software programs for embedded control applications, *IEEE Trans. CAD*, 18(6), 834–849. - [3] Bertacco, V., Minato, S., Verplaetse, P., Benini, L. and De Micheli, G. (1997). Decision diagrams and pass transistor logic synthesis, *International Workshop on Logic and Synthesis*, Lake Tahoe, s. 3-3. - [4] Brglez, F. and Fujiwara, H. (1985). Neutral netlist of ten combinational benchmark circuits and a target translator in FORTRAN, Special session on ATPG and fault simulation, Proc. IEEE Int. Symp. Circuits and Systems, 663-698. - [5] Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput., C-35(8), 677-691. - [6] Butler, J. T. and Sasao, T. (2003). On the average path length in decision diagrams of multiple-valued functions, 33rd International Symposium on Multiple-Valued Logic, Tokyo, Japan, 383-390. - [7] Dertouzos, M. L. (1965). Threshold Logic: A Synthesis Approach, Mass. Inst. Tech., Cambridge, Res. Monograph 32. Cambridge, Mass.: M. I. Press. - [8] Drechsler, R., Günther, W. and Somenzi, F. (2001). Using lower bounds during dynamic BDD minimization, *IEEE Trans. CAD*, 20(1), 51-57. - [9] Ebendt, R., Günther, W. and Drechsler, R. (2003). Combination of lower bounds in exact BDD minimization. Design Automation and Test in Europe conference and exhibition (DATE'03), Munich, Germany, 758-763. - [10] Fujita, M. Matsunaga, Y. and Kakuda, T. (1991). On variable ordering of binary decision diagrams for the application of multi-level logic synthesis, EDAC, 50-54. - [11] Hafiz Md. Hasan Babu and Sasao, T. (2000). Heuristics to minimize multiple-valued decision diagrams, IEICE Trans. on Fundamentals, E83-A(12), 2498-2504. - [12] Hurst, S. L., Miller, D. M. and Muzio, J. C. (1985). Spectral techniques in digital logic, Academic Press., London. - [13] Iguchi, Y., Sasao, T., Matsuura, M. and Iseno, A. (2000). A hardware simulation engine based on decision diagrams, Asia and South Pacific Design Automation Conference (ASP-DAC'2000), Yokohama, Japan, 73-76. - [14] Jiang, Y. and Brayton, B. K. (2002). Software synthesis from synchronous specifications using logic simulation techniques, *Design Automation Conference*, New Orleans, LA, U.S.A, 319-324. - [15] Karn, T., Villa, T., Brayton, R. K. and Sangiovanni-Vincentelli, A. L. (1998). Multi-valued decision diagrams: Theory and Applications, Multiple-Valued Logic: An International Journal, 4(1-2), 9-62. - [16] Liu, Y. Y., Wang, K. H., Hwang, T. T. and Liu, C. L. (2001). Binary decision diagrams with minimum expected path length, *Proc. DATE 01*, 708-712. - [17] McGeer, P. C., McMillan, K. L., Saldanha, A., Sangiovanni-Vincentelli, A. L. and Scaglia, P. (1995). Fast discrete function evaluation using decision diagrams, ICCAD'95, 402-407. - [18] Miller, D. M. and Drechsler, R. (1998). Implementing a multiple-valued decision diagram package, Proc. 28th Int. Symp. on Multiple-Valued Logic, 52-57. - [19] Minato, S., Ishiura, N. and Yajima, S. (1990) Shared binary decision diagram with attributed edges for efficient Boolean function manipulation, Proc. 27th ACM/IEEE Design Automation Conf., 52-57. - [20] Nagayama, S., Mishchenko, A., Sasao, T. and Butler, J. T. (2003). Minimization of average path length in BDDs by variable reordering. *International Workshop on Logic* and Synthesis, Loguna Beach, California, U.S.A., 207-213. - [21] Nagayama, S. and Sasao, T. (2003). Compact representations of logic functions using heterogeneous MDDs, IEICE Trans. on Fundamentals, E86-A(12), 3168-3175. - [22] Panda, S., Somenzi, F. and Plessier, B. F. (1994). Symmetry detection and dynamic variable ordering of decision diagrams, ICCAD, San Jose, CA, 628-631. - [23] Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams ICCAD'93, 42-47. - [24] Sasao, T. and Butler, J. T. (1996). A method to represent multiple-output switching functions by using multi-valued decision diagrams, 26th International Symposium on Multiple-Valued Logic, Santiago de Compostela, Spain, 248–254. - [25] Sasao, T. and Fujita, M. (ed.) (1996). Representations of Discrete Functions, Kluwer Academic Publishers. - [26] Sasao, T. (1999). Switching Theory for Logic Synthesis, Kluwer Academic Publishers. - [27] Sasao, T., Iguchi, Y. and Matsuura, M. (2002). Comparison of decision diagrams for multiple-output logic functions, *International Workshop on Logic and Synthesis*, New Orleans, Louisiana, 379-384. - 28] Sasao, T. Butler, J. T. and Matsuura, M. (2002). Average path length as a paradigm for the fast evaluation of functions represented by binary decision diagrams, *International Symposium on New Paradigm VLSI Computing*, Sendai, Japan, 31–36. - [29] Shelar, R. S. and Sapatnekar, S. S. (2002). Efficient layout synthesis algorithm for pass transistor logic circuits, Asia and South Pacific Design Automation Conference (ASP-DAC'2002), Bangalore, India, 87–92. - [30] Shelar, R. S. and Sapatnekar, S. S. (2002). Efficient layout synthesis algorithm for pass transistor logic circuits, *International Workshop on Logic and Synthesis*, New Orleans, Louisiana, 209-214. - [31] Thornton, M., Miller, D. M. and Drechsler, R. (2001). Transformations amongst the Walsh, Haar, arithmetic and Reed-Muller spectral domains, Proc. Intl. Workshop on Applications of the Reed-Muller Expansion in Circuit Design, 215–225. - [32] Yang, C. and Ciesielski, M. (2002). BDS: A BDD-based logic optimization system, IEEE Trans. CAD, 21(7), 866–876. - [33] Yang, S. (1991). Logic synthesis and optimization benchmark user guide version 3.0. MCNC. #### APPENDIX **Proof for Lemma 2.1.** We prove only the first statement; the proof for the second statement is similar. Consider a node v. Any path that includes an incoming edge to v includes v. Conversely, any path that includes v includes an incoming edge to v. It follows that any assignment of values to the variables that corresponds to a path through v contributes to the node traversing probability of v an amount that is identical to the amount contributed to the edge traversing probability of an incoming edge to v. It follows that the node traversing probability of v is equal to the sum of edge traversing probabilities of all incoming edges to v. \square **Proof for Theorem 2.1.** We prove only the first statement; the proof for the second statement is similar. From Definition 2.6, we have $$ETP(e) = \sum_{p \in SP(e)} PP(p), \tag{1}$$ where SP(e) is a set of paths including the edge e. We prove the following $$APL = \sum_{i=1}^{N_e} ETP(e_i), \tag{2}$$ where N_e denotes the number of edges in a DD. From (1), (2) can be transformed as follows: ws: $$APL = \sum_{i=1}^{N_e} ETP(e_i)$$ $$= \sum_{i=1}^{N_e} \sum_{p \in SP(e_i)} PP(p)$$ 2.4, we have 3 From Definition 2.4, we have $$APL = \sum_{i=1}^{N} PP(p_i) \times l_i$$ $$= \sum_{i=1}^{N} \sum_{j=1}^{l_i} PP(p_i)$$ (4) Although (3) and (4) use different computational approaches, they obviously compute the same value. **Proof for Lemma 3.1.** An SMDD for $F = (f_0, f_1, ..., f_{m-1})$ is traversed from a root node to a terminal node m times to evaluate multiple-output function F. Since m_U root nodes are located above or in level i, m_U traversals via edges in Cut(i) are performed while evaluating the multiple-output function. Therefore, we have $ETP(Cut(i)) = m_U$. \square **Proof for Lemma 3.2.** From Lemma 2.1, the following relation holds: $$ETP(Cut'(i)) = \sum_{v \in V_c} NTP(v),$$ where V_c denotes a set of non-terminal nodes representing the cofactors with respect to X_{upper} . The probability of the occurrence of the cofactor depends only on the function and not the order of X_{upper} . Since Cut'(i) does not include the edges to terminal nodes, the upper bound of m_U on c_i follows from Lemma 3.1. \square **Proof for Theorem 3.1.** All nodes representing cofactors with respect to the variables in X_{upper} and m_L root nodes are situated below or in level i+1. Thus, L includes the node traversing probabilities of these nodes. \square **Proof for Theorem 3.2.** Let L be the sum of the node traversing probabilities of the non-terminal nodes below or in level i + 1. From Theorem 2.1, we have $$APL = U + L$$. Then, from Theorem 3.1, for any permutation of X_{lower} , $$APL \geq U + ETP(Cut'(i)) + m_L$$. **Proof for Theorem 4.1.** The variable swap of level i and level i+1 does not influence the graph structure except for levels i and i+1 because of the locality of the swap operation. Thus, it is clear that U remains unchanged. From Lemma 2.1, L is obtained by the sum of ETP(Cut'(i+1)) and $ETP(E_{lower})$, where $Cut'(i+1) = \{e \mid e \in Cut(i+1), e \text{ is incident to a non-terminal node}\},$ $E_{lower} = \{e \mid e \text{ is an edge situated below or in level } i+2\},$ $$ETP(Cut'(i+1)) = \sum_{e \in Cut'(i+1)} ETP(e),$$ $$ETP(E_{lower}) = \sum_{e \in E_{lower}} ETP(e).$$ By
Lemma 3.2, ETP(Cut'(i+1)) is an invariant. $ETP(E_{lower})$ remains unchanged because of the invariance of ETP(Cut'(i+1)) and the locality of the swap operation. Therefore, L also remains unchanged. \square **Proof for Theorem 5.1.** The number of different permutations of binary variables X is n!. Since from Definition 5.1, the binary variables X are partitioned into the unordered sets $\{X_i\}, \{X_2\}, \ldots, \{X_u\}$, the order of binary variables in each $\{X_i\}$ is not important. The number of different permutations of two binary variables in each $\{X_i\}$ is 2. Therefore, we have the theorem. \square