J. of Mult.-Valued Logic & Soft Computing., Vol. 11, pp. 437-463 ©2005 01d City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license anly a member of the Ok City Publishing Group

436 KAMEYAMA, et al.

[148] UnmmEF K.. Aoki, T, Higuchi, T, Inokawa, H. and Takahashi, Y. (2004)
A Single-Electron-Transistor Logic Gate Family for Binary, Multiple-Valued and
Mixed-Mode Logic Circuits, IEICE Transactions on Electronics, E87-C(11), 1827-1836.

[149] Inokawa, H., Takahashi, Y., Degawa, K., Acki, T. and Higuchi, T. (2004) A simulation
methodology for single-electron multiple-valued logics and its application to a latched
parallel counter, /[EICE Transactions on Electronics, E87-C(11), 1818-1826.

[150] Hiratsuka, M., Ikeda, S., Aoki, T. and Higuchi, T. (2004) A redox microarray — An
experimental model for molecular computing integrated circuits, JEICE Transactions
on Electronics, E87-C(11), 1804-1808.

[151] Degawa, K., Aoki, T. and Higuchi, T. (2004) Prototype Fabrication of Field-Programmable
Digital Filter LSIs Using Multiple-Valued Current-Mode Logic — Device Scalling
and Future Prospects. Journal of Multiple-Valued Logic and Soft Computing (10 be
published).

[152] Zmﬂi. M., Homma, N., Aoki, T. and Higuchi, T. (2004) Design of Multiple-Valued
Logic Circuits Using Graph-Based Evolutionary Synthesis, Journal of Multiple-Valued
Logic and Soft Compuring (to be published).

Exact and Heuristic Minimization of the
Average Path Length in Decision Diagrams

SHINOBU NAGAYAMA*, ALAN MISHCHENKO!,
TsutoMu Sasao*! aND Jon T. BUTLER!

*Department of CSE, Kyushu Institute of Technoingy, lizuka 820-8502, Japan.
1Depariment of EECS, UC Berkeley, Berkeley CA 94720, USA.
iCenter for Microelectronic Systems, Kyushu Instituie of Technology,
Tizuka 820-8502, Japan.
8Deparment of ECE, Naval Postgraduate School, Menterey, CA 93943-5121, USA.

{ In a decision diagram, the average path length (APL) is the average
4 number of nodes on a path from the root node to a terminal node
over all assignments of values te variables. Smaller APL values result
. in faster evaluation of the function represented by a decision diagram.
A For some functions, the APL depends strongly on the variable order. In
this paper, we propose an exact and a heuristic algorithm to determine
the variable order that minimizes the APL. Qur exact algorithm uses
m branch-and-bound. Our heuristic algorithm uses dynamic reordering,
where selected pairs of variables are swapped. This paper also proposes
an exact and a heuristic algorithm to determine the pairs of binary
variables that reduce the APL of multi-valued decision diagrams (MDDs)
for a 4-valued input 2-valued output function. Experimental results
show that the heuristic algorithm is much faster than the exact one
but produces comparable APLs. Both algorithms yield an improvement
over an existing algorithm in both APL and runtime. Experimental
results for 2-valued cases and 4-valued cases are shown.

Keywords: BDD, MDD, average path length (APL), node traversing probability,
edge traversing probability, branch-and-bound, sifting algorithm.

1 INTRODUCTION

Binary decision diagrams (BDDs) [5] and multi-valued decision diagrams
(MDDs) [15] are extensively used in logic synthesis [10], logic simulation
[1,13,17], software synthesis |2,14], and pass transistor logic (PTL}
[3,29,30]. These applications use decision diagrams to evaluate logic

437

438 NAGAYAMA, ef al.

functions, and the evaluation time is proportional to the average path length
(APL} in the decision diagram. Therefore, minimization of the APL leads
to faster evaluation of the logic function. Particularly, in logic simulation
using decision diagrams [1, 13, 17], minimization of the APL reduces the
simulation time substantially because logic functions are evaluated many
times with different test vectors.

Minimization of the APL can also be applied to logic synthesis. A
method for functional decomposition [32] uses BDDs to detect Boolean
divisors. The quality of a divisor is measured by the number of don’t-cares it
provides for the minimization of the quotient. The don’t-cares are generated
by the paths in the BDD that lead to the terminal nodes. The shorter the
paths, the more don’t-care minterms they contain. Therefore, minimizing
the APL in BDDs can improve the quality of decomposition.

In pass transistor logic (PTL) synthesis, the circuits are derived directly
from BDDs representing logic functions. In this case, the longer paths in
BDDs cause larger voltage drop and larger delay. This problem can be
solved by inserting buffers in long paths [3]. Minimizing the APL in the
BDD can reduce the number of buffers that must be inserted.

In this paper, we propose an exact APL minimization algorithm based
on the branch-and-bound algorithm. This algorithm finds an optimum
variable order much faster than exhaustive search, which enumerates all
possible variable orders. However, the exact method is time-consuming
for functions with many inputs. To minimize the APL of such functions
i a reasonable time, we propose a heuristic algorithm based on dynamic
variable reordering.

This paper is organized as follows. Section 2 contains the necessary
terminology and definitions. Section 3 introduces lower bounds on the
APL. Section 4 proposes an exact and a heuristic minimization algorithm
for the APL. Section 5 considers the paired ordering of binary variables.
Section 6 shows the efficiency of the algorithms using benchmark functions.
Experimental results for 2-valued cases and 4-valued cases are shown. The
Appendix includes the proofs of theorems.

2 PRELIMINARIES

We assume that the reader is familiar with the basic terminology of reduced
ordered binary decision diagrams (ROBDDs) [5] and reduced ordered
multi-valued decision diagrams (ROMDDs) [15]. In the following, a BDD
and an MDD mean an ROBDD and an ROMDD. DD means either BDD
or MDD,

Definition 2.1 Let x be an r-valued variable, and let ¢ € {0,1,...,r — 1).
Then, P{x = c) denotes the probability that x has value c.

ExacT anD HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS 439

Definition 2.2 In a DD, a sequence of edges and non-terminal nodes
leading from the root node to a terminal node is a path. The number of
edges in the path is the path length.

Note that the sequence of edges in a path p; of a DD corresponds to an
assignment of values g; to the specific variables assaciated with those oamnu.m
in the DD. We say that such an assignment a; selects path p;. Similarly, if
an assignment of values ¢; to all variables agrees with a; for all variables
assigned in a;, we also say ¢; selects path p;.

Definition 2.3 In a DD for an n-variable function, the path probability of
a path p;, denoted by P P(p;), is the probability that the path p; is u.&m&.&
in all assignments of values to the r-valued variables. P P(p;) is given by

PP(p) = Plxi=c1) X P(x2=2) X ... X P{xu = Cn),
mmnﬂh.
where C; denotes the set of assignments of values to the variables selecting
the path p;, ¢ = (c1, ¢, ..., cp) eache; €40,1,...,r — 1}, and P(x; = c¢;)
is the probability x; has value c;.

Definition 2.4 The average path length, or APL, in a DD is given by:
N
APL=Y PP(p)xL,
i=l1
where i indexes the paths, N denotes the number of paths, and I; denctes
the path length of path p;.

Definition 2.5 The node traversing probability of a node v, denvted by

NT P(v), is the probability that an assignment of values to the variables
selects a path that includes the node v.

Definition 2.6 The edge traversing probability of an edge e, denoted by
ET Pie), is the probability that an assignment of values to the variables
selects a path that includes the edge e.

Note that the node traversing probability of the root node in a decision
diagram is 1.0, since all paths start from the root node.

Lemma 2.1 [27] The node traversing probability of node v is the sum
of the edge traversing probabilities of all incoming edges to v. Also, the
node traversing probability of node v is the sum of the edge traversing
probabilities of all outgoing edges from v.
Proof. See Appendix.

From Lemma 2.1, the following relation holds:

ETP(e) = P(x = ¢) x NT P(v),

440 NAGAYAMA, ef al.

Path p; | PP(p;) | Path length [;
i 0.25 2
P2 0.125 3
p3 0.0625 4
Pa 0.0625 4
Ps O_NM w
P6 0.0625 4
F:2 0.0625 4
Ps 0.0625 4
Py 0.0625 4
[0.125 3

(a) BDD (b) PPs and path lengths

FIGURE 1
Example of node traversing probability in a BDD.

where P(x = ¢) is the probability x has a value ¢, v is a node representing
a variable x, and e is an outgoing edge corresponding to the value ¢ of v.

Theorem 2.1 [27] The APL is equal to the sum of the edge traversing
probabilities of all edges. Also, the APL is equal to the sum of the node
traversing probabilities of all the non-terminal nodes.

Proof. See Appendix.
From Theorem 2.1, we have the following:

Ny

Ne
APL =Y ETP(e) =Y NTP(@)),

i=1 j=1

where N, and N, denote the number of edges and non-terminal nodes,
respectively.

Example 2.1 Consider the BDD in Fig. I{a), where solid lines and dotted
lines denote 1-edges and 0-edges, respectively. For simplicity, assume that
Pxi =0)= P(x; =1)=0.50 (i = 1,2, 3,4). This BDD has 10 different
paths: path py is (vy, ey, 12, €3), path p; is (v1, ey, vz, €4, V4, €7), ..., and
path pio is (v1, €3, v3, €5, vs, e10). The PP(p;) and path length of each
path p; are listed in Fig. 1(b). Therefore, by Definition 2.4,

10
APL = M PP(p;) x }; = 3.125.

i=1
By wusing node traversing probabilities, we can compute this APL

as jfollows: First, we have NTP(v\)=1.00 for root node v,. Then,
NT P(vz) = ETP(e1) = P(x; =0) x NTP(v1) =0.50 and NT P(v3) =

EXACT AND HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS 441

FIGURE 2
Partition of MDD.

ET P(es) = P(x; = 1) x NTP(v;) = 0.50. Similarly,
NT P(ug) = P(x; = 1) x NTP(v3) + P(x; = 0) x NT P(v3) = 0.50,
NTP(us)= P(x; = 1) x NTP(v3) =0.25, and
NT P(ve) = P(x3 = 1) x NT P(vs) + P(x3 = 0) x NT P(vs) = 0.375.

Thus, we obtain

6
APL=Y NTP(y)=3.125.

i=t

Similarly, we can compute the APL using the edge traversing probabilities.
{End of Example)

Consider a multiple-output function F = (fy, fi, ..., fm—1): R" — R™,
where R =1{0,1,...,r—1}, and r and m denote the number of input
and output variables, respectively. In this paper, we use shared MDDs
(SMDDs) to represent multiple-output function F. For reasons that will
be clear later, we view the APL of an SMDD as the sum of the APLs of
the individual MDDs for each component function f;.

3 LOWER BOUNDS ON APL

In this section,-we derive lower bounds on the APL. Such bounds are used
to reduce the computation time in the algorithm, as discussed later.

Definition 3.1 Suppose an MDD is partitioned into two parts as shown
in Fig. 2. Here, X,pper denotes the variables above or in level i, Xioyer
denotes the variabies below or in level i + 1, and Cut(i) denotes a set of
edges connecting the nodes above or in level i with the nodes below or in
level i + 1.

442 NAGAYAMA, ef al.

Note that the nodes are indexed by / starting with the root node at level
1. The nodes just below have i = 2, etc..

Definition 3.2 ET P(Cut(i))denotesthe sum of edge traversing probabilities
of edges in Cut(i), and is given by

ET P(Cur(i)) = M ETP(e).

ecCur(i)

Lemma 3.1 Suppose an SMDD represents a mudltiple-output function
m‘ = A.\.Qu .\._« ey ,\,Slﬂv. §N=u

ET P(Cut(i)) = my,

where my is the number of the root nodes of the multiple-output function
F above or in level i.

Proof. See Appendix.

Corollary 3.1 Suppose an MDD represents a single-output function f.
Then,

ETP(Cut(i)) =1.0.
Lemma 3.2 Let

Cut'(i)={e|e € Cut(i), such that e is incident 1o only non-terminal nodes}.

Then, for every permutation of X, pper,
ETP(Cut'(i)) = c;,

where ¢; < my.

Proof. See Appendix.

Theorem 3.1 Consider an SMDD for multiple-output function F. Let L
be the sum of the node traversing probabilities of the non-terminal nodes
below or in level i + 1. Let my, be the number of root nodes for F below
or in level i + 1. Then, for any permutation of Xiower and any permutation
Q‘ﬂ. .N‘:Eam\u

ETP(Cut'(i))+my < L.
Proof. See Appendix.

Theorem 3.2 Consider an SMDD for multiple-output function F. Let U
be the sum of the node traversing probabilities of the non-terminal nodes
above or in level i. When the order of Xypper is fixed,

U+ ETP(Cut'(i))+mp < APL.

EXACT AND HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS 443

Proof. See Appendix.

Corollary 3.2 Consider an SMDD of multiple-output function F. Let U
and L be the sums of the node traversing probabilities of the non-terminal
nodes above and below or in level i, respectively. Then,

max{L, U} < APL.

4 MINIMIZATION OF APL

Since the APL in a DD (BDD or MDD) depends on the variable order,
the APL minimization problem can be formulated as follows:

Problem 4.1 Given a DD for a logic function f, find a variable order
that produces the minimum APL.

4.1 Change of the APL during Swapping Two Adjacent Variables
Our APL minimization algorithms go from one variable order to another
variable order by a sequence of steps that swap pairs of adjacent variables.
A part of the algorithms that has a significant effect on computation time
is updating the APL after swapping each pair of adjacent variables. This
section describes a fast method to update the APL after the swap of two
adjacent variables.

Theorem 4.1 Let U be the sum of the node traversing probabilities of
non-terminal nodes above or in level i — 1, and let L be the sum of the
node traversing probabilities of non-terminal nodes below or in level i + 2.
Then, after the variable swap of level | with level i + 1, U and L remain
unchariged.

Proof. See Appendix.

Theorem 4.1 shows that the previously computed node traversing
probabilities need not be repeated in computing the new APL caused by the
swap of two adjacent variables. Fig. 3 illustrates a subgraph of level i and
level i + 1 in the BDD when two adjacent variables are interchanged. Since
the principles of variable swap for the binary case and the multi-valued
case are the same, we describe only the binary case. The details of variable
swaps for the multi-valued case are discussed in [18]. A subgraph composed
of BDD nodes involved in the variable swap belongs to one of the six
classes shown in Fig. 3. For each class, the figure on the left occurs before
the swap, while the figure on the right occurs as a result of the swap. In
Fig. 3, only cases (e) and (f) do not change the APL, while other cases
change the APL. For example, in case (a), the node traversing probabilities

444 NAGAYAMA, et al,

before after
(a) ®)
¥y vy
—d Xy f————
—.u !N
- T T T =LA) ——
\\ ’ ’
B F Fy B F Fy
before after before after

t\ ﬁ\
- = ——— e Xiwy =
v \
.\ \
F Fy £ 7 R K
before after before
(e))

FIGURE 3
Six cases of exchanging two adjacent variables.

of nodes v; and vs are changed as a result of the swap. Before the swap,
the node traversing probabilities of v, and vs are given by:
NT P(v2)= ET P(eg) = P(x; = 0) x NTP(v))
NTP(3)=ETP(e;) = P(x; = 1) x NTP(1y),
where €9 and e; denote the edges from v, to v, and from v | to v3, respectively.
On the other hand, after the swap, the node traversing probabilities of v,
and vy are:
NTP(v2)= P(x;y, = 0) x NT P(v;)
NTP(w3)=P(x;yy = 1) x NTP(x)).
When P(x; =0)= Plx;y 1 =0) and P(x; = 1) = P(xi;; = 1), the node

traversing probabilities of vz and v; do not change after the swap. Therefore,
in case (a), the APL is changed by the edge traversing probabilities of

ExacT aND HEURISTIC MINIMIZATION OF THE APL IN DeCI1sioN DIAGRAMS 445

APL=2.875
(a)

FIGURE 4
Example of the update of the APL

outgoing edges from v;. Similarly, in other cases except for (e) and (f), the

APL is changed by the edge traversing probabilities of outgoing edges from

the root node of a subgraph. Note that from Theorem 4.1, we consider only

the edges from the root node to nodes in level i + 1 to update the APL.
We summarize the strategy for updating the APL as follows:

1 Before the swap, for each subgraph involved in the swap, the edge
traversing probabilities of the edges from the root node of a subgraph
to nodes in level i 4 1 are subtracted from 1) the APL and from 2) the
node traversing probabilities of nodes in level i + 1.

2 After the swap, for each subgraph, the edge traversing probabilities of
edges from the root node of a subgraph to nodes in level i + 1 are
re-calculated.

3 The calculated edge traversing probabilities are added to 1) the APL
and to 2) the node traversing probabilities of nodes in level i + 1.

Example 4.1 Fig. 4 shows BDDs for logic function f = x1x4 V X2X3 V X3.
Fig. 4(a) shows the BDD with the variable order (x, X2, X3, X4), top to bottom.
For simplicity, assume that P(x; =0) = P(x; = 1) =050 (i = 1,2, 3,4).
Then, the APL of the BDD in Fig. 4(a) is 2.875. In this BDD, we consider
the swap of variables x» and x3. During such a swap, case (b) applies
1o node vy and case (f} applies to node v,. Performing the swap leads to
the BDD shown in Fig. 4(b). Note that the swap decreases the APL by
0.25 because the node vy after the swap does not have the incoming edge
Jrom node v,. The node traversing probabilities associated with nodes v,
and vz do not change. The overall APL decreases from 2.875 1o 2.625.

{End of Example)

446 NAGAYAMA, et al.

APL=2.06 APL=212
() (b)

FIGURE 5
Another example of the update of the APL

Example 4.2 Fig. 5{a) shows the BDD with the variable order (xz, x3, x1)
for logic function f = x1(xa v X3). Assume that

NUAR- = Ov ”O.@q NUAH— = Hv — O.L.g
P(x,=0)=03, Plx;=1)=07,
Plx3=0)=08, Plx3=1)=0.2

The APL of the BDD in Fig. 5(a) is 2.06. For the swap of variables
x3 and x,, case (d) applies to node v, and case (f) applies to node v3.
Performing this swap vyields the BDD shown in Fig. 5(b). It changes the
node traversing probabilities of v1 and v4 (a new node). Before the swap,
the edge traversing probability of edge from vy to vs, 0.06, is subtracted
from the APL and from the node traversing probabilities of vs. After the
swap, the edge traversing probability of edge from v, to va, 0.12, is added
to the APL and to vs. The overall APL increases from 2.06 ro 2.12.

{End of Example)

4.2 Symumetric Variables

Definition 4.1 A logic function f(xy,X2,...,%i,..-sXj, ..., Xg) i§ Sym-
metric with respect to x; and x; if the interchange of x; and x; does not
change . x; and x; are called symmetric variables.

In a DD, swapping symmetric variables x; and x; does not change the
graph structure,

Definition 4.2 Let =, and w2 be permutations of the variables. If the
positions of variables in w\ are the same as in mp; except for symmetric
variables, m, and w; are called symmetric orders.

Exact AND HEURISTIC MINIMIZATION OF THE APL IN DECISION D1AGRAMS 447

Since symmetric orders produce DDs with the same graph structure, the
DDs have the same APL when P(x; = 0) = P(x; =0), P(x; = 1) = P(x; =
D, ... and POy =r —1D=Px; =r—1) for symmetric variables x;
and x;. Therefore, in such a case, detection of symmetric orders can reduce
the computation time for an APL. minimization algorithm.

Example 4.3 Consider the logic function f = x1x4 V x2x4 V x3 (Fig. 4). Let
variable orders wy and w1 be (x1, X2, X3, x4) and (x, X1, X3, X2), respectively.
Since x| and x» are symmetric variables, | and m, are symmetric orders.
The BDDs for the two orders are the same except the labels xi and xz
are interchanged, and have the same APL and the same number of nodes.

{End of Example)

43 Exact Minimization Algorithm
Fig. 6 shows a pseudo-code to solve Problem 4.1. This algorithm finds an
optimum solution using a branch-and-bound method, similar to the top-down
algorithm (JANUS) in [9]. JANUS [9] uses the number of nodes in a BDD
as the cost function, while our algorithm uses the APL of a DD (BDD or
MDD} as the cost function. By using the node traversing probability (NTP),
the changes in APL can be calculated at each node locally. This locality
of computation allows a top-down algorithm. To our knowledge, this is
the first time an APL minimization algorithm based on branch-and-bound
has been proposed. This algorithm finds an optimum variable order much
faster than the exhaustive search method, which enumerates all possible
variable orders. In lines 11 and 31 of Fig. 6, procedure ordering changes the
variable order of the DD into the given order from the top to the specified
level. For example, let the current vardable order be (x|, x2, x3, X4, Xs).
We seek the order (x5, x4) at level two. That is, we seek (xs, xs, *, #,),
where “x, *, #” represents xj, x;, and x; in some order. Then, procedure
ordering(DD, (x5, x4), 2) obtains the order (xs, x4, X1, X2, x3) In 7 swaps
from the order (x,, xz, x3, x4, x5). Procedure symmetry_check in line 15
checks symmetry of adjacent variables [22]. When the variable order of
+up» Which has already been stored in array “order[X!,,]” as a candidate,
and the current variable order of the DD are symmetric, and all P(x = c)s
are same for the symmetric variables, the current order is excluded from the
set of candidates. In line 19, Theorem 3.2 is used to eliminate the unneeded
variable exchanges to reduce computation time. In line 21, NT P{level)
denates the sum of the node traversing probabilities of the nodes on the
given level (level). The initial values of array cost in Fig. 6 are set to infinity.

4.4 Heuristic Minimization Algorithm

The exact minimization algorithm in Fig. 6 obtains an optimum solution
for Problem 4.1. However, when the number of input variables is large,
finding the optimum variable order may require much computation time.

448 NAGAYAMA, et al.
I: minimize_APL (DD, input variables X, # inputs n) {
2: Xsub =9 ;
3 cost[X,.;] =0 ;
4 order[X;,,] = ¢ ;
5 ym.:m\i = n.x..::ww :
6: min_apl = APL for initial DD ;
7 for (level = 1; level < n; level++) {
& Mn:w = Onexr -
o Snext =@ 3
10: for (each Xoup € Seur) {
11: ordering(DD, order[X1, level - 1) ;
12: for (each x; € {X \ X5ue}) {
13: mnv = Xop U{xi} 5
14: Move x; to level ;
15: symmetry_check(DD, {evel) ;
16: if (orderiX;,,] and current order are symmetric
&& all P{x = c¢)s are same)
17: continue ;
18: Update min_apl ;
19: if (lower_bound(level) > min_apl)
20: continue ;
21: new_cost = cost[X,,5] + NT P(level) ;
22: if (new_cost < cost[X!,, 1) {
23: cost[X;] = new_cost ;
24: order[X}, ,] = current order ;
25; if (X}, & Snext)
26: Snext = Spext Y “.N.“:ww 5
2T }
28: }
29: }
30: }
31: ordering(DD, order[X], n) ;
32: 1}
FIGURE 6

Exact APL minimization algorithm.

In this section, we show a heuristic minimization method using variable
sifting [23]. The sifting algorithm repeatedly performs the following basic

steps:

1 Change the variable order.
2 Compute a cost.

Exact AND HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS 449

1: sifting_APL (DD, #rounds of sifting R) {
2 cost = APL for initial DD
3 for r =0, r < Ry r4) {
4: for (each x; € X) {
5: start = current position of x; ;
6: hest_p = start ;
7 for {each position p from szars to the closer extreme) {
8: Move x; to p ;
9: Update U (or L) ;

10: if (cost < U (or L))

11: break ;

12: if (APL < cost) {

13: cast = APL ;

14: best_p = p ;

15: 1

16: }

17: for (each position p to the other extreme) {

18: Move x; to p ;

19: Update U (or L) ;

20: if (cost < U (or L))

21 break ;

22: if (APL < cost) {

23: cost = APL ;

24: best_p=p;

25: }

26: }

27: Move x; to best.p ;

28: 1

29: }

300}

FIGURE 7

Heuristic APL minimization algorithm.

The proposed sifting algorithm uses APL as the cost function. It was shown
in Section 4.1 that the APL can be efficiently updated after the swap of two
adjacent variables. As a result, the time needed to compute the cost in our
sifting algorithm is comparable to the time needed to update the number
of nodes in the classical sifting algorithm, which minimizes the number
of nodes. Fig. 7 shows the pseudo-code of the heuristic minimization
algorithm. In this algorithm, each variable x; is sifted across all possible
positions to determine its best position. First, x; is sifted in one direction
to the closer extreme (top or bottom). Then, x; is sifted in the opposite
direction to the other extreme. In lines 10 and 20 of Fig. 7, Corollary 3.2 is

450 NAGAYAMA, et al.

used to eliminate unneeded sifting of x;. When variable x; moves down to
the bottom, we use U equal to the sum of the node traversing probabilities
of the nodes above x;. If cost < U, sifiing of x; further down to the bottom
cannot lead to a smaller APL than cost. In such cases, there is no need to
continue sifting to the bottom. Similarly, when variable x; moves up to
the top, we use L equal to the sum of the node traversing probabilities of
the nodes below x;. This lower bound for the APL is similar to the one
introduced for the number of nodes during the classical sifting [8].

4.5 Imitial Ordering of the Binary Variables

The initial ordering of variables influences the effectiveness of the heuristic
minimization algorithm described in the previous section. An analysis of
variable orders that produces the minimal APL in several known classes of
functions [6,28] leads to a heuristic to find a good initial variable order. In
this section, we propose an initial variable order using Walsh spectrum [12]
for binary logic functions.

The value of a first-order Walsh spectral coefficient expresses the
correlation between the variable value with the function value. For n-variable
logic function f(X), the first-order Walsh spectral coefficient can be
computed as follows [7]:

|%; @ fI
Fi="g b
where |X; @ f| denotes the number of assignments of values to the variables
X such that the values of x; and f{X) are equal. The initial variable order
is found by placing the variables in descending order of the absolute value
of R;. For variables with identical absolute values of R;, we arbitrarily
choose the order.

All spectral coefficients can be computed by scanning the nodes beginning
at the root node and ending on the terminal nodes using a fast algorithm [31].
The first-order coefficients can be computed by a simplified version of the
general algorithm.

Example 4.4 Consider the logic function [= x\x4V x2x4 V x3 in Ex-
ample 4.1. For each binary variable x;, the value of |X; @ f| is given
by:

IX: @ f1=9, 2@ fl=9, X3 @ f1=13, IXs @ f1 =Ll
The value of each R; corresponding to x; is as follows:
1 1 5 3
_ — = — w = -, x = -
Ry g R, 3’ 3= 3 4= 3

Therefore, we have an initial variable order x3, x4, X1, X2, and APL = 1.875.
This is the minimum AFPL for f. (End of Example)

EXACT AND HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS 451

5 PAIRED ORDERING OF BINARY VARIABLES

Unfortunately, there are no standard benchmark functions for multi-valued
logic. Thus, 4-valued input 2-valued output functions obtained by pairing
binary variables of 2-valued benchmark functions are often used for
experiments for the multi-valued case [11, 18,24]. Especially, [11,24] show
that 4-valued MDDs can represent binary logic functions more compactly than
BDDs, by considering paired crderings of binary variables. 4-valued MDDs
can be implemented efficiently using LUT-based FPGAs. In Section 6.2,
we also use the 4-valued input 2-valued output functions for experiments
of the multi-valued case, and show that 4-valued MDDs can reduce the
APL., as well as the number of nodes efficiently. To do this, in this section,
we define a paired ordering of binary variables.

Definition 5.1 Let f(X) be a 2-valued logic function, where X =
(x1,X%2,...,%,) Is an ordered ser of binary variables. Let {X} denote
the unordered set of variables in X. Let X; C X. If {X} = {X;}U{X2} U
LUXLEIXGINX) = G # J), and | X = 2, then (X4, X2, ..., X))
is a paired ordering of binary variables X, and each X; can be represented
as a 4-valued variable. And then, a 2-valued logic function f(X) can be
represented by the mapping f(X,, X5, ..., X,): {0,1,2,3}* = {0, 1}.

For n-variable functions, if n < 2u (i.e. n is an odd number), we use
an additional redundant binary variable called a dummy variable. The
set of binary variables with the dummy wvariable if it exists, is denoted
by {X'} = {x1,x2, ..., Xn, Xy11), where |X'| =n + 1 = 2u. Note that f is
independent of x,,.

Theorem 5.1 The number of different paired orderings of binary variables
X =(x1,x2,..., %) to consider is

n!

leq
where u denotes the number of 4-valued variables obtained by the pairing,
and is given by

U=

n
2
Note that we assume that n = 2u.!

Proof. See Appendix.
In [11,24], heuristic paired ordering algorithms for node minimization
have been proposed. However, in this paper, we consider the paired ordering

'"When n is an odd number, we use a dummy variable.

452 NAGAYAMA, ef al.

algorithms for APL minimization. We formulate the APL minimization
problem considering the paired orderings of binary variables as follows:

Problem 5.1 Given a binary logic function f(X), find a paired ordering
of binary variables X that produces an MDD with the minimum APL.

5.1 Exact Paired Ordering Algorithm

Fig. 8 shows a pseudo-code to solve Problem 5.1. This algorithm finds an
optimum solution for Problem 5.1 using branch-and-bound, similar to the
algorithm in Fig. 6. In lines 6 and 38 of Fig. 8, procedure pairing produces
an MDD for 4-valued input 2-valued output function by mzking pairs of
binary variables from the given variable order. In line 7, min.apl is set to
the APL of MDD obtained by making pairs of binary variables from the
variable order of given BDD. In line 26, pairing NT P(level) denotes the
sum of the node traversing probabilities of the MDD nodes obtained by
pairing binary variables in /level and level + 1.

5.2 Heuristic Paired Ordering Algorithm

In this section, we show a heuristic paired ordering algorithm. The heuristic
paired ordering algorithm, called pair-sifting algorithm, consists of the
following four basic steps:

1 Apply the sifting algorithm for APL. minimization presented in Section 4.4
to the BDD of the given binary logic function.

2 Make pairs of binary variables from the variable order obtained by the
sifting algorithm.

3 Construct an MDD for the 4-valued input 2-valued output function.

4 Apply the sifting algorithm to the MDD.

This strategy is similar to one used in [24], which minimizes the number
of nodes in an MDD.

6 EXPERIMENTAL RESULTS

Experiments using MCNC benchmarks were conducted in the following
environment;

CPU: Pentiumd4 Xeon 2.8GHz

L1 Cache: 32KB

L2 Cache: 512KB

Main Memory: 4GB

Operating System: redhat (Linux 7.3)
C-Compiler: gcc -02

In this section, we assume that P{x;, =0)=Plx; =1)=... = P(x; =
r—1= w for r-valued input functions.

EXACT axp HEURISTIC MINIMIZATION OF THE APL 1v DECIsSioN DIAGRAMS

453

1: pairing APL (BDD, binary variables X, # inputs n) {
2 Xoup =9 ;
3 cost[X;,5] =0 ;
4: order[X,»]1 = ¢ ;
5: Snext = CN&;L 5
6: pairing(X, order[X]) ;
7: min.apl = APL for initial MDD obtained by pairing ;
8: for (level = 1; level < n; level+= 2) {
9: rm_n._:. = Jpext »
10: Snext = ®;
11: for (each Xup € Senr) {
12: ordering(BDD, order[X,,;], level - 1) ;
13: for (each x; € {X \ X,.u}) {
14: .N.\Ev = kanv U *H_.v s
15: Move x; o level ;
16: symmetry_check(BDD, level) ;
17: for (each x; e (X \ X', D {
18: Xoup = Xy U ix} 5
19 Move x; to level + 1 ;
20: symmetry_check(BDD, level + 1) ;
21 if (order[X{,,] and curmrent order are symmetric
&& all P(x = ¢)s are same)
22: continue ;
23: Update min_apl ;
24 if (lower_bound{/evel + 1) > min.apl)
25: continue ;
26: new_cost = costlX;,p] + pairing NT P(level) ;
27: if (new_cost < cost|X,,]) {
28: cost[X},,] = new_cost ;
29: order[X] = current order ;
30: if Auﬂm\zv m rm.an.ﬁv
31 Snext = Spexi U ﬁkm\:vw :
32 }
33: }
34 }
35: }
36: }
37: ordering(BDD, order[X], n) ;
38: pairing(X, order{X]) ;
39: }
FIGURE 8

Exact paired ordering algorithm for APL minimization.

454 NAGAYAMA, et al.

6.1 Binary Case

Table 1 compares the number of nodes and APL of BDDs optimized using
four different methods: {a) exact minimization of the number of nodes;
(b) exact minimization of the APL; (c) the algorithm in [16]; and {d) the
heuristic APL. minimization algorithm presented in this paper. In the table,
Name lists the names of benchmark functions. /n and Out lists the numbers
of input variables and single-output functions, respectively. Columns Nodes
contain the number of non-terminal nodes. Columnns Time contain the CPU
time of three algorithms coded by us, in seconds. Unfortunately, the CPU
time of the algorithm in [16] is unavailable. Columns “(a) Min_Nodes”,
“(b) Min_APL”, “(c) Liu [16]", and “(d) sifting” show the exact nodes
minimization algorithm in [9], the exact APL minimization algorithm in
Section 4.3, the heuristic APL minimization in [16], and the heuristic APL
minimization in Section 4.4, respectively. Initial variable order for “(d)
sifting” was obtained using Walsh spectrum described in Section 4.5. The
BDDs in this table use complemented edges. Table 1 includes the same
benchmark functions as the experiment in [16] except for incompletely
specified functions. We omitted incompletely specified functions because
the number of nodes and the APL in BDDs for incompletely specified
functions depend on the assignment of values to don’t cares, as well as
the variable order. To make our results compatible with the resulis in
[16], we optimized each output of the multiple-output benchmark functions
independently, and obtained the sum of the values over all outputs. Thus,
the number of nodes and APL in Table 1 are different from those of the
SBDD. Two rounds of sifting are performed in all experiments. The row
labeled Average of ratios represents the normalized averages for Nodes,
APL, and Time assuming the values of “(a) Min_Nodes” to be 1.00. The
columns “(b) Min_APL”, “(c) Liu [16]”, and *(d) sifting” of this row
contain the relative values to the results of “(a) Min_Nodes”.

The heuristic method in [16] obtained BDDs with the exact minimum
APLs in 5 out of 17 benchmark functions. However, for alu4, cmisia,
and em85a, the algorithm in [16] obtained BDDs with much larger APLs
than the exact minimum APLs. On the other hand, our heuristic method
in Section 4.4 obtained BDDs with the exact minimum APLs in 11 out
of 17 benchmark functions. For five of the remaining functions, the APLs
in the column labeled “(d) sifting” are smaller than or equal to the APLs
in *(c) Liu [16]". For eml62a, our sifting algorithm obtained BDDs with
slightly larger APLs than the exact minimum APLs.

An exhaustive search algorithm finds the minimum APLSs for the functions
with up to 14 inputs within a reasonable compuiation time. Meanwhile,
our exact minimization algorithm in Section 4.3 found the minimum APL
for functions with 25 inputs (vg2) within a reasonable computation time.

Table 2 shows the results for larger MCNC benchmarks and the
effectiveness of the initial variable order using the Walsh spectrum. In

EXACT AND HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS

TABLE 1

Minimization of APL for individual BDDs

W= ot o o e b e e e A et = e e - = | O
HEEEEEEEEEEEEEEEEEL
“..000000000000000000
o

a— o M~ o = I~ N O~ O -_— 0 O N O

EENa®83 TSR35 R88<SREREYFE S

G| S = N RO O =t O e =~ NS

— LB B] — ™ — —_— e N

-3

ho)
d7171820 [T ST N 2T S ST L T oY TN w T S]
2 vy — & i
=
2= N O N — oD [3} (22 B =

CE[FRNERIREZIERRAZZL ER

_— L= >N O = O QNN e e 0O

[™M < ™ _—e— — —

=2

Hiw | = o — O @ 0 O W eeC NN NN D D

)@998152363354433784
o1 E &0 o = &~ i}

)

z
R |t = == = 00 DD O 00 0 W -_— oy N |
AR EEEE R R EEER R R
“080060600000000000
o™ [=] - ol —
(=] o vy o

L — — —

p
R o B S - e T = S B -] DO N O N O

Mmﬂ253945995m77753359

h o=~ A
a3 a SR IR = R R M
=

)
“178696272228820542
d846181253353333681
3 Pa} — &~ -
4
ol oM =~ O = W —_ o - -
HEEEER B EEREEREE LR
“020060106000080001
A =)

m 2 = =

NLSSG =+ 2 [=] O o NN D m O

eEEREEE58RR82R8ER I ERIE
o e e i

= i - G = R e B LGN R

—

=
Wig 0o s T~ A T e B G or B o B IR T o T = B o\ I =)
@64&179053343332&.@%
5] <+] =
4

.mu._ mg922487125531489

S

o

o

=]

= Ll TR S A e -] &
= Tocgenegaren o w8
S

[=]

- S °588 « S

m — - 2 oA a0 w - = =
e T e T zw.lll.l.uoxm LR T

£ * 2 — 8 & § 'z EEEESEEFm 0l=
SabccsvmcccccmZﬁpA

455

ExacT AND HEURISTIC MINIMIZATION OF THE APL IN DECisioN DIAGRAMS 457

456 NaGAYAMA, et al.
this table, we used SBDDs with complemented edges for multiple-output
functions. In Table 2, the column “classical sifting” shows the number of
nodes and APL for BDDs obtained by the sifting algorithm [23] which
minimizes the number of nodes in BDD. The column “Without Walsh
spectrum” shows the results of our sifting algorithm, which minimizes the
APL, where the initial variable orders are the variable orders of BDDs
Ll — N M x — 8 4 o — oo o obtained by “classical sifting”. And, the column “With Walsh spectrum”
£ m S = m a m === m ~S38353 m m shows the results of our sifting algorithm, where the initial variable orders
g were obtained using Walsh spectrum shown in Section 4.5. The column
m.ﬂ ESHETRTT A28 UE8ERY gl “Coef. Time” denotes the CPU time needed to calculate the values of
z K m d = m GRS W R 8% m m m = first-order Walsh spectral coefficients R;, in seconds. Unfortunately, for
2 _ C2670, C5315, and C7552, BDDs with the initial variable orders could
m .«m 2858 g 8843 2RaE22=233 not be constructed 96.8 memory o<wanc£. The row labeled Average
AR N - ST E represents average of Time and normalized averages of Nodes and APL
assuming the values of “classical sifting” to be 1.00. The columns “Without
ElEZ2=228838%33523%52382583|9 Walsh men:.:E: and “With Walsh spectrum” show the relative values to
m il Rt I the results of “classical sifting™.
& AT C8E8T IQILINzoNeLs o xla For some Un:n:EE.w. functions, for example, C1908, frg2, E.E rot, the
m <|8 w negs % cEdiEzngs R dle APLs are reduced drastically. For €7332, the number of nodes Hm‘amaznma
= ConeTEs = - 77 n as a byproduct of the APL minimization. However, for most functions, the
m flzes38osssnnsverags s | ::EUQ., of nodes is Enammna,ww the ,\,Pv.ﬁ minimization. .;N comparison
2 w.u m =] & m N 7 doa=ocgm—=vrn3 g|-| % of :AS%OE <<me:. .mwmnnns.s and <SH.: Walsh spectrum”™ shows the
) - E effectiveness of the initial variable order using Walsh spectrum. For 8 out of
m T 2853828855532 ss58:s 2|2 8 19 benchmark functions, the >E.Lm in the column :ﬁmm_ Walsh mﬁmoc,:.E:
5§ |CF|e©eodcecsSsscccosSsacSdascS|E m are smaller than the APLs in :i:w.oE Walsh spectrum”. The computation
m. m time to calculate the values of R; is short. . . N .
& mbm m m m m m m m m m m m m 2 m omo m m m W m £ However, for ~_.:omﬁ ?.:nﬂwonm. the computation times of m.?.:m for “With
P .m SXxIZZEELR T8 m © 8 ngx3 5 Walsh spectrum™ are significantly _ozm,.: than 9.& wom. .&::.o_: Walsh
2 |z m spectrum” wnmm__mm the number of H.,canm in BDD with initial variable oa,.wn
3 m e dgzgecsezgzgsegnnegn z 8 < computed using Walsh spectrum is large. c.ﬁﬁn the .uE:_unH of nodes in
m SEIFETUMREERNTIITCHA T T ad = = En BDD is large, swapping one pair of m&wnn:ﬁ variables Sw.om a longer
5 W time because the time needed for .9@ swap _w,_.o_hm:_m proportional to the
5 § | FEuES Ggre=* AREHEEE : =E%Mm. M w :oﬂnw ﬁmamnq”waw:%ﬁ:n oo men_w .Hﬁmrhlw.cbn.mmo: minimizes
< = es 1 and 2 show that the proposed heuris inimi
M = ezgm m RS m T g0 m NeggL ey z the APL in m:o.: .noE.E.:mmoa. time. For m:.S: u»:n::.ﬁ_,r ?:nﬁ.mo.nm in
- o = Table 1, the heuristic EE:ENmzo:.oocE obtain BDDs with near-minimum
wm Y o923 m m m m m 7 % s . 9 -) g m APLs. For large benchmark functions in Table 2, the heuristic algorithm
mm 3 338CEC080 s oy iz Eazoow%r:omﬁoc:&am&Bmm.

6.2 Multi-Valued Case

There are no standard benchmark functions for multi-valued logic. Thus,
by pairing binary variables of 2-valued benchmark functions, we obtained
4-valued input 2-valued output functions. Table 3 compares the number

ExacT AND HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS 459
458 NAGAYAMA, et al.
of nodes and the APLs of the BDDs and the MDDs optimized using
four algorithms: (a) exact minimization of the APL for BDDs; (b) exact
minimization of the number of nodes for MDDs; (c) exact minimization
of the APL for MDDs; and (d) the heuristic APL minimization algorithm
for MDDs. Columns “BDD”, “Min_Nodes”, “Min_APL”, and “pair-sifting”
Elcc3czcs3csgs3533aaln denote the exact APL minimization algorithm in Section 4.3, the exact
M OO0 o0 C o 0 DO oo o C ool R . ., R .
- paired ordering algorithm for node minimization, the exact paired ordering
El2|28828z52358%¥2352348|8 algorithm for APL minimization in Section m.__.wsm W:n pair-sifting algorithm
Fltlg g e dda ¥d ol in Section 5.2, respectively. The symbol “*” in this table denotes that the
E results could not be obtained because of memory overflow. The bottom
@it~ o v N O VO Y Nl G o O =™ .
1R - IR OGN N SRR R - row labeled Average represents normalized averages of Nodes, APL, and
(=] . . .
< Time for all functions except for 4 functions (cordic, cml50a, mux, pele),
where the values of “BDD” are set to 1.00. The SBDDs and SMDDs in
El8T=-3%ES838E8E=2=23 88|18 - .
m S =253 m 2 3 == GEE R g = i this table do not use complemented edges. Note that the values (Nodes,
o
= - - APL, Time) of BDDs in this table are different from the values in
_ o .
A M Slaegssnessseznozals Table 1, because i this table, SBDDs without complemented edges are
D.mAmﬁ.m456u2488529ﬂw0 used.
=3 The pair-sifting algorithm obtained MDDs with the exact minimum APL
EEEECIRECEFIETEFTR m for 4 functions. On the average, the pair-sifting algorithm reduced the APL
= to 70% of “BDD”. For conl, the pair-sifting algorithm obtained larger APL
than that of “Min Nodes” due to heuristic pairing algorithm. However,
— —_— — — = — * | . . .
gla § s g * 92 * w m m m * = W_ ® this algorithm can obtain a smaller APL and fewer nodes than those of
= | — -
FIT R & - g the corresponding BDD. Although the exact paired ordering algorithms
3 E for nodes and APL can reduce both nodes and APL drastically, they
(2T IR RR*TROANRF R : . . .
ZIZI2EE: 22 25498 2005 2 are time-consuming. On the other hand, the pair-sifiing algorithm quickly
Mm SRR - B - = reduces both Nodes and APL.
gl n oo caar ooy mns cg x|z F Table 4 shows the results for larger MCNC benchmark functions.
@ Llen &~ <+ - bl Nt o L . . 4 ’
8 3 2 - Similarly, we obtained 4-valued input 2-valued output functions by pairing
<] : - . "o . . .
= E binary variables. Column “Node pair-sifting [24]” denotes the heuristic paired
- tlz8838o8858883358%/8| E ordering algorithm for the node minimization method proposed in [24]. The
= H S S - — -
m BlegaocRccPosec oSy ..m number of nodes in an MDD obtained by the paired ordering algorithm for
3 node minimization is smaller than or equal to the corr i 24
2 o [2lseczszzsseenszgsls| 3 However o r than or eq corresponding BDD [24].
2 1la (98248 =2 gmeZiememgls g ever, since the MDDs in this table do not use complemented edges,
5 |= 8 F & : some MDDs are larger than the BDDs with complemented edges in
o 338823832 Rhd8REB| 2 Table 2. The bottom row labeled Average represents normalized averages of
=l — Q * - e
M 3 © g Woo&_.m,ﬁ APL, and Time assuming the values of “Node pair-sifting [24]” to
=]
& .00.
= =]
- § L E s A A . % E For these benchmark functions, the pair-sifting algorithm reduced the
=g et az89 322228 % £ o|5| 2 APL to 83% of “Node pair-sifti . i
e SIF2CE58§EE5555¢E%m 4|2 . e ode pair-sifting [24]”, on average. Especially, for frg2,
O

the APL was reduced to 48% of “Node pair-sifting [24]”. The pair-sifting
ﬂm.o:::: cannot always find an MDD with the minimum APL, because
It is a heuristic algorithm. For C3540 and C7552, the APLs are slightly
larger than that in “Node pair-sifting [24]”. However, Tables 2 and 4 show

460 NAGAYAMA, et al.

TABLE 4

Minimization of APL for SMDDs for larger functions
Name Node pair-sifting [24] APL pair-sifting

Nodes APL Time Nodes APL Time

C432 617 59.84 0.03 721 58.75 0.15
C499 13541 407.23 1.52 16397 339.73 9.23
C880 3025 118.99 0.30 34730 107.89 9.35
C1908 43%0 167.42 0.55 15287 124.36 1.49
C2670 2336 276.19 031 3945 260.65 1.99
C3540 22519 155.06 7.33 24241 157.57 15.16
C5315 1947 398.53 023 2258 393.20 0.49
C7552 2202 420.69 045 2236 431.77 1.86
apex3 628 143.66 0.03 694 96.72 0.06
apex7 200 99.82 0.02 257 73.29 0.0
b9 126 55.90 0.01 173 51.66 0.02
dalu 523 70.55 0.03 644 42.93 0.13
des 2685 93438 0.55 2994 911.44 1.04
duke2 272 65.99 0.02 288 51.50 0.01
e64 96 96.67 0.01 993 86.44 0.03
ex4 420 46.00 0.02 482 39.45 0.05
frg2 1179 544.34 0.10 1457 260.11 0.20
k2 1055 168.17 0.05 912 108.42 0.11
rot 5615 393.57 1.29 14898 284.22 9.52
Average 1.00 1.00 1.00 240 0.83 4.66

that the pair-sifting algorithm can find an MDD with smaller APL than
APL of corresponding BDD.

7 CONCLUSION AND COMMENTS

We have proposed an exact and a heuristic algorithm for the minimization
of the APL in BDDs and MDDs. The experimental results using MCNC
benchmark functions show that: 1) The exact minimization algorithm finds
BDDs with the minimum APL for the function with up to 25 input
variables within a reasonable computation time. 2) Using the node and edge
traversing probabilities to compute and update the APLs afier the swap
of two adjacent variables, the proposed sifting algorithm can heuristically
minimize the APLs as fast as classical sifting, which minimizes the
number of nodes. 3) Using an initial variable order computed using Walsh
spectral coefficients increases the quality of the resulis of APL minimization
algorithms. However, in some cases the initial variable order leads to BDDs
with a large number of nodes, which slows down APL minimization.

Exact aAND HEURISTIC MINIMIZATION OF THE APL 1N DECISION DIAGRAMS 461

4) MDDs produced by pairing binary variables have smaller APL and fewer
nodes than corresponding BDDs.

ACKNOWLEDGMENTS

This research is partly supported by the Grant in Aid for Scientific Research
of the Japan Society for the Promotion of Science (JSPS), and the funds from
Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
via Kitakyushu innovative cluster project. We also thank the reviewers for
constructive comments.

REFERENCES

{1] Ashar, P. and Malik, 8. (1995). Fast functional simulation using branching programs,
ICCAD’95, 408-412.

Balarin, F. Chiodo, M., Giusto, P, Hsieh, H., Jurecska, A., Lavagno, L., Sangiovanni-
Vincentelli, A., Sentovich, E. M. and Suzuki, K. (1999). Synthesis of software
programs for embedded control applications, IEEE Trans. CAD, 18(6), 834-849.

[3] Bertacco, V., Minato, S., Verplaetse, P., Benini, L. and De Micheli, G. (1997). Decision
diagrams and pass transistor logic synthesis, Mnternational Workshop on Logic and
Synthesis, Lake Tahoe, s. 3-3.

Brglez, E and Fujiwara, H. {198S). Neutral petlist of ten combinational benchmark
circuits and a target translator in FORTRAN, Special session on ATPG and faulr
simulation, Proc. IEEE Ini. Symp. Circuits and Systems, 663—698.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation,
IEEE Trans. Comput., C-35(8), 677-691.

(6] Butler, J. T. and Sasao, T. (2003). On the average path length in decision diagrams of
multiple-valued functions, 33rd International Symposium on Multiple-Valued Logic,
Tokyo, Japan, 383-390,

[7] Dertouzos, M. L. (1965). Threshold Logic: A Synthesis Approach, Mass. Inst. Tech.,
Cambridge, Res. Monograph 32, Cambridge, Mass.: M. I. Press,

Drechsler, R., Giinther, W. and Somenzi, F. (2001). Using lower bounds during
dynamic BDD minimization, JEEE Trans. CAD, 20(1), 51-57.

Ebendt, R., Ginther, W. and Drechsler, R. (2003). Combination of lower bounds in
exact BDD minimization, Design Automation and Test in Eurape conference and
exhibition (DATE'03), Munich, Germany, 758-763.

[10] Fujita, M. Matsunaga, Y. and Kakuda, T. (1991). On variable ordering of binary
decision diagrams for the application of multi-level logic synthesis, EDAC, 50-54.

[11] Hafiz Md. Hasan Babu and Sasao, T. (2000). Heuristics to minimize multiple-valued
decision diagrams, JEICE Trans. on Fundamentals, E83-A(12), 2498-2504.

[12} Hurst, S. L., Miller, D. M. and Muzio,). C. (19835). Speciral techniques in digital
logic, Academic Press., London.

[13] Iguchi, Y., Sasao, T., Matsuura, M. and lseno, A. (2000). A hardware simulation engine
based on decision diagrams, Asia and South Pacific Design Automation Conference
(ASP-DAC'2000), Yokohama, Japan, 73-76.

[14] Jiang, Y. and Brayton, B. K. (2002). Software synthesis from synchronous specifications

using logic simulation techniques, Design Automation Conference, New Orleans, LA,
U.S.A, 319-324.

[2

—

4

—

L5

[inay

[8

9

(]

462

[15]

[16]

(17

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]
[27]

(28]

(291

[31

[32]

[33

—

NAGAYAMA, er al.

Kam, T. Villa, T., Brayton, R. K. and Sangiovanni-Vincentclli, A. L. (1998).
Multi-valued decision diagrams: Theory and Applications, Multiple-Valued Logic: An
International Journal, 4(1-2), 9-62.

Liv, Y. Y., Wang, K. H, Hwang, T. T. and Liu, C. L. (2001). Binary decision
diagrams with minimum expected path length, Proc. DATE 01, 708-712.

McGeer, P C., McMillan, K. L., Saldanha, A., Sangiovanni-Vincentelli, A. L. and
Scaglia, P. {1995). Fast discrete function evaluation using decision diagrams, JCCAD’93,
402-407.

Miller, D. M. and Drechsler, R. (1998). Implementing a multiple-valued decision
diagram package, Proc. 28th Int. Symp. on Multiple-Valued Logic, 52-57.

Minato, S., Ishiura, N. and Yajima, S. (1990) Shared binary decision diagram with
altributed edges for efficient Boolean function manipulation, Proc. 27th ACMAEEE
Design Automation Conf., 52-57.

Nagayama, S., Mishchenko, A., Sasao, T. and Butler, J. T. (2003). Minimization of
average path length in BDDs by variable reordering, Interational Workshop on Logic
and Synthesis, Loguna Beach, California, U.S.A., 207-213.

Nagayama, S. and Sasao, T. {2003). Compact representations of logic functions using
heterogeneous MDDs, IEICE Trans. on Fundamentals, E86-A(12), 3168-3175.

Panda, S.. Somenzi, F. and Plessier, B. F. (1994). Symmetry detection and dynamic
variable ordering of decision diagrams, [CCAD, San Jose, CA, 628-631.

Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams,
ICCAD93, 42-47.

Sasao, T. and Butler, J. T. (1996). A method to represent mulliple-output switching
functions by using multi-valued decision diagrams, 26th International Symposium on
Multiple-Valued Logic, Santiago de Compostela, Spain, 248-254.

Sasao, T. and Fujita, M. (ed.) (1996). Representations of Discrete Functions, Kluwer
Academic Publishers.

Sasac, T. (1999). Switching Theory for Logic Synthesis, Kluwer Academic Publishers.

Sasao, T., Iguchi, Y. and Matsuura, M. (2002). Comparison of decision diagrams for
multiple-output logic functions, International Workshop on Logic and Synthesis, New
Orleans, Louisiana, 379-384.

Sasao, T. Butler, }. T. and Matsuura, M. (2002). Average path length as a paradigm for
the fast evaluation of functions represented by binary decision diagrams, fnternational
Symposium on New Paradigm VLS] Computing, Sendai, Japan, 31-36.

Shelar, R. S. and Sapatnekar, S. §. (2002). Efficient layout synthesis algorithm for
pass transistor logic circuits, Asia and South Pacific Design Automation Conference
(ASP-DAC’2002), Bangalore, India, 87-92.

Shelar, R. S. and Sapatnekar, S. §. (2002). Efficient layout synthesis algorithm for
pass transistor logic circuits, Jnternational Workshop on Logic and Synthesis, New
Orleans, Louisiana, 209-214.

Thomton, M., Miller, D. M. and Drechsler, R. (2001). Transformations amongst the
Walsh, Haar, arithmetic and Reed-Muller spectral domains, Proc. intl. Workshop on
Applications of the Reed-Muller Expansion in Circuif Design, 215-225.

Yang, C. and Ciesielski, M, (2002). BDS: A BDD-based logic optimization system,
IEEE Trans. CAD, 21(7), 866-876.

Yang, S. (1991). Logic synthesis and optimization benchmark user guide version 3.0,
MCNC.

EXACT AND HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS 463

APPENDIX

Proof for Lemma 2.1. We prove only the first statement; the proof for
the second statement is similar. Consider a node v. Any path that includes
an incoming edge to v includes v. Conversely, any path that includes v
includes an incoming edge to v. It follows that any assignment of values
to the variables that corresponds to a path through v contributes to the
node traversing probability of v an amount that is identical to the amount
contributed to the edge traversing probability of an incoming edge to v. It
follows that the node traversing probability of v is equal to the sum of
edge traversing probabilities of all incoming edges to v. O

Proof for Theorem 2.1. We prove only the first statement; the proof for
the second statement is similar. From Definition 2.6, we have

ETP(e)y= > PP(p), 1)

PESFP(e)

where S P(e) is a set of paths including the edge ¢. We prove the following

Ne
APL =Y ETP(e), @

i=1

where N, denotes the number of edges in a DD. From (1), (2) can be
transformed as follows:

Ne
APL = M ETP(e)

i=1

Ne
=>_ >, PP 3)

i=] peSPig;)
From Definition 2.4, we have

N
APL=Y"PP(p)x|;

i=}

N
=3 > PP(p) “)

i=1 j=1

Although (3) and (4) use different computational approaches, they obviously
compute the same value. 0O

Proof for Lemma 3.1. An SMDD for F = (fo. fi. ..., fin—1) is traversed
?o:...m root qoao to a terminal node m times to evaluate multiple-output
function F. Since my roat nodes are located above or in level i , my traversals

464 NAGAYAMA, et al.

via edges in Cur(i) are performed while evaluating the multiple-output
function. Therefore, we have ET P(Cut(i)) =my. O

Proof for Lemma 3.2. From Lemma 2.1, the following relation holds:

ETP(Cut'(i) = 3 NTP(v),

veVe

where V. denotes a set of non-terminal nodes representing the cofactors
with respect to X,pp.r. The probability of the occurrence of the cofactor
depends only on the function and not the order of X,,,... Since Cut'(i)
does not include the edges to terminal nodes, the upper bound of my; on
¢; follows from Lemma 3.1. O

Proof for Theorem 3.1. All nodes representing cofactors with respect to
the variables in X,pp., and m; root nedes are situated below or in level
i + 1. Thus, L includes the node traversing probabilities of these nodes. O

Proof for Theorem 3.2. Let L be the sum of the node traversing probabi-
lities of the non-terminal nodes below or in level { + 1. From Theorem 2.1,
we have

APL=U+L.
Then, from Theorem 3.1, for any permutation of Xj,,.,,
APL > U+ ETP(Cut'(i)) + my.
0

Proof for Theorem 4.1. The variable swap of level i and level i + 1 does
not influence the graph structure except for levels i and i + 1 because of the
locality of the swap operation. Thus, it is clear that I/ remains unchanged.
From Lemma 2.1, L is obtained by the sum of ET P(Cut'(i + 1)) and
ET P(Ejpyper), where

Cut'(i + 1) ={e | e € Cut(i +1), ¢ is incident to a non-terminal node},
Erwer = {€ | € is an edge situated below or in level { + 2},

ETP(Cut'i + 1)) = MU ET P(e),
ecCut’{i+1)

ETP(Eipwer) = »_ ETP(e).

€CEjoyer

By Lemma 3.2, ET P(Cut'(i + 1)) is an invariant. £7 P(E,,,.,) remains
unchanged because of the invariance of ET P(Cut'(i + 1)) and the locality
of the swap operation. Therefore, L also remains unchanged. O

ExacT AND HEURISTIC MINIMIZATION oF THE APL IN DECISION DIAGRAMS 465

Proof for Theorem 5.1. The number of different permutations of binary
variables X is n!. Since from Definitior 5.1, the binary variables X
are partitioned into the unordered sets {X:}, {Xa2), ..., (X.}, the order of
binary variables in each {X;] is not important. The number of different

permutations of two binary variables in each | X;} is 2. Therefore, we have the
theorem. O

