
Realization of Sequential Circuits by Look-Up Table Rings

Tsutomu SASAO1 Hiroki NAKAHARA1 Munehiro MATSUURA1 Yukihiro IGUCHI2

1 Kyushu Institute of Technology, Iizuka, 820-8502, JAPAN
2 Meiji University, Kawasaki, 214-8571, JAPAN

��������—The LUT ring is a new type of memory-

based realization of a sequential circuit that requires

much smaller memory than conventional methods. In

this paper, a method to realize a sequential circuit by a

look-up table (LUT) ring is presented. The sequential

circuit consists of a combinational part and feedback

flip-flops. The combinational part is represented by a

set of LUT cascades, and they are sequentially emu-

lated by the LUT ring. The LUT ring uses two types

of clocks: One evaluates the combinational part, and

the other is the clock for state transitions of the se-

quential circuit. We present a method to reduce the

clock period for state transitions, given limited mem-

ory size.

I. Introduction

Two of the most crucial problems in modern VLSI are
their long design time and short life cycles. A solution to
these problems may be reconfigurable architecture. Re-
configurable architecture will reduce the hardware devel-
opment time drastically, since one LSI can be used for
various applications.

In this paper, we consider a realization of a sequential
circuit by reconfigurable architecture. Various methods
exist to realize sequential circuits by reconfigurable archi-
tecture. Among them, random access memories (RAMs)
and programmable logic arrays (PLAs) are easy to design.
However, when the number of input variables n is large,
the necessary hardware becomes too large.

Design methods for sequential circuits using memories
are considered by [3], [4] and [5]. Especially, [5] presents
a method to reduce the size of a memory by using mul-
tiplexers. It uses a property that most functions depend
on proper subsets of the input variables. However, if some
output function depends on n variables, then it requires a
memory with n-bit address. With n = 40, for example, it
would be impractical to use the memory with such a size.

This paper shows the realization of sequential circuits
by LUT rings. We consider an LUT ring that consists of
memory, a programmable interconnection, a control cir-
cuit, and some additional circuits. We assume that the
target sequential circuit consists of a combinational part
and feedback flip-flops. We represent the combinational
part by a set of LUT cascades, and sequentially emulate
them with the LUT ring. The LUT ring evaluates n vari-
able logic function using a memory that often has less
than n address bits. This is possible when the given func-
tions can be decomposed into subfunctions with a smaller
number of variables.

The LUT ring is a new type of memory-based realization

LUT LUT LUT LUT

Fig. 1. LUT cascade.

of a sequential circuit that requires much smaller memory
than previous methods.

II. Emulation of an LUT Cascade by an LUT
Ring

A. LUT Cascades

A combinational LUT cascade realizes a given multiple-
output function by the structure shown in Fig.1. The
merits of LUT cascades include:

(1) Logic synthesis is relatively easy.
(2) Layout and wiring are very easy.
(3) Delay estimation is easy and accurate.

The demerits of LUT cascades include:
(4) Delay can be larger than random logic networks.
(5) Logic capability is limited once the number of inputs

and outputs for each LUT are fixed.

The LUT cascade is obtained from a BDD (Binary De-
cision Diagram) by iterative functional decompositions
[9]. The decomposition algorithm reduces the necessary
amount of memory to represent f by detecting repeated
patterns in the logic function. The wires connecting ad-
jacent cells in a cascade are called rails. In the design of
an LUT cascade, the reduction of the number of rails is
very important, since it is directly related to the size of
the subsequent cell. Let the number of rails be u, and let
the width of the BDD be W . Then, we have the relation
u = �log2 W �.

Functions having small BDD widths have efficient LUT
cascade realizations, while functions having large BDD
widths do not have efficient LUT cascade realizations. For
example, adders and symmetric functions have small BDD
widths, while multipliers and random functions have large
BDD widths. Fortunately many practical functions have
BDDs with small widths, and thus have efficient LUT cas-
cade realizations.

B. An LUT Ring that Emulates an LUT Cascade

In an LUT cascade, once the numbers of inputs and out-
puts for each LUT is fixed, the LUT cascade can realize
only a limited class of functions. An LUT ring having



Control

Memory for
Interconnection

Programmable
Interconnection
Network

Memory
for Logic

L
at

ch
ie

s

Primary
Outputs

Primary Inputs

Latchies

Fig. 2. LUT ring.

X1 X2 X3 X4

1 2 43

(a) 1st cell

X1

0
0

(b) 2nd cell

X2

1
0

(c) 3rd cell

X3

0
1

(d) 4th cell

X4

1
11

2
3

4

Fig. 3. Operation of an LUT ring.

the architecture shown in Fig. 2 has been developed1 . It
consists of a large memory that stores the data for cells,
a programmable interconnection network, and a control
part. It sequentially emulates an LUT cascade. Although
the LUT ring is slower than the LUT cascade, it has higher
logic capabilities than the LUT cascade.

Example 2.1 Fig. 3 illustrates the emulation of the LUT
cascade with four cells by the LUT ring.

Step 1 To evaluate the first cell, the two most significant bits
of the address are set to (0,0) to specify the 1st page.
Also, the values of X1 are set to the lower address bits
through the programmable interconnection network as
shown in Fig. 3(a). By reading the contents of the 1st
page, the outputs of the 1st cell are computed.

Step 2 To evaluate the second cell, the two most significant
bits of the address are set to (0,1) to specify the 2nd
page. Also, the values of X2 are set to the middle ad-
dress bits, and outputs of cell 1 are connected to the
least significant bits through the programmable inter-
connection network, as shown in Fig. 3(b). By read-
ing the contents of the 2nd page, the outputs of the
2nd cell are computed.

Step 3 To evaluate the 3rd cell, the two most significant bits
of the address are set to (1,0) to specify the 3rd page.
Also, the values of X3 are set to the middle address
bits, and the outputs of cell 2 are connected to the
least significant bits through the programmable inter-
connection network, as shown in Fig. 3(c). By read-
ing the contents of the 3rd page, the outputs of the
3rd cell are computed.

1In the previous publication [9], the LUT ring was called the LUT
cascade. However, in this paper, the sequential circuit that emulates
an LUT cascade is called an LUT ring.

CC

Fig. 4. Model of a sequential circuit.

CC1 CC2 CCr

F1 F2 Fr

Fig. 5. Partition of output functions.

F1 F2 Fr

Fig. 6. Cascade realization of groups of functions.

Step 4 To evaluate the last cell, the two most significant bits
of the address are set to (1,1) to specify the last page.
Also, the values of X4 are set to the middle address
bits, and the outputs of cell 3 are connected to the
least significant bits through the programmable inter-
connection network, as shown in Fig. 3(d). By read-
ing the contents of the 4th page, the outputs of the
last cell are computed. (End of Example)

III. Emulation of a Sequential Circuit by an
LUT Ring

A. Emulation of a Sequential Circuit

A sequential circuit can be represented by the model
shown in Fig. 4. The combinational part usually has many
inputs and outputs, so a direct implementation by a sin-
gle memory is often impractical. Thus, we partition the
outputs of the combinational part into r groups as shown
in Fig. 5, and then, realize them by a set of LUT cascade
as shown in Fig. 6. Fig. 7 shows the architecture of the
LUT ring with a single memory unit. To emulate the se-
quential machine, the LUT ring uses two types of clock
pulses. One is, C Clock to evaluate each cell of the LUT
cascade, and the other is S Clock for state transitions.

A method to emulate a sequential circuit by the LUT
ring is as follows:

1. Partition the outputs into r sets; F1, F2, and Fr. Re-
alize each set of outputs by an independent LUT cas-
cade. Let Fi require si cells in the LUT cascade, for
i = 1, 2, . . ., r. Then, we need s1 + s2 + · · ·+ sr cells
in total.

2. In evaluating the outputs, for the outputs that be-
comes primary outputs, store them in the output reg-
ister, while for the outputs that become state vari-
ables, store them in the feedback register.

3. Use double-rank flip-flops shown in Fig. 8 for the feed-
back register and output register. Set the select sig-



Programmable
Interconnection
Network

Memory
for Logic

Pr
im

ar
y 

In
pu

ts

Control
Network

In
pu

t R
eg

is
te

r

Output Register

MBR

Shifter 1 Shifter 2

Feedback Register

S_Clock

S_Clock

C_Clock

Memory for
Interconnection

Fig. 7. LUT ring to emulate sequential circuit.

To Interconnection network
or External outputs

MUX L1 L2

S_Clock

Select

From shifter

Fig. 8. Double-rank flip-flop.

nals to high when all the cells in a cascade are evalu-
ated, and store the values into the latches L1.

4. When all the cascades are evaluated, transfer the val-
ues of the state variables into the latches L2. This
can be done by adding the pulse to S Clock. When
all the values of the feedback register are ready, they
are transfered into the programmable interconnection
network. Also, the values of the output register are
transfered to the primary outputs.

B. Optimization of an LUT Cascade

In designing an LUT ring, the objects of the optimization
are the amount of memory necessary to implement the
circuit, and the delay time.

Example 3.2 Consider the realization of the LUT ring
where the combinational part is realized by three LUT cas-
cades as shown in Fig. 9. Note that we need nine memory
references to evaluate the combinational part. Let τ be
the period of C Clock, then the period of S Clock is 9 τ .

(End of Example)

The state transitions occur with S Clock, thus we have
the following:

Property 3.1 The clock cycle of the sequential circuit is

1
2
3
4
5
6
7
8
9

1 2

3 4

6 7 8 9

5

Memory map

Fig. 9. Realization combinational part by multiple cascades.

x1 z

z
f1

f1

f2
f4 f3

x1

x2

x1
x2

x2

y4
y4

y3
y3

y3

y2
y2

y2

y1
y1

y1

y’1

y’1

y’2

y’3

y’4
y’2

y’2 y’1y’3y’4

f6

f5

f8 f7

x2 y4y2y1

y’4 y’3

z

f2

f3f4

f5f6

f7f8

}
}
}
}

A

A

B

B

C

C

D

D

Shifter1
4

4

2

S_Clock

Enable

Control

Programmable
Interconnection
Network

(a)

(b)

(c)

(d)

Fig. 10. Operation of sequential circuit.

proportional to the total number of cells in the LUT cas-
cades.

The optimization problem of the sequential network im-
plemented by an LUT ring is formulated as follows:

Problem 3.1 Implement the functions by a set of LUT
cascades with the minimum number of cells under the
given memory restriction.

Finding an exact optimum solution for this problem is
almost impossible, so we will consider a heuristic method:

Algorithm 3.1 (Realization of a Sequential Circuit)

1. Realize an LUT cascade for each output. Let the num-
ber of the outputs be m, and let the number of cells of
each cascade be si (i = 1, 2, . . . , m). Then, the total
number of cells is given by s1 + s2 + · · ·+ sm.

2. Within the memory restriction, reduce the total num-
ber of cells in the LUT cascades by merging the out-
puts.

To design LUT cascades, we use the BDD that represents
the characteristic function of the multiple-output function
(BDD for CF) [10].

Example 3.3 Consider the realization of the sequential
circuit shown in Fig. 10(a). It can be emulated as fol-
lows: In the first two clock times, f1, f2, f3, and f4 are
evaluated, where f1 = y′1 and f4 = y′2 are state vari-
ables (Fig. 10(b)). In the next two clock times, f5, f6,
f7, and f8 are evaluated, where f7 = y′3 and f8 = y′4 are
state variables (Fig. 10(c)). The memory map is shown in
Fig. 10(d). Note that the conventional realization requires
a 6-input 5-output ROM, while this realization requires a
5-input 2-output ROM. (End of Example)



TABLE I

Realization of sequential circuit by LUT ring.

Name In Out FF k Cells r Memory
s208 10 1 8 13 2 1 0.187/0.125
s298 3 6 14 13 3 2 0.218/0.187
s344 9 11 15 13 4 2 0.250/0.187
s349 9 11 15 12 4 2 0.097/0.093
s382 3 4 21 12 4 2 0.171/0.156
s386 7 7 6 13 1 1 0.125/0.125
s400 3 6 21 12 4 2 0.171/0.156
s420 18 1 16 14 7 2 0.968/0.906
s444 3 6 21 11 4 2 0.093/0.078
s510 19 7 6 12 3 1 0.187/0.125
s526 3 6 21 14 4 3 0.328/0.281
s641 36 23 19 12 17 3 0.832/0.500
s713 36 23 19 12 22 3 1.257/0.906
s820 18 19 5 14 3 2 0.503/0.503
s1196 13 13 19 14 7 2 0.875/0.750
s1488 8 20 6 12 2 2 0.312/0.312
s1494 8 20 6 14 2 2 0.500/0.500

IV. Experimental Results

We mapped selected MCNC sequential circuits into an
LUT ring. Table I shows the results. In this experiment,
we assume that each cell may have a different number of
inputs. We minimized the total number of cells under
the limitation of the 1 Mega bits of memory; we used a
memory with 16 inputs and w = 16 outputs. In this table,
In denotes the number of primary inputs; Out denotes
the number of primary outputs; FF denotes the number
of flip-flops; k denotes the maximum number of inputs of
cells; Cells denotes the total number of cells; r denotes the
number of cascades; Memory denotes the size of memory
(mega bits), where the first number shows the size without
memory packing and the second number shows the size
with memory packing.

For these benchmark functions, we could realize sequen-
tial networks by using a memory with at most 1 mega bits.
The period of S Clock is proportional to the number of
cells. Thus, the most time-consuming circuit in this table
is s713 that requires 22 cells. The straightforward realiza-
tion shown in Fig. 4 requires a memory with 36+ 19 = 55
inputs and 23 + 19 = 42 outputs. In the LUT ring real-
ization, a 16-input 16-output memory is sufficient, but we
need 22 clocks for every state transition and the hardware
shown in the next section. However, the LUT ring is much
faster than the software simulation on a general micropro-
cessor or branching program machine [7] with the same
clock speed.

V. Hardware for LUT Ring

Let w be the number of outputs of MBR (memory buffer
register). The LUT ring consists of main memory and
the following components: Programmable Interconnection
Network that selects input signals from Input Register,
Feedback Register, and MBR. It is implemented by an ar-
ray of multiplexers. Shifters 1 and 2, which select desired
outputs from MBR. Shifter 1 is necessary since the num-
ber of the state variables can be larger than w. Shifter 2

is necessary since the number of the external outputs can
be larger than w. Control Circuit that consists of counter
and control memory generates signals for Programmable
Interconnection Network and the shifters.

We can estimate the amount of hardware as follows:
Total number of data inputs: Ntotal =

Nprimary inputs + NFF + w, and NFF is the num-
ber of state variables. The number of control variables
for the multiplexer is given by �log2 Ntotal�. Let
Nmemory inputs = 16; Nmemory outputs = w = 16;
Nprimary inputs = 36; NFF = 21; m = 23. Then we have
Ntotal = 36+21+16 = 73; �log2 Ntotal� = �log2 73� = 7.
Thus, in Programmable Interconnection Network, we
need 16 multiplexers with 73 data inputs and 7 control
inputs.

In addition, we need control storage for Programmable
Interconnection Network, and Shifters 1 and 2. The con-
trol words consist of 17 bits, and the number of words is
equal to the maximum number of cells. Thus, the sizes of
additional circuits are smaller than memory.

VI. Conclusion

In this paper, we presented the LUT ring, a new
memory-based realization of sequential circuit. It requires
much smaller memory than conventional realization of
sequential circuits. Experimental results using MCNC
benchmark demonstrate this.

Acknowledgment

This work was supported by a grant from the Japanese
Ministry of MEXT via Kitakyushu innovative cluster
project, the Aid for Scientific Research of the Japan Soci-
ety for the Promotion of Science (JSPS), and grant of the
Takeda Foundation.

References

[1] R. K. Brayton, “The future of logic synthesis and verification,”
in S. Hassoun and T. Sasao (eds.), Logic Synthesis and Verifi-
cation, Kluwer Academic Publishers, 2002.

[2] S. D. Brown, R. J. Fancis, J. Rose, and Z. G. Vransic,
Field-Programmable Gate Arrays, Kluwer Academic Publish-
ers, 1992.

[3] C. H. Clare, Designing Logic Systems Using State Machines,
McGraw-Hill, New York, 1973.

[4] M. Davio, J.-P Deschamps, and A. Thayse, Digital Systems
with Algorithm Implementation, John Wiley & Sons, New
York, 1983.

[5] D. Green, Modern Logic Design, Addison-Wesley Publishing
Company,1986.

[6] MCNC-benchmark function set: http://www.cbl.ncsu.edu/
[7] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno, “A hard-

ware simulation engine based on decision diagrams,” Asia
and South Pacific Design Automation Conference (ASP-
DAC’2000), Jan. 26-28, Yokohama, Japan, pp. 73-76.

[8] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[9] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization
of multiple-output function for reconfigurable hardware,” In-
ternational Workshop on Logic Synthesis (IWLS-2001), Lake
Tahoe, CA, June 12-15, 2001, pp. 225-300, also, “Realiza-
tion of multiple-output functions by reconfigurable cascades,”
International Conference on Computer Design (ICCD-2001),
pp.388-393, Sept. 2001.

[10] T. Sasao and M. Matsuura, “A method to decompose multiple-
output logic functions,” Proc. of 41st Design Automation Con-
ference, June 2004 (Accepted for Publication).


