IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.12 DECEMBER 2004

3141

| PAPER Special Section on VLSI Design and CAD Algorithms

A Realization of Multiple-Output Functions by a Look-Up

Table Ring

Hui QIN'®, Nonmember, Tsutomu SASAO™ ™, Munehiro MATSUURA®, Members,
Shinobu NAGAYAMA ™Y, Student Member, Kazuyuki NAKAMURA 7,

SUMMARY A look-up table (LUT) cascade is a new type of a pro-
grammable logic device (PLD) that provides an alternative way to realize
multiple-output functions. An LUT ring is an emulator for an LUT cascade.
Compared with an LUT cascade, the LUT ring is more flexible. In this pa-
per we discuss the realization of multiple-output functions with the LUT
ring. Unlike an FPGA realization of a logic function, accurate prediction
of the delay time is easy in an LUT ring realization. A prototype of an LUT
ring has been custom-designed with 0.35 um CMOS technology. Simula-
tion results show that the LUT ring is 80 to 241 times faster than software
programs on an SH-1, and 36 to 93 times faster than software programs on
a PentiumIII when the frequencies for the LUT ring and the MPUs are the
same, but is slightly slower than commercial FPGAs.

key words: LUT cascade, LUT ring, multiple-output function, reconfig-
urable logic, programmable logic device

1. Introduction

Programmable logic devices (PLDs) are widely used for
prototyping and final products to reduce turnaround time
and financial risk. In this paper, we consider the realiza-
tion of multiple-output logic functions using PLDs. Var-
ious methods exist to realize multiple-output logic func-
tions. Among them, RAMs and programmable logic ar-
rays (PLAs) directly implement logic functions. However,
when the number of input variables 7 is large, the necessary
amount of the hardware becomes too large. Thus, field pro-
grammable gate arrays (FPGAs) are often used. However,
FPGAs require both physical and logic design. Also, with-
out a complete physical design, the prediction of the perfor-
mance of FPGAs is hard because the area and delay for the
interconnections are often much larger than for logic cells.
Another method to realize a logic functions is a branch-
ing program on a general-purpose microprocessor. Figure 1
shows an example for the function f = x;x3 V X1 x,. A logic

Manuscript received March 19, 2004.
Manuscript revised June 7, 2004.
Final manuscript received August 5, 2004.

"The authors are with the Department of Computer Science
and Electronics, Kyushu Institute of Technology, lizuka-shi, 820—
8502 Japan.

#The authors are with the Center for Microelectronic Systems,
Kyushu Institute of Technology, lizuka-shi, 820-8502 Japan.

" The author is with the Department of Computer Science,
Meiji University, Kawasaki-shi, 214-8571 Japan.

a) E-mail: qinhui@aries02.cse.kyutech.ac.jp

b) E-mail: sasao@cse.kyutech.ac.jp

¢) E-mail: matsuura@cse.kyutech.ac.jp

d) E-mail: nagayama@aries02.cse.kyutech.ac.jp

e) E-mail: nakamura@cms.kyutech.ac.jp

f) E-mail: iguchi@cs.meiji.ac.jp

and Yukihiro IGUCHI'™D, Members

v0: if (x1==0) goto vi;
else goto v2;

vi: if (x2==0) goto v3;
else goto v4;

v2: if (x3==0) goto v3;
else goto v4;

v3: return(0);

v4: return(1);

(a) (b)

Fig.1 Binary decision diagram and branching program.

function can be realized by a branching program as follows

[1]:

1. Represent a given function by a binary decision dia-
gram (BDD) [2], [3] (Fig. 1(a)).

2. Replace each non-terminal node of the BDD with an if
then else statement, and derive the branching program
representing f (Fig. 1(b)).

3. Execute the program on a general-purpose micropro-
Cessor.

In this way, an SBDD (shared BDD), an MTBDD (multi-
terminal BDD), or a BDD-for-CF (characteristic function)
can be used to represent a multiple-output logic function.
The evaluation time for a BDD-for-CF or an MTBDD is
O(n + m) [1], [4], while the evaluation time for an SBDD
is O(n X m), where n denotes the number of input variables,
and m denotes the number of output variables. Thus, binary
decision diagrams (BDDs) for characteristic functions (CFs)
and MTBDDs are suitable for high speed evaluation.

A look-up table (LUT) cascade [5] is a new type of a
PLD. Since it has a memory-like structure and the intercon-
nections are simple, prediction of the circuit performance is
easy. An LUT cascade shown in Fig.2 consists of multi-
ple memories (cells) connected in series to realize a given
function. The lines that connect adjacent cells are called
rails. Each cell may have external outputs and rail outputs
except that the last cell has just external outputs. Although
the LUT cascade is simple and fast, the logical capability is
low. Once the number of inputs and outputs per cell, and the
number of cells are fixed, the number of realizable functions
is limited. Moreover, it is almost impossible to use all cells.

An LUT ring shown in Fig. 3 emulates an LUT cascade

3142

X X X5 X,
WYy WY WY Wi

—3 > > 3
Cell; [T] Celly [T | Celly [7| Cell,
= —>| - ‘
Y, V) Ys Y
Fig.2 LUT cascade.
[Comtrol Part_ | Memory
[Conrol || _for Logic
Memory for E
! |Interconnection | ; Cell;
; Cell,
Imput { | | V...
Reg. |—p .
Programmable .
Connection [N
Network
Output [<—] Cellg
Reg.

Fig.3 LUT ring.

sequentially using memory for logic. Since the number of
inputs and the number of outputs per cell and the number of
cells can be changed by using a programmable connection
network, the LUT ring can implement a wider range of func-
tions. Also, memory-packing [5] can be used to reduce the
total amount of memory. In [5], the LUT ring was called the
LUT cascade. However, in this paper, the sequential circuits
that emulate an LUT cascade will be called an LUT ring.

In this paper, we show a prototype of an LUT ring
custom-designed with 0.35um CMOS technology, and
compare its performance with microprocessors and FPGAs.
The rest of the paper is organized as follows: Sect.2 ex-
plains the architecture and features of the LUT ring. Sec-
tion 3 presents the circuit design of the prototype. Section 4
evaluates the performance of the LUT ring, and Sect. 5 con-
cludes the paper.

2. LUT Ring

In this section, we explain the architecture and features of
an LUT ring.

The LUT ring shown in Fig.3 consists of five parts:
The Input Reg. stores the values of primary inputs; the Out-
put Reg. stores the values of primary outputs; the Memory
for Logic stores the LUT data for cells, where all of the LUT
data are stored in one memory. The Control Part consists
of the Control block that generates control signals and the
Memory for Interconnections that stores the information of
the interconnections among cells; the Programmable Con-
nection Network implements the interconnections among
cells.

An LUT ring sequentially emulates the LUT cascade.

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.12 DECEMBER 2004

X1 N X2 Y2 X3)3 X4 Y4

20 N T T T S A

Cell; —» Cell, —{ Cell; —»{ Celly —>

Vs, VS, VS, VS,

Fig.4 Structure of the LUT cascade for 4-bit adder.

4 4
pager | § [0 S pagen| IS
X1 A, Mef'“‘"y X2 4.2....(.:.?!!%
" A1 Logic Y2 A e

*D—>A0 Cy A Logic

(a) (b)

1 Ay Memory 1 Ay
Page3 A3 for Paged| | A1 wemors
—
*3 4, X4 As L?gric
3 A celly| Y 4,

(c) (d)

Fig.5 Operation of 4-bit adder.

Although it is slower than the LUT cascade, its logical capa-
bility is much higher. In the LUT ring, the number of inputs
and outputs per cell, as well as the number of cells, can be
changed by using the programmable connection network.

Compared with the LUT cascade, the LUT ring shown
in Fig. 3 has the following features:

e Requires only one memory for LUT data.

o Can implement a wide range of functions.

o Can benefit from memory-packing [5]-[7] by reducing
the total amount of memory.

Example 2.1: Consider a 4-bit adder.

X4 X3 X2 X1

+) Yas Yz Y2 Y
Cout S4 S3 S, S

The adder can be implemented by an LUT cascade with
four independent cells as shown in Fig.4. Cell; has an ex-
ternal output S| and a rail output C;. Note that the number
of cells is four.

However, if we use an LUT ring, we need just one
memory for LUT data. Figures 5(a)-(d) show the opera-
tion of the 4-bit adder by the LUT ring. Suppose that the
memory for logic has five address lines (A4, A3, Az, A1, Ao),
and two output lines (Dy, D).

The LUT cascade consists of four cells. In this case,
the LUT ring requires four memory accesses to compute

QIN et al.: A REALIZATION OF MULTIPLE-OUTPUT FUNCTIONS BY A LOOK-UP TABLE RING

the outputs of the adder. We partition the memory into four
pages, and assume that two most significant bits of the ad-
dress denote the page. In the first memory access, the two
most significant bits are set to (0,0), as shown in Fig. 5(a).
This corresponds to the page 1 in the LUT ring, and the first
cell in the LUT cascade. We have to read the memory to
obtain C; and S;. Since the first cell has only two inputs,
the least significant bit of the address can be either O or 1.
This operation is symbolically denoted by
(A4,A3,A2,A1,A0) « (0,0, x1,y;,*), where * denotes ei-
ther O or 1.

After reading the values of (Cy,S 1), C; is transferred
to the least significant bit of the address for the next lookup.
At the same time, S| is set to the least significant bit of the
output register. This wiring is done by the programmable
connection network in Fig. 3. The information for the con-
nection for this memory access is stored in the memory for
interconnections. This operation is symbolically denoted by
Read (D, Dy), and (Cy, S 1) « (Dy, Dy);

OUT_REG [0] « (S).

In the second memory access, the 2nd page is used to
obtain (C3, S ;) as shown in Fig. 5(b). This operation is de-
noted by
(A4,A3,A7,A1,A9) — (0,1, x2, 2, Cy);

Read (D], Do), and (Cz, Sz) — (D], Do);
OUT_REG [1] « (S>).

In the third memory access, the 3rd page is used to ob-
tain (C3, S'3) as shown in Fig. 5(c). This operation is denoted
by
(A4,A3,A2,A1,Ap) < (1,0,x3,y3,C2);

Read (D1, Dy), and (C3, S 3) < (D1, Do);
OUT_REG [2] « (S3).

In the last memory access, the 4th page is used to obtain
(Cout» S 4) as shown in Fig. 5(d). This operation is denoted by
(A4, A3,A7,A1,Ap) — (1,1, x4, 44, C3);

Read (D1, Dy), and (Cous, S4) < (D1, Dy);
OUT_REG [4:3] < (Cous, S 4).

Note that the LUT ring emulates the LUT cascade in
Fig. 4. In this way, the 4-bit adder is evaluated by accessing
the memory four times. (End of Example)

The architecture of the LUT ring is quite different from
that of FPGAs. To realize multiple-output functions, we can
easily predict the evaluation time before physical design. In
the LUT ring, from the number of the cells, the evaluation
time for a logic function is easy to predict. The details will
be discussed in the next section.

3. Circuit Design

This section presents a transistor-level design using 0.35 yum
3.3V CMOS technology, and evaluates the delay of the pro-
totype using the SPICE circuit simulator.

3.1 Circuit Design of the Prototype

The specification of the prototype of LUT ring is as follows:

3143

The number of primary inputs is at most 32.

The number of primary outputs is at most 24.

The number of cells in the LUT ring, s, is at most 8.
The maximum number of inputs for each cell, %, is 13.
The cells may have different numbers of inputs.

e The maximum number of outputs for each cell is 8.

e Memory-packing can be used to reduce memory.

Figure 6 shows the architecture of the LUT ring. It
consists of the following components:

Input Reg.: 32-bit, stores the values of primary inputs.
Output Reg.2: 24-bit, stores the values of primary outputs.
MAR: 13-bit memory address register, stores the values of
cell address.

Memory for Logic: 13 inputs and 8 outputs, 64 K-bit
SRAM. Stores the LUT data for cells.

Memory for Interconnections: Stores the information on
how to set the interconnections among cells.

Control Part: Includes a counter and an 3-bit multiplexer
and generates the control signals for the LUT ring.

Shifter Network: Consists of an 32-by-13 Input Shifter,
an 8-by-8 Feedback Shifter and 11 Input / Feedback Se-
lectors. It implements the programmable interconnections
among cells.

Shifting Register: Consists of an 8-by-8 Output Shifterl,
32-by-24 Output Shifter2 and 24-bit Output Reg.1. It stores
the values of the external outputs of the different cells step
by step.

The LUT ring has three important parts: The Mem-
ory for Logic, the Shifter Network and the Shifting Regis-
ter. Since the Memory for Logic operates as a data path
in the LUT ring mode, which is shown in 3.3.1, we use an
asynchronous SRAM. Because design methods of SRAMs
are described in literature [8], we just show the circuit de-
sign of the barrel shifter. The delay time of an n-bit shifter
is proportional to log n, so combined with fast transmission
gates, shift can be fast [8]. Furthermore, we reduced chip
area by using a single n-channel pass transistor gate instead
of a full transmission gate. Figure 7 shows an example of
the detailed circuit design of an 4-by-4 barrel shifter.

A novel circuit in the LUT ring is the Shifting Regis-
ter, which stores the external outputs of cells in the Out-
put Reg.1, step by step. The external outputs of a cell are
produced when the corresponding page of the Memory for
Logic is accessed.

A conventional method to write the output signals to
the selected bits of the Output Reg.1 is shown in Fig. 8.
This method uses flip-flops with LOAD inputs. To load
the signal to the flip-flops, the LOAD signal is set to 1.
However, this method requires a control memory with size
(the number of pages) X (the number of bits in the output
registers)=8 X 24=192. In addition, it requires interconnec-
tions between the memory and registers. Therefore, we de-
veloped a novel method that uses Output Shifterl, Output
Shifter2 and Output Reg.1. Note that the outputs of Output
Reg.1 are fed back to the inputs of the Output Reg. I through
Output Shifter2. As will be shown in Sect. 3.3, the size of

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.12 DECEMBER 2004

3144
Cell Data[7:0] \
32-by-24 24-bit 24-bit
/ N\ Memory Output Output Output
Input/Feedback Direct for. Shifter2 Reg.1 Reg.2
32-by-13 Selector Access Logic |31 03123 023 23 02
Input Input é‘ff(‘)‘] Selector [DIN[7:0] N30 030122 022 22022
Reg. Shifter _‘—’:'_—' L__rl;'_ A N—129 o20——{21 021 21021 2
31 310l 12 [N—128 o280 020 20020 8
N ’__rl\l/'_ \ 0 19 019 2
30 30 011 \:’:'—11 All o EEY e L o9
M ;’—_Fj— A0 D7 . : : .
29 29 ol \:rj—lo Y sbys ko . . .
N 0 9 09| 1 ol 1 ol
A9 D6 utput
Primary 28 28 09 9 Shifter] ~ 8 o8F—|0 00 0 o0
inputs N1 N
[31;;0] 27 27 o8 8 Tr'.;'_ as N 7 !
N D4 6 06 6 Clk Load2
26 2% Lr:'_7 ’_T:l— A7 s o5 5
. . . D3] :
[} ° o \‘_ 0 .
. ° . . D20 03 0
T+
Al D1
-
0 0 Lr:'_ 0 '__r:'_ A0 pof—] Feedback
00 Shifter
\ L {WE -
T;oadl 6 \ Tcu(u 7 07
Connection \ 6 06
Data[29:0] 3 11 N\ f 5 05
2 - .
WE 41 (.
! N0 00
Mode — biN DOUT[29:0]
[29:0] 3
Load — AD[2:0]
Clk —! WE 4 /
Memory for Interconnections
Fig.6 Architecture of the LUT ring.
4 shil0] o—g e
shil1] p— . *\
® I’ —ID Q \
—_— 1
2 N g out[3] |\ T[roap |
- _I'—I_?_‘>¢ 1 N ENABLE
m[]D | |:_ _u_ > 8 by 24 \\\\\ | //7/
T — T Output \ S---TT
T | ; > outi2] Shifter NS
i =0 - ~
in[2] O L) o ‘,\ v
y [] <
i — —
A LF—DO—D out[1] o2 Q_
in[l] O 1| p 1 T : .
= * I—?—|>°—D0ul[0] . .
. I f = D7 70 f
in[0] D————| —_ B o :”__'._
T . . ¢ ouf23:0]
D2 2 o T
Fig.7 Details of 4-by-4 barrel shifter. ;’_
DI —1 ol 1 l_
D0 —0 o ;'_
the control memory for two Output Shifters is 7 X 8=56 bits, soe oo Output
much smaller than the size of control memory with conven- Kol

tional methods. Compared with conventional methods, this
novel method is simple and easy to implement. The detail 24-bit * 8 RAM
of its operations will be shown in 3.3.2.

Enable

Fig.8 Conventional method to store the outputs.

3.2 Chip Size

With the 0.35um CMOS technology of Rohm Co. LTD, '(“\y/];‘gé?m chip of the VLSI Design and Education Center
the size of 64 K-bit SRAM is 2080 um by 2340 um. The :

chip size excluding the 64 K-bit SRAM is roughly 700 um

by 900 um. Thus, we can use the less expensive 4.9 mm

QIN et al.: A REALIZATION OF MULTIPLE-OUTPUT FUNCTIONS BY A LOOK-UP TABLE RING

3.3 Operation of the LUT Ring
3.3.1 Operation Modes in the LUT Ring

The LUT ring has two modes: The configuration mode and
the LUT ring mode.

Configuration Mode:

To store the cell data of the LUT cascade to the Memory for
Logic, we use the Direct Access Selector. By connecting
the primary inputs[31:19] to the inputs of the address of the
Memory for Logic, we load the cell data through DIN [7:0]
into the Memory for Logic. Also, we store the connection
data of the LUT cascade into the Memory for Connections
by connecting the primary inputs[2:0] to the inputs of ad-
dress of the Memory for Connections.

LUT Ring Mode:

In this mode, all the address lines of the Memory for Logic
are connected to the MAR, while the address lines of the
Memory for Connections are connected to the control block,
and both memories are in the READ operation. Let the cas-
cade consist of s cells, where 1 < s < 8. In this case, the
p most significant bits of the addresses of the Memory for
Logic specify the page number, where p =[log, s7.

To use the LUT ring, first the chip is set to the Config-
uration Mode: We need to store LUT data into the Memory
for Logic and store the interconnection information into the
Memory for Connections. Next, the chip is set to the LUT
Ring Mode.

3.3.2 Detailed Operation in the LUT Ring Mode

The LUT ring will operate in four steps as follows:

1) Acquisition of the values of the primary inputs

We assume that the order of the primary inputs and the
order of the variables in the cascade are the same. At time O,
the values of the primary inputs are sent into the Input Reg.

2) Set the data for the MAR

Assume that we are going to compute the i-th cell of
the LUT cascade, where 1 < i < 8. The inputs to the MAR
are: the page signals (p bits), signals from the input register
(IX;| bits), and signals from the memory (u;—; bits), where
ui—1 + p + 1Xi| < 13. To make the argument simple, let
p+ IX;| + u;_1=13.
Page number stored in the MAR[12 : 12 — p + 1]: In the
MAR, the p most significant bits denote the page number.
The Input / Feedback Selector chooses the signals from the
Memory for Connections. The control signals for the Input
/ Feedback selectors are also stored in the Memory for Con-
nection.
X; inputs stored in the MAR[12 - p : 12— p —|X;| + 1]: The
data for X; are obtained as follows: When i = 1, the Input
Shifter shifts 0-bit. When i > 1, the data of the input regis-
ter are shifted by |X;| + |X3| + - - - + |X;_1| bits by the Input
Shifter. In this case, the Input / Feedback Selector chooses
the signals from the Input Shifter.
Feedback inputs stored in the MAR[12 — p — |X;| : 12 —

3145

p — |Xil — ui—1 + 1]: Among the outputs of the Memory for
Logic, we select the corresponding u;_; bits of the Feedback
Shifter, using the Input / Feedback Selector. To reduce the
size of the Memory for Logic by memory packing [5], we
use this Feedback Shifter.

3) Evaluation of function by the Memory for Logic

After setting the values to the MAR, by accessing the
corresponding address of the Memory for Logic, we have
the data D [7:0]. These data show the rail outputs to the
next cell(u; bits) and the external outputs of the i-th cell(]Y}|
bits).

4) Store the external outputs of cells into the Output
Registers

The Output Shifterl shifts Y; to the higher bit position.
As aresult, the signals are sent to the inputs (in[7:7-|Y;|+1])
of the Output Shifter2. Next, the Output Shifter2 shifts the
data to the upper position by |Y;| bits. By this, we can set the
data into the corresponding position of the Output Reg.l.
At this time, the values that were stored in that positions are
also shifted by |Y;| bit to the higher positions. The total num-
ber of bits in the control signals for the two Output Shifters
is 7, thus, we need only (7 X) bits. Note that the size of the
control memory for the two Output Shifters is 7 x 8=56 bits
when s is 8. When all the computations are finished, the
values of the Output Reg.1 are sent to the Output Reg.2.

In this way, we can get the desired result after four
steps.

3.4 Operation Speed of the Prototype

To estimate the operation speed of the prototype, we parti-
tion the LUT ring into three parts, as shown in Fig.9. The
In Part consists of input pad (I Pad) and Input Reg.; the Out
Part consists of output pad (O Pad) and Output Reg.2; and
the others are represented as the Sequential Part dotted line.
Figure 10 shows the delay time in the signal path, where
the values are obtained by SPICE simulation for a 0.35 ym,
3.3V CMOS process.

In Fig. 10, the delay for In Part is denoted by Delayl,
and the delay for Out Part is denoted by Delay4. The de-
lay for the sequential part depends on the number of clocks.
In the prototype, during one clock cycle we can access the
64 K-bit SRAM once. Note that before the memory access,

o e e - -

i Sequential Part

|

T : |
i Shifter Network : i
Input i
Shifter 64K-bit i
: i - i
i

Feedback SRAM
Shifter

|
In Part i

Output E |ouput | i ¢

? [

: Output

: N i\ F Put |G H
=] shiters [P Reel [P Reg.2

: Wit |1 24bit

i [

Shifting Register | |
i

Out Part

Fig.9 Signal path of the prototype.

3146
Delayl Delav4
A C D E F Y oom
0.63ns 1.64ns
1.90ns 0.80ns
Delay2 Delay3

Time to Transfer Outputs of Cell;

Time to Setup the MAR for Cell;, to the Point of E.

Delay2 4.5 ns
e -~
Clock ceece
e e e
: ' Sns ! : Sns ! ! ' ;
Delayl Time to Time to Delay3 Delay4
Setup : Setup :
the MAR ! the MAR !
for Cell, : for Cellg !
64K-bit SRAM
Data Output Cell, >< Cell, >< >< Celly —
Fig.10 Delay time in the signal path.

Time to Setup Time to Setup Time to Transfer
the MAR the MAR Coue and S,
for Cell;, for Cells, to the Point of E.
Delay2 4.5 ns 4.5 ns
R ¥ e : 1
e | LT L[
H ' : Sns . Sns : : :
Delayl ! Time to ! ! Timeto ! Delay3 Delay4
! Setup ! © Setup
i the MAR i the MAR !
i for Cell,, i for Celly !

64K-bit SRAM
Data Output

€1, 81X Cas 82 X Cas 83 X Conts 84—

Delay time for the 4-bit adder.

Fig. 11

we need to setup the MAR with the values of cell address.
The time to setup the MAR for the first cell is denoted by
Delay2, which is shorter than the time for the rest of the cells
because its path is C to D. The time to setup the MAR for the
other cells is equal to one clock cycle. Thus, when the LUT
cascade consists of s cells, the setup time of the MAR for
these cells is equal to (Delay2 + (s-1) x CLK), where CLK
is 4.5 ns. However, we also need one clock cycle to transfer
the outputs of the last cell to the point E. After Delay3, the
primary outputs are out of the sequential part. Therefore,
the delay time for the sequential part is equal to (Delay2 +
s X CLK + Delay3). Thus, the total delay time of the LUT
ring is obtained by the following:

Delay Time
= Delayl + Delay2 + s x CLK + Delay3 + Delay4
=063+19+45xs+0.8+1.64
=45x%xs5+5.0(ns) (1)

Example 3.1: Consider the 4-bit adder in Example 2.1,
where s is 4. The evaluation time is 4.5 X 4 + 5.0 (ns).
Figure 11 shows the distribution of the evaluation time
for the 4-bit adder. First, after Delayl, the values of
(x1,y1, X2, Y2, X3, Y3, X4, Y4) are stored in the Input Reg. Sec-
ond, before accessing the 64 K-bit SRAM, we need to spend
Delay? to setup the MAR with the values of (0, 0, 0, x;, ¥,

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.12 DECEMBER 2004

®, %, %, %, %, %, %, %) for Cell;, where * denotes either O or 1,
to obtain C; and S;. Then, to obtain C, and S,, we need
to spend one clock cycle to setup the MAR with the values
of (0, 0, 1, x2,y2, Cy, *, *, %, *, %, %, x) for Cell,, meanwhile
S is transferred to the point of E. During the next clock,
the values of (0, 1, 0, x3,y3, Ca, *, %, %, %, %, %, x) have to be
sent to the MAR for Cells to obtain C3 and S 3, meanwhile
S is stored in the Output Reg.1[0], and S, is transferred
to the point of E. Similarly, to obtain C,,, and S4, the val-
ues of (0, 1, 1, x4, y4, C3, *, %, %, %, %, %, %) have to be sent to
the MAR for Cell,, meanwhile S, is stored in the Output
Reg.1[0] while S is stored in the Output Reg.1[1], and S3
is transferred to the point of E. During the next clock, S5 is
stored in the Output Reg.1[0] while S| and S, are stored in
the Output Reg.1[2:1], then C,,, and S 4 are transferred to the
point of E. During Delay3, both C,,, and § 4 are stored in the
Output Reg.1[1:0] while S 1, S, and S 5 are stored in the Out-
put Reg.1[4:2], and then the values of (S1,S52,S53, Cour, S4)
are transferred to the Output Reg.2. Finally, we can get the
evaluated results after Delay4. (End of Example)

4. Performance Evaluation and Comparison with
Other Devices

We evaluated the performance of the prototype, and com-
pared it with microprocessors and FPGAs. To make the ar-
gument simple, we selected functions from MCNC combi-
national benchmark set [9].

Table 1 compares the performance of the prototype
with commercial FPGAs and two microprocessors. In this
table, “Name,” “In,” “Out,” and “BDD size” denote the
function name, the number of inputs, the number of outputs,
and the number of non-terminal nodes in BDDs-for-CFs, re-
spectively. The column “s” denotes the number of cells in
the LUT ring. To obtain the number of cells, we used the
newly developed logic synthesis tool reported in [10], where
the number of inputs for each cell k is set to 10. The column
“Time” denotes the evaluation time for the prototype esti-
mated by Eq. (1) in Sect. 3.4, in nano-seconds.

4.1 Comparison with Microprocessors

At least two approaches exist to implement software for
combinational benchmark functions. The first approach is
to simulate the multi-level combinational circuit by some
logic simulator. The second approach is to represent the
function by a BDD, and then traverse the BDD by a spe-
cial program [11],[12]. In this experiment, we used the sec-
ond approach, since it is faster than the first approach for
the benchmark functions. We represented benchmark func-
tions using BDDs-for-CFs. The numbers of nodes in the
BDDs-for-CFs were reduced by using a sifting algorithm
[13]. Then, we generated a table that represents the BDD,
and we used a special program to traverse the BDD data.
To compare the performance of the prototype with the
speed for the software programs, we used a 32-bit RISC mi-

QIN et al.: A REALIZATION OF MULTIPLE-OUTPUT FUNCTIONS BY A LOOK-UP TABLE RING

3147
Table1 Comparison of the LUT rings with MPUs and FPGAs.
BDD LUT rings SH-1 | Penlll FPGA-30E FPGA-100E Relative speed of LUT rings
Name In | Out size s | Time [ns] [us] [us] LEs | Delay [ns] LEs | Delay [ns] [[SH-1 | Penlll [30E [100E
misex2 | 25 18 205 5 27.5 41.9 0.36 35 13.2 34 16.4 137 59 | 048 0.60
in4 32 20 727 8 41.0 45.6 0.39 109 17.3 109 19.7 100 43 | 042 0.48
b3 32 20 649 || 7 36.5 45.3 0.37 103 18.4 103 20.2 112 46 | 0.50 0.55
2 17 16 480 || 5 27.5 42.3 0.33 67 14.4 67 16.5 139 54 | 0.52 0.60
mlp6 12 12 | 4482 || 7 36.5 42.0 0.34 1063 27.3 | 1063 30.7 104 42 | 0.75 0.84
b2 16 17 642 || 6 32.0 43.0 0.33 216 25.9 216 30.0 121 46 | 0.81 0.94
chkn 29 7 224 || 5 27.5 24.3 0.22 178 24.8 178 27.3 80 36 | 0.90 0.99
bcO 26 11 561 5 27.5 31.9 0.25 417 24.0 417 28.1 105 41 | 0.87 1.02
gary 15 11 415 4 23.0 29.8 0.24 181 20.4 181 22.6 117 47 | 0.89 0.98
misex3 | 14 14 | 3544 || 4 23.0 38.6 0.30 263 23.4 263 26.6 151 59 | 1.02 1.15
apex4 9 19 | 2230 || 4 23.0 49.0 0.39 812 23.2 812 25.5 192 76 | 1.01 1.11
intb 15 7 756 3 18.5 323 0.25 393 36.2 393 40.7 157 61 | 1.96 2.20
exam 10 10 690 2 14.0 34.3 0.26 148 18.8 148 20.7 221 84 | 1.34 1.48
mé4 8 16 496 3 18.5 39.8 0.30 204 19.9 204 26.5 194 73 | 1.08 1.43
prom2 9 21 | 4014 3 18.5 49.4 0.38 734 25.1 734 23.1 241 93 | 1.36 1.25
tial 14 8 775 3 18.5 34.0 0.27 443 334 443 33.8 166 66 | 1.81 1.83
amd 14 24 463 7 36.5 54.6 0.43 107 16.5 107 17.3 135 53 | 045 0.47
pl 8 18 954 || 6 32.0 46.2 0.38 91 14.0 91 15.3 130 53 | 0.44 0.48
x9dn 27 7 204 || 5 27.5 28.2 0.26 31 15.9 31 17.1 92 43 | 0.58 0.62

croprocessor SH-1 (SH7020) 20 MHz [14] and an Intel Pen-
tiumlIIl 1 GHz with a 256 KB cache [15]. On the one hand,
SH-1 is an embedded MPU used in DVDs, navigation sys-
tems, digital cameras, etc. On the other hand, PentiumIII
is a high-performance CPU for desktop PCs. For the SH-1,
we compiled the software program using the SH C/C++-
compiler [16] with the optimization option for speed, and
obtained the CPU time using the SH simulator [17]. For
the PentiumlIl, we compiled the software program using the
GNU C-compiler gcc with the -O2 option, and obtained the
CPU time by executing it on the Linux operating system
with 4 GB memory.

In Table 1, the column “SH-1" denotes the average
CPU time per test vector for the software program on SH-1,
in micro-seconds. When the number of inputs for a bench-
mark function is smaller than 17, we obtained the average
CPU time for the function using an exhaustive test (i.e., 2"
test vectors, where n is the number of inputs). When the
number of inputs for a benchmark function is larger than
or equal to 17, we obtained the average CPU time for the
function using 1,000,000 random test vectors. Similarly, the
column “PenlII” denotes the average CPU time per test vec-
tor for the software program on the PentiumlIl, in micro-
seconds. The PentiumlIl was too fast to obtain the average
CPU time accurately using a small number of test vectors.
Thus, for all benchmark functions, we used 1,000,000 ran-
dom test vectors. In the last four columns, the column “SH-
1” denotes the relative speed of the LUT rings to the speed
of the SH-1, where the speed of the SH-1 with 222 MHz is
set to 1. Similarly, the column “PenlII” denotes the relative
speed of the LUT rings to the speed of the PentiumlIII, where
the speed of the PentiumIII with 222 MHz is set to 1.0. That
is, they are calculated by

SH-1 time x 20 MHz/222 MHz

LUT/SH-1 =
/ Delay time of LUT ring

PenllII time x 1 GHz/222 MHz

LUT/Penlll = - -
Delay time of LUT ring

Note that 222 MHz is the clock frequency for the LUT ring.

Table 1 shows that the LUT rings are 80 to 241 times
faster than the SH-1, and 36 to 93 times faster than the Pen-
tiumlII when the clock frequencies for the LUT ring and the
MPUs are equal.

4.2 Comparison with FPGAs

We also implemented the same MCNC benchmark func-
tions by two types of Altera APEX20KE series FPGAs [20]:
EP20K30EFC144-1 and EP20K100EFC144-1. The two de-
vices have the same package size 13mm by 13 mm and
are fabricated by a 1.8V, 0.18 um process. In this package
(144-pin FineLine Ball-Grid-Array), the EP20K30EFC144-
1 has the minimum number of logic elements while the
EP20K100EFC144-1 has the maximum number of logic el-
ements.

To implement a logic function, first, we reduced the
dependency of the original representations for each bench-
mark function with the SIS tool [18] with script.algebraic,
and then we converted it into Verilog HDL source code.
Second, we used Synplify Pro (version: 7.3.3) [19] to syn-
thesize the Verilog HDL code and generate Verilog Quar-
tus Mapping files for the EP20K30EFC144-1 device and
the EP20K100EFC144-1 device. Finally, we performed
place, route and timing analysis by using Quartus (version
2000.09) [20]. Note that the logic optimization results by
using Synplify Pro may be affected by the different choices
of script command of SIS for some functions.

In Table 1, columns “LEs” denote the number of logic
elements actually used in the FPGAs. Columns “Delay” de-
note the delay time for each benchmark function obtained
by Quartus, in nano-seconds. In the last four columns, the
columns “30E” and “100E” denote the relative speeds of the
LUT rings to the speeds of the EP20K30EFC144-1 device
and the EP20K100EFC144-1 device, respectively, where
the speeds of FPGAs are set to 1.0. That is, they are cal-
culated by

3148

Delay time of FPGA

LUT/FPGA = .
/ Delay time of LUT ring

4.2.1 Chip Size

The APEX20K Device Family Data Sheet [20] shows that
EP20K30EFC144-1 has 1200 logic elements, and each logic
element contains a four-input LUT. Consider the case of the
function mip6. In the FPGA, the number of used LEs is 1063
that almost exhausted the total LEs of EP20K30EFC144-
1, while in the prototype of the LUT ring, the number of
used cells is 7. It is interesting to compare the chip sizes of
these implementations. Unfortunately, since the die size and
detailed circuit design of the Altera FPGA device have not
been published, exact comparison is difficult.

Here, we roughly compare the chip sizes of the proto-
type and EP20K30EFC144-1. To make the problem simple,
we partition the area of the chip into two parts: “LUT Area”
that is for the area of the LUTs, and “Other Area” that is for
the remainder of a chip area except for the area of LUTs.
First, consider the area for the LUT ring. In the prototype,
LUT Area is equal to the size of the 64 K-bit SRAM, i.e.
2080 um by 2340 um, and Other Area is 700 um by 900 um.
Let the relative area of 64 K-bit SRAM be 1.0, then we have
the relative chip size of the prototype as follows:

, 700x900
2080 x 2340

In the EP20K30EFC144-1 device, LUT Area is the
sum of the area of LUTS in the logic elements. Note that the
total LUTs in EP20K30EFC144-1 have 19200 bits, which
corresponds to 29.3% of the 64 K-bit SRAM. If we use the
same circuit with the same process technology, then the
LUT Area in EP20K30EFC144-1 would be less than 1/3 of
the area of the 64 K-bit SRAM. Actually, the LUTs in Al-
tera APEX20KE series FPGAs use latches and multiplex-
ors, while the SRAM in the LUT ring uses sense amplifiers.
Assume that the LUT Area in EP20K30EFC144-1 is 1/3
of the area of the 64 K-bit SRAM. Let a be a fraction of
the area spent for Other Area in EP20K30EFC144-1, where
0 < @ < 1. Let the relative area of 64 K-bit SRAM be 1.0,
then the relative chip size of EP20K30EFC144-1 is given
by:

1.13.

LUT Area + Other Area = l + c . l
3 1-a 3

In this case, the chip size of EP20K30EFC144-1 is larger
than that of the prototype if @ > 0.7.

Generally, the routing area in the FPGAs occupies from
50% to over 90% of the total area [21]. Clearly, Other Area
in EP20K30EFC144-1 is larger than the routing area. More-
over, the interconnections between the LUTSs is more com-
plex in the APEX 20KE series FPGA. Thus, we can assume
that @ > 0.7 in EP20K30EFC144-1. That is, the chip size
of EP20K30EFC144-1 is larger than that of the LUT ring if
we use the same process technology.

Therefore, although the LUT Area for the prototype is

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.12 DECEMBER 2004

larger than that for the EP20K30EFC144-1 device, the chip
size of the prototype would be smaller than that of the FPGA
by using the same process technology.

422 Speed

In Table 1, we can see that the delay time of
EP20K30EFC144-1 and EP20K100EFC144-1 for the func-
tions in the lower rows are almost the same, but are different
for the upper rows, even if the two devices use the same
number of logic elements. This shows that we cannot es-
timate the delay time of one device from the delay time of
another device. Also, for each device there is no clear re-
lationship between “LEs” and “Delay.” Thus, for a given
logic function that will be implemented by an FPGA, even
if we know the number of LEs used and the delay time of
the another FPGA in the same series, we cannot estimate
the delay time. Although we can estimate the delay time of
an FPGA from the logic level of the network generated by a
logic synthesis tool, the estimation is not accurate. In fact,
it is difficult to predict the delay time of the FPGA before
place and route. However, for the LUT ring, it is easy to
accurately estimate the delay from the number of cells used.

Although FPGAs with the fastest speed grade are used,
Table 1 shows that the FPGAs are just two times faster than
the prototype for seven functions but are also slower for
seven functions. Note that the FPGA uses 0.18 yum CMOS
technology, while the prototype uses 0.35 um CMOS tech-
nology. If we use a 0.18 um CMOS process, the LUT ring
will be at least twice fast [22]. In spite of the disadvantage
of the process technology, the LUT ring gives a performance
competitive to the FPGAs.

5. Conclusions and Comments

In this paper, we have shown a realization of an LUT ring
that implements multiple-output functions. The major ad-
vantage of this method is that the prediction of the delay
time for a logic function is easy. We custom-designed a pro-
totype of an LUT ring by using 0.35 um CMOS technology.
Our simulation results show that the LUT ring is 80 to 241
times faster than software programs on an SH-1 with the
same clock frequency as the LUT ring, and 36 to 93 times
faster than software programs on a PentiumlIII with the same
clock frequency. However, it is slightly slower than the com-
mercial FPGAs for many benchmark functions.

We also implemented an LUT ring by an FPGA board
and a memory board to confirm its operation. The details
will be shown in a separate paper.

Acknowledgments
This research is partly supported by JSPS, the Grant in Aid

for Scientific Research, MEXT, the Kitakyushu area inno-
vative cluster project, and the Takeda Foundation.

QIN et al.: A REALIZATION OF MULTIPLE-OUTPUT FUNCTIONS BY A LOOK-UP TABLE RING

References

(1]

(2]

(3]
[4]

(5]

(6]

(7]

(8]

(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]

[22]

P. Ashar and S. Malik, “Fast functional simulation using branching
programs,” Proc. International Conference on Computer-Aided De-
sign, pp.408—412, Nov. 1995.

R.E. Bryant, “Graph-based algorithms for Boolean function manip-
ulation,” IEEE Trans. Comput., vol.C-35, no.8, pp.677-691, Aug.
1986.

C. Lee, “Graph-based algorithms for Boolean function manipula-
tion,” Bell Syst. Tech. J., vol.19, pp.985-999, July 1959.

T. Sasao and M. Fujita, ed., Representations of Discrete Functions,
Kluwer, Academic Publishers, 1996.

T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of
multiple-output function for reconfigurable hardware,” International
Workshop on Logic and SynthesisUWLSO01), pp.225-230, Lake
Tahoe, CA, June 2001.

Y. Iguchi, T. Sasao, and M. Matsuura, ‘“Realization of multiple-
output functions by reconfigurable cascades,” International Con-
ference on Computer Design: VLSI in Computers & Processors
(ICCD-2001), pp.388-393, Austin, TX, Sept. 2001.

T. Sasao, M. Kusano, and M. Matsuura, “Optimization methods in
look-up table rings,” International Workshop on Logic and Synthe-
sis (IWLS-2004), pp.431-437, Temecula, California, U.S.A., June
2004.

N.H.E. Weste and K. Eshraghian, ed., Principles of CMOS VLSI
Design: A Systems Perspective (second edition), Addision-Wesley
Publishing, California, 1994.

MCNC-Benchmark Set: http://www.cbl.ncsu.edu/www

T. Sasao and M. Matsuura, “A method to decompose multiple-output
logic functions,” 41st Design Automation Conference, pp.428—433,
San Diego, CA, USA, 2004.

P.C. McGeer, K.L. McMillan, A. Saldanha, A.L. Sangiovanni-
Vincentelli, and P. Scaglia, “Fast discrete function evaluation using
decision diagrams,” Proc. International Conference on Computer-
Aided Design, pp.402-407, Nov. 1995.

S. Nagayama and T. Sasao, “Code generation for embedded systems
using heterogeneous MDDs,” 12th Workshop on Synthesis And Sys-
tem Integration of Mixed Information Technologies (SASIMI 2003),
pp.258-264, Hirosima, Japan, April 2003.

R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” Proc. International Conference on Computer-Aided De-
sign, pp.42-47, Nov. 1993.

Hitachi SuperH 32-bit RISC CPU SH-1 (SH7020), Renesas Tech-
nology Co.,

http://www.renesas.com/eng/products/mpumcu/32 bit/sh/

Intel Pentium III Processor, Intel Co.,
http://www.intel.com/products/desktop/processors/pentiumiii/
Hitachi Embedded Workshop (HEW), SuperH RISC Engine C/C++
Compiler Package Ver. 6.0Ar2, Hitachi ULSI Systems Co.,
http://www.hitachi-ul.co.jp/MYICE/XSOFT/

Hitachi Debugging Interface (HDI) for SH Series Simulator
Ver. 5.01, Hitachi ULSI Systems Co.,
http://www.hitachi-ul.co.jp/MYICE/XSOFT/

E.M. Sentovich et al., “ SIS: A system for sequential circuit synthe-
sis,” Tech. Report, no.UCB/ERL M92/41, University of California,
Berkeley, May 1992.

http://www.synplicity.com

http://www.altera.com

J. Rose, R.J. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: The effect of logic block functionality
on area efficiency,” IEEE J. Solid-State Circuits, vol.25, no.5, pp.
1217-1225, Oct. 1990.

C. Mead and L. Conway, ed., Introduction to VLSI systems,
Addision-Wesley Publishing, Reading, MA, 1980.

3149

Hui Qin received the B.E. degree from
Beijing University of Aeronautics and Astro-
nautics, China, in 1994 and the M.E. degree
from Kyushu Institute of Technology, Japan,
in 2004. From 1994 to 2001, he worked at
China Academy of Space Technology, involved
in the design of China-Brazil Earth Resources
Satellite. He received the Scientific Technology
Progress Award for National Defense in China
in 2000. Now he is a Ph.D. candidate at the De-
partment of Computer Science and Electronics,
Kyushu Institute of Technology. His current research interests include re-
configurable architecture, complex systems design, software synthesis.

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in Electronics Engineering
from Osaka University, Osaka Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan, IBM T.J. Watson Research Center, York-
N town Height, NY and the Naval Postgraduate

School, Monterey, CA. Now, he is a Professor
- ' of Department of Computer Science and Elec-

tronics, as well as the Director of the Center for

Microelectronic Systems at the Kyushu Institute
of Technology, lizuka, Japan. His research areas include logic design and
switching theory, representations of logic functions, and multiple-valued
logic. He has published more than 9 books on logic design including,
Logic Synthesis and Optimization, Representation of Discrete Functions,
Switching Theory for Logic Synthesis, and Logic Synthesis and Verifica-
tion, Kluwer Academic Publishers 1993, 1996, 1999, 2001 respectively.
He has served Program Chairman for the IEEE International Symposium
on Multiple-Valued Logic (ISMVL) many times. Also, he was the Sym-
posium Chairman of the 28th ISMVL held in Fukuoka, Japan in 1998. He
received the NIWA Memorial Award in 1979, and Distinctive Contribu-
tion Awards from IEEE Computer Society MVL-TC in 1987 and 1996 for
papers presented at ISMVLs, and Takeda Techno-Entrepreneurship Award
in 2001. He has served an associate editor of the IEEE Transactions on
Computers. Currently, he was the Chairman of the Technical Committee
on Multiple-Valued Logic, IEEE Computer Society. He is a Fellow of the
IEEE.

Munehiro Matsuura was born in Ki-
takyushu City, Japan. He studied at the Kyushu
Institute of Technology from 1983 to 1989, and
received the B.E. degree from the University of
the Air, in Japan, 2003. He has been working
as a Technical Assistant at the Kyushu Institute
of Technology since 1991. He has implemented
several logic design algorithms under the direc-
tion of Professor Tsutomu Sasao. His inter-
ests include decision diagrams and exclusive-
OR based circuit design.

3150

Shinobu Nagayama was born in Kana-
gawa Japan, and received the B.S. and M.E.
from Meiji University, Kanagawa Japan, in 2000
and 2002, respectively. He is now a doctoral stu-
dent of Kyushu Institute of Technology. His re-
search interest includes decision diagrams, soft-
ware synthesis, and embedded systems.

Kazuyuki Nakamura received the B.E.,
M.E. and D.E. degrees in Electrical Engineer-
ing from Kyushu University, Fukuoka, Japan,
in 1986, 1988 and 1998, respectively. He
joined the Microelectronics Research Labora-
tories, NEC Corporation, Kanagawa, Japan, in
1988, where he was engaged in the research and
development of High-speed ULSI circuits, espe-
cially for Memories and Communication LSIs.
From 1994 to 1995, he was a visiting Scholar in
the Computer Systems Laboratory at Stanford
University, CA. Since 2001, he has been an associate professor of Cen-
ter for Microelectronic Systems in Kyushu Institute of Technology, lizuka,
Japan. His recent research interests include design methodologies for high-
performance circuits and signal integrity issues. Dr. Nakamura is a member
of the IEEE Solid-state Circuits Society and the Institute of Electronics, In-
formation and Communication Engineers of Japan.

Yukihiro Iguchi was born in Tokyo, and
received the B.E., M.E., and Ph.D. degree in
electronic engineering from Meiji University,
Kanagawa Japan, in 1982, 1984, and 1987, re-
spectively. He is now an associate professor of
Meiji University. His research interest includes
logic design, switching theory, and reconfig-
urable systems. In 1996, he spent a year at Kyu-
shu Institute of Technology. He received Takeda
Techno-Entrepreneurship Award in 2001.

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.12 DECEMBER 2004

