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SUMMARY  Checking the equivalence of two Boolean functions un-
der permutation of the variables is an important problem in the synthe-
sis of multiplexer-based field-programmable gate arrays (FPGAs), and the
problem is known as Boolean matching. This paper presents an efficient
breadth-first search technique for computing a canonical form—namely P-
representative—of Boolean functions under permutation of the variables.
Two functions match if they have the same P-representative. On an ordi-
nary workstation, on the average, the method requires several microsec-
onds to check the Boolean matching of functions with up to eight variables
against a library with tens of thousands of cells.

key words: Boolean matching, technology mapping, variable permutation,
P-equivalence

1. Introduction

Boolean matching is a technique to detect the equivalence
of two Boolean functions under permutation of the vari-
ables. One of the main application of Boolean matching
is in technology mapping [10]. In a technology mapping
environment, where Boolean matching of a large number of
functions are required, a faster algorithm is desirable. Thus,
efficient Boolean matching algorithms have been developed
[1]. Boolean matching is also useful in logic verification
where the correspondence of the inputs of the two circuits
are unknown [4], [21], [26],[27] and in other areas of logic
synthesis such as in the design of AND-OR-EXOR three-
level networks [7].

In this paper we present an efficient Boolean matching
algorithm, which has applications in the technology map-
ping of multiplexer-based field-programmable gate arrays
(FPGAs) [2]. As a basis of the Boolean matching we use the
P-representative, which is unique among the functions of a
P-equivalence class. The set of functions that are equivalent
under permutation of the variables form a P-equivalence
class [13],[22]. In a P-equivalence class the function that
has the smallest binary number representation is the P-
representative of that class. Every P-equivalence class has
a unique P-representative. Thus, if the P-representatives
for the two functions are the same, one can be transformed
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into another by changing permutation of the variables. P-
equivalence classes and P-representatives have been used
in logic design for many years. Hellerman used them to
show the catalog of minimal NAND and NOR networks for
P-representative functions [14]. Harrison [13, pp.148—150]
and Muroga [22, pp.327-332] provided detail technical and
historical discussions on them. The paper is based on [8].
It uses a modified data structure. The present implementa-
tion is about 10% faster than the original implementation,
but requires about 50% more memory. The original paper
is modified by adding more introductory materials and ref-
erences; new experimental results and comparison with an-
other method are also added. The presentation is improved
by adding new materials, which include three figures and an
example.

To match against a library, our method works in two
phases. First, it computes the P-representatives for all the
elements in the library and stores them in a hash table during
a setup phase. Second, it computes the P-representatives for
the functions to be matched and checks the hash table for the
same P-representatives during a matching phase. During the
setup phase for multiplexer-based field-programmable gate
arrays, it generates a library with all the cells that an FPGA
module can implement by bridging the inputs and setting
the inputs to constants. Important features of our method in
relation to other methods are as follows:

e P-representative is a powerful notion because it is
unique for any P-equivalence classes. Burch and Long
introduced a semi-canonical form for matching un-
der permutation of the variables [3]. However, semi-
canonical form is non-unique. Recently, Hinsberger
and Kolla [15], and Ciric and Sechen [5] developed
Boolean matching methods based on the computation
of canonical forms of Boolean functions. Wu et al.
also proposed a canonical-form-based Boolean match-
ing technique; but, the practical significance of the
algorithm cannot be verified without implementation
[28].

e As a basis of the Boolean matching many algorithms
use signatures, which show some properties of the
functions. Although signatures are extensively used in
Boolean matching [18], [19],[23], they are unable to
uniquely identify many P-equivalence classes. Thus,
an exhaustive search is necessary to obtain a conclu-
sive result. However, P-representative based method
always gives a conclusive result without any exhaus-
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tive search.

e Pairwise Boolean matching is not required in our
method. Many Boolean matching methods require
pairwise Boolean matching [16], [18], [26], [27]. Thus,
they are unsuitable for handling libraries with a large
number of cells, because pairwise Boolean matching of
a function with the functions in a large library is time
consuming.

o The computational complexity of our method is inde-

pendent of the number of cells in the library, and it can
efficiently handle libraries with extremely large num-
ber of cells. The number of cells is constrained only
by the available memory resources. This feature is
important in table look-up based logic synthesis [13],
where matching against a library with more than one
million cells is necessary [7]. Moreover, an increase
in the number and in the size of the cells in a library
improves the quality of the mapped circuits [17], [24],
[25]. However, Boolean matching for large libraries is
computationally expensive.
On the other hand, our method efficiently deals with
extremely large libraries. Libraries with a large num-
ber of cells are common in the technology mapping of
FPGAs [24]. For example, the popular ACTI module
developed by Actel [11] generates a library with 702
cells [24]. Usually standard cell libraries contain far
fewer cells than this number. For example, the /ib2 1i-
brary from the MCNC, which is extensively used by
the research community, contains only 27 cells [29].

o Cells with sufficiently large number of inputs can be
handled by our method. The present implementation
can treat cells with up to eight inputs; its practical upper
limit is nine-input cells. For cells with more than nine
inputs, the method requires gigabytes of memory. Our
method can easily handle the largest cells generated
from popular FPGAs. For example, the ACT1 mod-
ule has eight inputs [11]. Therefore, Boolean matching
for functions with only up to eight inputs is necessary
when working with the ACT1.

e Our data structure for computing the P-representative
is memory efficient. For up to seven-variable functions
the method requires only about one megabyte memory.
For functions with up to eight variables the memory
requirement is about 15 megabytes.

e P-representative is simple and compact. Since cells
with only up to several inputs are common in technol-
ogy mapping of FPGAs, binary numbers are used as
a compact and an efficient representation of Boolean
functions that model the library cells. In this represen-
tation, the equivalence checking of a pair of functions
is done by comparing integers.

To represent all the cells generated from an ACT1 mod-
ule, our method requires about five kilobytes of mem-
ory. We note that the ACT1 module generates total
702 cells whose average number of inputs is 4.77 [24].
On the other hand, to represent the ACT1 module for
Boolean matching, some algorithms require more than
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two orders of magnitude higher memory than that of
our method [12].

e Our method does not use any functional properties.
It makes the method independent of any cell archi-
tecture and simplifies the programming task. Many
Boolean matching algorithms heavily depends on func-
tional properties to reduce the computation time [18],
[19], [23], [26].

o Our method is fast and flexible. Experimental results
show that it is more than one and two orders of magni-
tude faster than the method of Schlichtmann and Brglez
[24] and that of Zhu and Wong [30], respectively. It can
be used with filters [6], [18], [20] to further reduce the
matching time.

The remainder of the paper is organized as follows:
Sect. 2 introduces terminology. Section 3 develops the tech-
nique to compute the P-representative, which is the basis of
our Boolean matching algorithm. Section 4 reports the ex-
perimental results. Section 5 presents conclusions.

2. Definitions and Terminology

This section defines the basic terminology that is necessary
to explain the material in the paper.

Definition 1: The minterm expansion of an n-variable
function is f(xl y XDy Xy) = Co X1 X XV C1 X1 X e X,V
---V con_y - X1Xa - - X, Where cg, 1, ...,con 1 € {0, 1}. The
binary digit c; is called the coefficient of the j-th minterm,
J-th coefficient, or simply coefficient. The 2" bit binary num-
ber cocy - - - con_y is the binary number representation of f.
To denote a binary number, a subscripted 2 is used after it.

Example 1: Consider the three-variable function f(x;, x,
X3) = X1X2X3 V x1. The binary number representation of f is
10001111,.

Logic functions can be grouped into classes by using
simple transformations.

Definition 2: Two functions f and g are P-equivalent if
g can be obtained from f by permutation of the variables
[13],[22]. fEg denotes that f and g are P-equivalent. P-
equivalent functions form a P-equivalence class of func-
tions.

Example 2: Consider the three functions: fi(x1, x2, x3) =
XoX3 V oxixox3, fo(x1,x2,x3) = X X3 V xixx3, and

fHxLx,x3) = XXy Vo xixpxs. Since fo(xz, X1, x3) =
X X3 V x1xx3 = fi(xy, x2, x3), we have flf,fz, and since
Hx,x3,x) = XXV xxx; = fo(x, X2, x3), we have

f>2R f5. Therefore, the functions f;, f>, and f; belong to the
same P-equivalence class.

Definition 3: The function that has the smallest bi-
nary number representation among the functions of a P-
equivalence class is the P-representative of that class.

Example 3: All the functions of the P-equivalence class
for Xx3 V x1xx3 are fi(xy,x2,x3) = XXz V X1X2X3,
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folx1, %2, x3) = X1X3 V x1x2%3, and f3(x1, X2, X3) = X1 X2
x1x2x3. In binary number representation: X;X3 V XxjxpX3
10001001,, X;x3 V xjxx3 = 10100001,, and Xxi»
X1x2x3 = 11000001,. Since 10001001, < 10100001,
11000001,, the P-representative of this class is XpX3
X1X2X3.

< A<

For an n-variable function, there are at most n! P-
equivalents. Among them, our objective is to find the P-
equivalent that has the smallest binary number representa-
tion as fast as possible.

3. Computing P-Representative

In this section, we show a method for computing P-
representative, mainly, by using three- and four-variable
functions. It can be easily extended to functions with more
variables.

3.1 Naive Method

The truth-table for a three-variable function f(xy, x5, x3) is
shown in Fig. 1(a), where cg, c,...,c7 € {0,1}. We want
to prepare the truth-table for f(x3, xp,x;) in Fig. 1(b). We
do this by copying the coefficients in Fig. 1(a) to Fig. 1(b),
such that f(a, b, c¢) in Fig. 1(a) and f(c, b, a) in Fig. 1(b) be-
come the same, where a,b,c € {0,1}. The permutation
of the variables for the functions in Figs. 1(a) and 1(b) are
(x1, %2, x3) and (x3, x2, x1), respectively. Similarly, we can
generate functions with other permutations of the variables,
and take the function that has the smallest binary number
representation as the P-representative.

A close observation to the coefficients in Fig.1 re-
veals that most of the coefficients of f(x, x,, x3) moved to
new positions in f(xs, x2, x1). For example, the fifth coeffi-
cient, ¢4, of f(x1, x2, x3) becomes the second coefficient of

X1 xp x3 | f(x1,x,x3) X3 xo x| f(x3,x2,x1)
0O 0 O co 0O 0 O co
0 0 1 c 0o 0 1 c4
0O 1 0 c 0o 1 0 [o53
0o 1 1 c3 0o 1 1 Ce
1 0 O cy4 1 0 0 c1
1 0 1 Ccs 1 0 1 cs
1 1 0 ¢ 11 0 cs
1 1 1 c7 1 1 1 c7

(a) Truth-table for f(x1, x2, x3). (b) Truth-table for f(x3,x2,x1).

Fig.1
function.

Two different permutations of the variables of a three-variable
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f(x3, x2, x1). Note that each time we want to change the per-
mutation of the variables of an n-variable function, we must
compute the new positions for all the 2" coefficients. An
n-variable function have at most n! P-equivalents. Thus, to
compute the P-representative for an n-variable function we
must compute n!2" new positions for the coefficients. As a
result, the method is computationally expensive.

3.2 Using Precomputed New Coeflicient Positions

The variables of f(x, x», x3) can be permuted in six ways:
(x1, X2, x3), (X1, X3, X2), (X2, X1, x3), (X2, X3, %1), (X3, X1, X2),
and (x3, xp, x1). Figure 2 shows a three-variable function
f(x1,x2, x3) and its all possible P-equivalents. We can say
that Fig. 2 shows the new coefficient positions which can be
used to generate P-equivalents. Thus, by using the precom-
puted new coeflicient positions in Fig. 2, we can easily gen-
erate all the P-equivalents of any given three-variable func-
tion. This method is much faster than the naive method
of Sect. 3.1, because computation of the new positions for
the coefficients is unnecessary. Figure 3 shows all the P-
equivalents of a four-variable function; it is similar to Fig. 2
except column headings are removed and ¢; is replaced by j
(0 < j £ 15). Although column headings are removed from
Fig. 3 for ease of showing the whole table, they are required
by our algorithm.

3.3 Using Breadth-First Search

For an n-variable function, the above method first gen-
erates n! functions and then chooses the function that
has the smallest binary number representation as the P-
representative. Since we are interested only in the function
that has the smallest binary number representation, we use
breadth-first search technique for early detection of the vari-
able permutation that cannot lead to the P-representative.
We discard the variable permutation from consideration as
soon as we detect that it cannot lead to the P-representative.
The breadth-first search technique is difficult to apply with-
out Fig. 2.

3.4 More Efficient Method
The above method uses breadth-first search on the new co-

efficient positions in Fig. 2. The method is fast; but, we can
further speed-up the computation. For all the functions in

SO, x2,x3) | fOo,x3,x0) | f, x1,%3) | f(xo, x3,x1) | f(xs, x1,%2) | f(x3, X2, %1)
€o o co co o o
C1 Cc2 C1 Cq Cc C4
123 cy c4 c1 cy4 )
c3 3 Cs Cs Co Co
Cy4 Cq (&) (&) C1 Cq
Cs Co c3 Ce c3 Cs
c cs c c3 cs c3
c7 c7 c7 c7 c7 c7
Fig.2  All possible P-equivalents of a three-variable function f(x1, x2, x3).
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o00O0OO0OO0OOOOOSOOOOOSOOOOSOSOOO0OO0OOQ
1111112222 22 44444488888 8
2 24 488 11 44828 1122288112244
3355 99336610105 5 6 612129 9 1010 12 12
4 8 2 8 2 448181 4228181224141 2
593 9356103103 6 6125125 6 1012 9 12 9 10
6 10 6 121012 5 9 512 9123 9 310 9 103 5 3 6 5 6
7 11 7 131113 7 11 7 1411 14 7 13 7 14 13 14 11 13 11 14 13 14
8§ 4 8 2 4 2 8 4 81 41 8 2 81214241 21
959 35 3106103 6 3126125 6 5121012 9 10 9
106 126 1210 9 5125129 9 3103 109 5 3 6 3 6 5
11 7 13 7 131111 7 14 7 141113 7 14 7 14 13 13 11 14 11 14 13
12121010 6 6 1212 9 9 5 51010 9 9 3 3 6 6 5 5 3 3
131311117 7 14141111 7 7 14141313 7 7 1414 13 13 11 11
1414141414 1413 13 13 13 13 13 11 11 11 111101107 7.7 7 7 17
51515151515 151515151515 1515151515 1515 1515 15 15 15

Fig.3  All possible P-equivalents of a four-variable function (only j is shown for c;).

593935 61031036 6125125 6 1012 9 12 9 10
6 10 6 121012 5 9 5 12 9 123 9 3 10 9 103 5 3 6 5 6
711 7 131113 7 11 7 141114 7 13 7 1413 14 11 13 11 14 13 14
8 4 8 2 4 28 4814182 81214214121
9 5935 3106103 6 3126125 6 5121012 9 10 9
106 12 6 1210 9 5 12 5129 9 3103 109 5 3 6 3 6 5
11 7 137 131111 7 14 7 141113 7 14 7 1413 13 11 14 11 14 13
12121010 6 6 1212 9 9 5 5 1010 9 9 3 3 6 6 5 5 3 3
131311117 7 14141111 7 7 14141313 7 7 14 14 13 13 11 11
141414141414 13 13 13 13 3 13 11 11 11 111111 7 7 7 7 7 1
151515151515151515 1515151515 1515151515 1515151515

Fig.4

Fig. 2 the first coefficients are the same. Thus, in breadth-
first search any comparison is unnecessary for these coef-
ficients. Next we consider the second coefficients for all
the functions in Fig. 2. The usual way is to generate all the
second coefficients, and then retain only the variable per-
mutations that have the smallest value for the second coef-
ficients and discard other variable permutations. However,
if we partition all the variable permutations in Fig.2 into
three sets, {(x1, X2, x3), (X2, X1, X3)}, {(x1, X3, X2), (X3, X1, X2)},
{(x2, x3, x1), (x3, X2, x1)}, then instead of generating all the
second coefficients we need to generate only three coeffi-
cients, because for each of these sets the second coefficients
are the same. We retain only the variable permutations that
have the smallest value for the second coefficients and dis-
card other variable permutations. Then the search continues
with the third coefficients in Fig.2. Thus, we can reduce
the computation time for the second coefficients by a factor
of 2 (= 3!/3). By using this technique for the n-variable
functions, we can reduce the computation time for the sec-
ond coeflicients by a factor of n!/n. For functions with more
than three variables this technique is very effective to reduce
the computation time, because we can recursively partition

Breadth-first search tree for four variables.

the variable permutations. In general, for n-variable func-
tions, we can partition the variable permutations into n sets
at first, then each of these sets can be again partitioned into
n— 1 sets; we can recursively partition each of these sets un-
til the cardinality of the sets become one. As aresult, we can
reduce the computation time for many other coefficients.

We incorporate this idea to find the P-representative as
the traversal of a breadth-first search tree, which also uses
the new coeflicient positions in Fig.2. During the setup
phase of the Boolean matching we build this tree, which
is the main data structure of our algorithm.

The P-representatives in Fig. 3 are arranged such that
they can be partitioned into four sets where the second
coefficients in each set are the same and that the P-
representatives in each set occupy contiguous positions. In
a similar manner we arrange the P-representatives in each of
these sets such that they can be again partitioned into three
sets where the third coefficients in each set are the same and
that the P-representatives in each set occupy contiguous po-
sitions. We recursively partition each of these sets until the
cardinality of the sets become 1. The breadth-first search
tree for four variables is shown in Fig. 4, which is built ac-
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cording to the partitions outlined above. Similar observa-
tions are used to build search trees for more variables.

Figure 5 shows an example to find the P-representative
for the four-variable function 1010011111110011, (i.e.,
the coefficients c; = c3 =c4 =cip =ciz3=0andcyg = ¢, =
C5 =C6=C7=C3 =C9g=Clo0=C1] =Cl4 =C15 = 1) Since
we are only interested in finding the function with the small-
est binary number representation, at the top level of the tree
we discard branches for ¢, and cg because these coefficients
have a value 1 and the other coefficients have a value O.
Thus, the paths for ¢; and ¢4 are selected. In the next level,
in a similar manner, we select only two branches. We con-
tinue this process until we reach the leaves of the tree. The
branches that we traverse to find the P-representative are
shown in the thick lines or small rectangles. In this way,
we need to search only a small portion of the tree to find the
P-representative. From Fig.5 the P-representative for the
given function is 1001101011011111,.

Figure 5 shows that each node of the breadth-first
search tree has multiple children, and that the number of
children of a node depends on the level of the node and on
the number of variables. For n-variable functions, the tree
has n levels. Let the root node of the tree is at level 1. Thus,
the leaf nodes are at level n. The number of children of a
node at level kis n — k + 1, where 1 < k < n. Thus, the total
number of nodes in the treeis 1 +n+n(n—1)+n(n—1)(n—
2)+--+nn-1)n-2)---4-3.2.

The new coefficient positions in Fig.2 shows that the
first coefficients are the same for all the functions. This is
also true for the last coefficients. Figure 2 also shows that,
for n = 3 if the i-th coefficient is ¢, then the (2" — i + 1)-th
coefficient is ¢on_;_; where 1 < i < 2!, We found these
properties are true for 2 < n < 9 and conjecture they are
true for any arbitrary n. These properties can be used to
save memory resources for functions with many variables,
where memory consumption is a crucial issue.

—_ —_—
—ow=ESo

——
[T

125 12 5 6 1012 9 12 9 10
913109 103 5 3 6 5 6
1317 14 13 14 11 13 11 14 13 14
218 1 2 1 4 2 41 2 1
6112 5 6 5 121012 9 10 9
31103 10 9 5 3 6 3 6 5
7114 7 14 13 13 11 14 11 14 13
1019 9 3 3 6 6 5 5 3 3
14113 13 7 7 14 14 13 13 11 11
mmm 117 77777
[15J15 15 15 15 15 15 15 15 15 15

Search paths for the four-variable function 1010011111110011,.

4. Experimental Results

We implemented the proposed method of Boolean match-
ing for functions with up to eight variables on a Sun Fire
280R Server (900-MHz UltraSPARC-III CPU). It consists
of about 3,000 lines of C code and about 11 megabytes of
dynamically linked data for the new coefficient positions.
The program requires about 15 megabytes memory, most
of which is used for the matching of functions with eight
variables. If the program is used for the functions with up
to seven variables, it needs only about one megabyte mem-
ory. We note that additional memory is required to store P-
representatives of the library cells. During the setup phase
the program constructs the breadth-first search trees; it takes
about 30 milliseconds.

To demonstrate the effectiveness of our matching tech-
nique, we conducted an experiment by using 5,000,000
pseudo-random functions with three to eight variables and
tried to match them against a library with 100,000 randomly
generated cells. We computed the P-representatives for all
the library cells and stored them in a hash table during the
setup phase. Then the P-representatives for each of the
pseudo-random functions are computed and compared with
the P-representatives for the library cells in the hash table.
Table 1 summarizes the average Boolean matching time in
microseconds; it is the time to match a function against the
entire library cells.

Schlichtmann and Brglez reported that, for three-,
four-, five-, six-, seven-, and eight-variable functions the
Boolean matching time is approximately 2.0, 4.0, 6.0, 8.0,
12.0, and 18.0 milliseconds, respectively, on a DECStation
5000/200 (25-MHz MIPS R3000 CPU) [24]. Thus, even
considering a Sun Fire 280R Server is about 100 times faster
than a DECStation 5000/200, our method is more than an
order of magnitude faster than the method of Schlichtmann
and Brglez.
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Table 1  Average time for Boolean matching against a library with
100,000 cells.

Number of Time

Variables (microseconds)
3 1.09

2.52

3.69

4.71

7.03

11.27

o | ||

Zhu and Wong reported that to check the Boolean
matching of all the four-variable functions against the ACT1
FPGA module requires 72 minutes on a Sun SPARCsta-
tion 1 (20-MHz SuperSPARC CPU), i.e., average matching
time for four-variable case is 65.92 milliseconds per func-
tion [30]. An ACT1 module has eight inputs, and 702 dif-
ferent cells can be generated by bridging its inputs and set-
ting its inputs to constants [24]. To compare our method
with Zhu and Wong’s method, we assume that cell genera-
tion takes as much time as Boolean matching takes. Thus,
considering a Sun Fire 280R Server is about 100 times faster
than a Sun SPARCstation 1, our method is more than two or-
ders of magnitude faster than the method of Zhu and Wong.

5. Concluding Remarks

In this paper we used the notion P-representative, which
is unique for any P-equivalence classes, and presented a
breadth-first search algorithm for its quick computation. We
demonstrated the usefulness of P-representatives for effi-
cient Boolean matching against a large library. The concept
P-representative is extended to NP- and NPN-equivalence
classes [13], [22], and a breadth-first search approach is also
devised to compute the representatives. The preliminary re-
sults are promising [9]. Our method is fast and flexible; it
can be used with filters [6], [18], [20] to further reduce the
computation time. To the best of our knowledge, we are
unaware of any Boolean matching methods that can han-
dle libraries with tens of thousands of elements and have a
comparable speed performance. Our future work includes
extension of the proposed method to functions with more
variables and development of a technology mapping system
by using the proposed matching technique.
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