
3134
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

PAPER Special Section on VLSI Design and CAD Algorithms

Fast Boolean Matching under Permutation by Efficient
Computation of Canonical Form

Debatosh DEBNATH†a), Nonmember and Tsutomu SASAO††b), Member

SUMMARY Checking the equivalence of two Boolean functions un-
der permutation of the variables is an important problem in the synthe-
sis of multiplexer-based field-programmable gate arrays (FPGAs), and the
problem is known as Boolean matching. This paper presents an efficient
breadth-first search technique for computing a canonical form—namely P-
representative—of Boolean functions under permutation of the variables.
Two functions match if they have the same P-representative. On an ordi-
nary workstation, on the average, the method requires several microsec-
onds to check the Boolean matching of functions with up to eight variables
against a library with tens of thousands of cells.
key words: Boolean matching, technology mapping, variable permutation,
P-equivalence

1. Introduction

Boolean matching is a technique to detect the equivalence
of two Boolean functions under permutation of the vari-
ables. One of the main application of Boolean matching
is in technology mapping [10]. In a technology mapping
environment, where Boolean matching of a large number of
functions are required, a faster algorithm is desirable. Thus,
efficient Boolean matching algorithms have been developed
[1]. Boolean matching is also useful in logic verification
where the correspondence of the inputs of the two circuits
are unknown [4], [21], [26], [27] and in other areas of logic
synthesis such as in the design of AND-OR-EXOR three-
level networks [7].

In this paper we present an efficient Boolean matching
algorithm, which has applications in the technology map-
ping of multiplexer-based field-programmable gate arrays
(FPGAs) [2]. As a basis of the Boolean matching we use the
P-representative, which is unique among the functions of a
P-equivalence class. The set of functions that are equivalent
under permutation of the variables form a P-equivalence
class [13], [22]. In a P-equivalence class the function that
has the smallest binary number representation is the P-
representative of that class. Every P-equivalence class has
a unique P-representative. Thus, if the P-representatives
for the two functions are the same, one can be transformed

Manuscript received March 22, 2004.
Manuscript revised June 16, 2004.
Final manuscript received August 5, 2004.
†The author is with the Department of Computer Science

and Engineering, Oakland University, Rochester, Michigan 48309,
U.S.A.
††The author is with the Department of Computer Science and

Electronics, Kyushu Institute of Technology, Iizuka-shi, 820-8502
Japan.

a) E-mail: debnath@oakland.edu
b) E-mail: sasao@cse.kyutech.ac.jp

into another by changing permutation of the variables. P-
equivalence classes and P-representatives have been used
in logic design for many years. Hellerman used them to
show the catalog of minimal NAND and NOR networks for
P-representative functions [14]. Harrison [13, pp.148–150]
and Muroga [22, pp.327–332] provided detail technical and
historical discussions on them. The paper is based on [8].
It uses a modified data structure. The present implementa-
tion is about 10% faster than the original implementation,
but requires about 50% more memory. The original paper
is modified by adding more introductory materials and ref-
erences; new experimental results and comparison with an-
other method are also added. The presentation is improved
by adding new materials, which include three figures and an
example.

To match against a library, our method works in two
phases. First, it computes the P-representatives for all the
elements in the library and stores them in a hash table during
a setup phase. Second, it computes the P-representatives for
the functions to be matched and checks the hash table for the
same P-representatives during a matching phase. During the
setup phase for multiplexer-based field-programmable gate
arrays, it generates a library with all the cells that an FPGA
module can implement by bridging the inputs and setting
the inputs to constants. Important features of our method in
relation to other methods are as follows:

• P-representative is a powerful notion because it is
unique for any P-equivalence classes. Burch and Long
introduced a semi-canonical form for matching un-
der permutation of the variables [3]. However, semi-
canonical form is non-unique. Recently, Hinsberger
and Kolla [15], and Ciric and Sechen [5] developed
Boolean matching methods based on the computation
of canonical forms of Boolean functions. Wu et al.
also proposed a canonical-form-based Boolean match-
ing technique; but, the practical significance of the
algorithm cannot be verified without implementation
[28].
• As a basis of the Boolean matching many algorithms

use signatures, which show some properties of the
functions. Although signatures are extensively used in
Boolean matching [18], [19], [23], they are unable to
uniquely identify many P-equivalence classes. Thus,
an exhaustive search is necessary to obtain a conclu-
sive result. However, P-representative based method
always gives a conclusive result without any exhaus-



DEBNATH and SASAO: FAST BOOLEAN MATCHING UNDER PERMUTATION
3135

tive search.
• Pairwise Boolean matching is not required in our

method. Many Boolean matching methods require
pairwise Boolean matching [16], [18], [26], [27]. Thus,
they are unsuitable for handling libraries with a large
number of cells, because pairwise Boolean matching of
a function with the functions in a large library is time
consuming.
• The computational complexity of our method is inde-

pendent of the number of cells in the library, and it can
efficiently handle libraries with extremely large num-
ber of cells. The number of cells is constrained only
by the available memory resources. This feature is
important in table look-up based logic synthesis [13],
where matching against a library with more than one
million cells is necessary [7]. Moreover, an increase
in the number and in the size of the cells in a library
improves the quality of the mapped circuits [17], [24],
[25]. However, Boolean matching for large libraries is
computationally expensive.
On the other hand, our method efficiently deals with
extremely large libraries. Libraries with a large num-
ber of cells are common in the technology mapping of
FPGAs [24]. For example, the popular ACT1 module
developed by Actel [11] generates a library with 702
cells [24]. Usually standard cell libraries contain far
fewer cells than this number. For example, the lib2 li-
brary from the MCNC, which is extensively used by
the research community, contains only 27 cells [29].
• Cells with sufficiently large number of inputs can be

handled by our method. The present implementation
can treat cells with up to eight inputs; its practical upper
limit is nine-input cells. For cells with more than nine
inputs, the method requires gigabytes of memory. Our
method can easily handle the largest cells generated
from popular FPGAs. For example, the ACT1 mod-
ule has eight inputs [11]. Therefore, Boolean matching
for functions with only up to eight inputs is necessary
when working with the ACT1.
• Our data structure for computing the P-representative

is memory efficient. For up to seven-variable functions
the method requires only about one megabyte memory.
For functions with up to eight variables the memory
requirement is about 15 megabytes.
• P-representative is simple and compact. Since cells

with only up to several inputs are common in technol-
ogy mapping of FPGAs, binary numbers are used as
a compact and an efficient representation of Boolean
functions that model the library cells. In this represen-
tation, the equivalence checking of a pair of functions
is done by comparing integers.
To represent all the cells generated from an ACT1 mod-
ule, our method requires about five kilobytes of mem-
ory. We note that the ACT1 module generates total
702 cells whose average number of inputs is 4.77 [24].
On the other hand, to represent the ACT1 module for
Boolean matching, some algorithms require more than

two orders of magnitude higher memory than that of
our method [12].
• Our method does not use any functional properties.

It makes the method independent of any cell archi-
tecture and simplifies the programming task. Many
Boolean matching algorithms heavily depends on func-
tional properties to reduce the computation time [18],
[19], [23], [26].
• Our method is fast and flexible. Experimental results

show that it is more than one and two orders of magni-
tude faster than the method of Schlichtmann and Brglez
[24] and that of Zhu and Wong [30], respectively. It can
be used with filters [6], [18], [20] to further reduce the
matching time.

The remainder of the paper is organized as follows:
Sect. 2 introduces terminology. Section 3 develops the tech-
nique to compute the P-representative, which is the basis of
our Boolean matching algorithm. Section 4 reports the ex-
perimental results. Section 5 presents conclusions.

2. Definitions and Terminology

This section defines the basic terminology that is necessary
to explain the material in the paper.

Definition 1: The minterm expansion of an n-variable
function is f (x1, x2, . . . , xn) = c0· x̄1 x̄2 · · · x̄n∨c1· x̄1 x̄2 · · · xn∨
· · · ∨ c2n−1 · x1x2 · · · xn, where c0, c1, . . . , c2n−1 ∈ {0, 1}. The
binary digit c j is called the coefficient of the j-th minterm,
j-th coefficient, or simply coefficient. The 2n bit binary num-
ber c0c1 · · · c2n−1 is the binary number representation of f .
To denote a binary number, a subscripted 2 is used after it.

Example 1: Consider the three-variable function f (x1, x2,
x3) = x̄1 x̄2 x̄3 ∨ x1. The binary number representation of f is
100011112.

Logic functions can be grouped into classes by using
simple transformations.

Definition 2: Two functions f and g are P-equivalent if
g can be obtained from f by permutation of the variables
[13], [22]. f P∼ g denotes that f and g are P-equivalent. P-
equivalent functions form a P-equivalence class of func-
tions.

Example 2: Consider the three functions: f1(x1, x2, x3) =
x̄2 x̄3 ∨ x1x2x3, f2(x1, x2, x3) = x̄1 x̄3 ∨ x1x2x3, and
f3(x1, x2, x3) = x̄1 x̄2 ∨ x1x2x3. Since f2(x2, x1, x3) =
x̄2 x̄3 ∨ x1x2x3 = f1(x1, x2, x3), we have f1 P∼ f2, and since
f3(x1, x3, x2) = x̄1 x̄3 ∨ x1x2x3 = f2(x1, x2, x3), we have
f2 P∼ f3. Therefore, the functions f1, f2, and f3 belong to the
same P-equivalence class.

Definition 3: The function that has the smallest bi-
nary number representation among the functions of a P-
equivalence class is the P-representative of that class.

Example 3: All the functions of the P-equivalence class
for x̄2 x̄3 ∨ x1x2x3 are f1(x1, x2, x3) = x̄2 x̄3 ∨ x1x2x3,



3136
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

f2(x1, x2, x3) = x̄1 x̄3 ∨ x1x2x3, and f3(x1, x2, x3) = x̄1 x̄2 ∨
x1x2x3. In binary number representation: x̄2 x̄3 ∨ x1x2x3 =

100010012, x̄1 x̄3 ∨ x1x2x3 = 101000012, and x̄1 x̄2 ∨
x1x2x3 = 110000012. Since 100010012 < 101000012 <
110000012, the P-representative of this class is x̄2 x̄3 ∨
x1x2x3.

For an n-variable function, there are at most n! P-
equivalents. Among them, our objective is to find the P-
equivalent that has the smallest binary number representa-
tion as fast as possible.

3. Computing P-Representative

In this section, we show a method for computing P-
representative, mainly, by using three- and four-variable
functions. It can be easily extended to functions with more
variables.

3.1 Naive Method

The truth-table for a three-variable function f (x1, x2, x3) is
shown in Fig. 1(a), where c0, c1, . . . , c7 ∈ {0, 1}. We want
to prepare the truth-table for f (x3, x2, x1) in Fig. 1(b). We
do this by copying the coefficients in Fig. 1(a) to Fig. 1(b),
such that f (a, b, c) in Fig. 1(a) and f (c, b, a) in Fig. 1(b) be-
come the same, where a, b, c ∈ {0, 1}. The permutation
of the variables for the functions in Figs. 1(a) and 1(b) are
(x1, x2, x3) and (x3, x2, x1), respectively. Similarly, we can
generate functions with other permutations of the variables,
and take the function that has the smallest binary number
representation as the P-representative.

A close observation to the coefficients in Fig. 1 re-
veals that most of the coefficients of f (x1, x2, x3) moved to
new positions in f (x3, x2, x1). For example, the fifth coeffi-
cient, c4, of f (x1, x2, x3) becomes the second coefficient of

Fig. 1 Two different permutations of the variables of a three-variable
function.

Fig. 2 All possible P-equivalents of a three-variable function f (x1, x2, x3).

f (x3, x2, x1). Note that each time we want to change the per-
mutation of the variables of an n-variable function, we must
compute the new positions for all the 2n coefficients. An
n-variable function have at most n! P-equivalents. Thus, to
compute the P-representative for an n-variable function we
must compute n!2n new positions for the coefficients. As a
result, the method is computationally expensive.

3.2 Using Precomputed New Coefficient Positions

The variables of f (x1, x2, x3) can be permuted in six ways:
(x1, x2, x3), (x1, x3, x2), (x2, x1, x3), (x2, x3, x1), (x3, x1, x2),
and (x3, x2, x1). Figure 2 shows a three-variable function
f (x1, x2, x3) and its all possible P-equivalents. We can say
that Fig. 2 shows the new coefficient positions which can be
used to generate P-equivalents. Thus, by using the precom-
puted new coefficient positions in Fig. 2, we can easily gen-
erate all the P-equivalents of any given three-variable func-
tion. This method is much faster than the naive method
of Sect. 3.1, because computation of the new positions for
the coefficients is unnecessary. Figure 3 shows all the P-
equivalents of a four-variable function; it is similar to Fig. 2
except column headings are removed and c j is replaced by j
(0 ≤ j ≤ 15). Although column headings are removed from
Fig. 3 for ease of showing the whole table, they are required
by our algorithm.

3.3 Using Breadth-First Search

For an n-variable function, the above method first gen-
erates n! functions and then chooses the function that
has the smallest binary number representation as the P-
representative. Since we are interested only in the function
that has the smallest binary number representation, we use
breadth-first search technique for early detection of the vari-
able permutation that cannot lead to the P-representative.
We discard the variable permutation from consideration as
soon as we detect that it cannot lead to the P-representative.
The breadth-first search technique is difficult to apply with-
out Fig. 2.

3.4 More Efficient Method

The above method uses breadth-first search on the new co-
efficient positions in Fig. 2. The method is fast; but, we can
further speed-up the computation. For all the functions in



DEBNATH and SASAO: FAST BOOLEAN MATCHING UNDER PERMUTATION
3137

Fig. 3 All possible P-equivalents of a four-variable function (only j is shown for c j).

Fig. 4 Breadth-first search tree for four variables.

Fig. 2 the first coefficients are the same. Thus, in breadth-
first search any comparison is unnecessary for these coef-
ficients. Next we consider the second coefficients for all
the functions in Fig. 2. The usual way is to generate all the
second coefficients, and then retain only the variable per-
mutations that have the smallest value for the second coef-
ficients and discard other variable permutations. However,
if we partition all the variable permutations in Fig. 2 into
three sets, {(x1, x2, x3), (x2, x1, x3)}, {(x1, x3, x2), (x3, x1, x2)},
{(x2, x3, x1), (x3, x2, x1)}, then instead of generating all the
second coefficients we need to generate only three coeffi-
cients, because for each of these sets the second coefficients
are the same. We retain only the variable permutations that
have the smallest value for the second coefficients and dis-
card other variable permutations. Then the search continues
with the third coefficients in Fig. 2. Thus, we can reduce
the computation time for the second coefficients by a factor
of 2 (= 3!/3). By using this technique for the n-variable
functions, we can reduce the computation time for the sec-
ond coefficients by a factor of n!/n. For functions with more
than three variables this technique is very effective to reduce
the computation time, because we can recursively partition

the variable permutations. In general, for n-variable func-
tions, we can partition the variable permutations into n sets
at first, then each of these sets can be again partitioned into
n−1 sets; we can recursively partition each of these sets un-
til the cardinality of the sets become one. As a result, we can
reduce the computation time for many other coefficients.

We incorporate this idea to find the P-representative as
the traversal of a breadth-first search tree, which also uses
the new coefficient positions in Fig. 2. During the setup
phase of the Boolean matching we build this tree, which
is the main data structure of our algorithm.

The P-representatives in Fig. 3 are arranged such that
they can be partitioned into four sets where the second
coefficients in each set are the same and that the P-
representatives in each set occupy contiguous positions. In
a similar manner we arrange the P-representatives in each of
these sets such that they can be again partitioned into three
sets where the third coefficients in each set are the same and
that the P-representatives in each set occupy contiguous po-
sitions. We recursively partition each of these sets until the
cardinality of the sets become 1. The breadth-first search
tree for four variables is shown in Fig. 4, which is built ac-



3138
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

Fig. 5 Search paths for the four-variable function 10100111111100112.

cording to the partitions outlined above. Similar observa-
tions are used to build search trees for more variables.

Figure 5 shows an example to find the P-representative
for the four-variable function 10100111111100112 (i.e.,
the coefficients c1 = c3 = c4 = c12 = c13 = 0 and c0 = c2 =

c5 = c6 = c7 = c8 = c9 = c10 = c11 = c14 = c15 = 1). Since
we are only interested in finding the function with the small-
est binary number representation, at the top level of the tree
we discard branches for c2 and c8 because these coefficients
have a value 1 and the other coefficients have a value 0.
Thus, the paths for c1 and c4 are selected. In the next level,
in a similar manner, we select only two branches. We con-
tinue this process until we reach the leaves of the tree. The
branches that we traverse to find the P-representative are
shown in the thick lines or small rectangles. In this way,
we need to search only a small portion of the tree to find the
P-representative. From Fig. 5 the P-representative for the
given function is 10011010110111112.

Figure 5 shows that each node of the breadth-first
search tree has multiple children, and that the number of
children of a node depends on the level of the node and on
the number of variables. For n-variable functions, the tree
has n levels. Let the root node of the tree is at level 1. Thus,
the leaf nodes are at level n. The number of children of a
node at level k is n − k + 1, where 1 ≤ k < n. Thus, the total
number of nodes in the tree is 1+ n+ n(n− 1)+ n(n− 1)(n−
2) + · · · + n(n − 1)(n − 2) · · · 4 · 3 · 2.

The new coefficient positions in Fig. 2 shows that the
first coefficients are the same for all the functions. This is
also true for the last coefficients. Figure 2 also shows that,
for n = 3 if the i-th coefficient is ck, then the (2n − i + 1)-th
coefficient is c2n−k−1 where 1 ≤ i ≤ 2n−1. We found these
properties are true for 2 ≤ n ≤ 9 and conjecture they are
true for any arbitrary n. These properties can be used to
save memory resources for functions with many variables,
where memory consumption is a crucial issue.

4. Experimental Results

We implemented the proposed method of Boolean match-
ing for functions with up to eight variables on a Sun Fire
280R Server (900-MHz UltraSPARC-III CPU). It consists
of about 3,000 lines of C code and about 11 megabytes of
dynamically linked data for the new coefficient positions.
The program requires about 15 megabytes memory, most
of which is used for the matching of functions with eight
variables. If the program is used for the functions with up
to seven variables, it needs only about one megabyte mem-
ory. We note that additional memory is required to store P-
representatives of the library cells. During the setup phase
the program constructs the breadth-first search trees; it takes
about 30 milliseconds.

To demonstrate the effectiveness of our matching tech-
nique, we conducted an experiment by using 5,000,000
pseudo-random functions with three to eight variables and
tried to match them against a library with 100,000 randomly
generated cells. We computed the P-representatives for all
the library cells and stored them in a hash table during the
setup phase. Then the P-representatives for each of the
pseudo-random functions are computed and compared with
the P-representatives for the library cells in the hash table.
Table 1 summarizes the average Boolean matching time in
microseconds; it is the time to match a function against the
entire library cells.

Schlichtmann and Brglez reported that, for three-,
four-, five-, six-, seven-, and eight-variable functions the
Boolean matching time is approximately 2.0, 4.0, 6.0, 8.0,
12.0, and 18.0 milliseconds, respectively, on a DECStation
5000/200 (25-MHz MIPS R3000 CPU) [24]. Thus, even
considering a Sun Fire 280R Server is about 100 times faster
than a DECStation 5000/200, our method is more than an
order of magnitude faster than the method of Schlichtmann
and Brglez.



DEBNATH and SASAO: FAST BOOLEAN MATCHING UNDER PERMUTATION
3139

Table 1 Average time for Boolean matching against a library with
100,000 cells.

Number of Time
Variables (microseconds)

3 1.09
4 2.52
5 3.69
6 4.71
7 7.03
8 11.27

Zhu and Wong reported that to check the Boolean
matching of all the four-variable functions against the ACT1
FPGA module requires 72 minutes on a Sun SPARCsta-
tion 1 (20-MHz SuperSPARC CPU), i.e., average matching
time for four-variable case is 65.92 milliseconds per func-
tion [30]. An ACT1 module has eight inputs, and 702 dif-
ferent cells can be generated by bridging its inputs and set-
ting its inputs to constants [24]. To compare our method
with Zhu and Wong’s method, we assume that cell genera-
tion takes as much time as Boolean matching takes. Thus,
considering a Sun Fire 280R Server is about 100 times faster
than a Sun SPARCstation 1, our method is more than two or-
ders of magnitude faster than the method of Zhu and Wong.

5. Concluding Remarks

In this paper we used the notion P-representative, which
is unique for any P-equivalence classes, and presented a
breadth-first search algorithm for its quick computation. We
demonstrated the usefulness of P-representatives for effi-
cient Boolean matching against a large library. The concept
P-representative is extended to NP- and NPN-equivalence
classes [13], [22], and a breadth-first search approach is also
devised to compute the representatives. The preliminary re-
sults are promising [9]. Our method is fast and flexible; it
can be used with filters [6], [18], [20] to further reduce the
computation time. To the best of our knowledge, we are
unaware of any Boolean matching methods that can han-
dle libraries with tens of thousands of elements and have a
comparable speed performance. Our future work includes
extension of the proposed method to functions with more
variables and development of a technology mapping system
by using the proposed matching technique.

Acknowledgement

This work was supported in part by the Japan Society for the
Promotion of Science and in part by the Ministry of Educa-
tion, Science, Culture, and Sports of Japan.

References

[1] L. Benini and G. De Micheli, “A survey of Boolean matching tech-
niques for library binding,” ACM Trans. Des. Autom. Electron.
Syst., vol.2, no.3, pp.193–226, July 1997.

[2] S.D. Brown, R.J. Francis, J. Rose, and Z.G. Vranesic, Field-
Programmable Gate Arrays, Kluwer Academic Publishers, Boston,
Massachusetts, 1992.

[3] J.R. Burch and D.E. Long, “Efficient Boolean function matching,”
Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp.408–
411, Nov. 1992.

[4] D.I. Cheng and M. Marek-Sadowska, “Verifying equivalence of
functions with unknown input correspondence,” Proc. European
Conf. on Design Automation, pp.81–85, Feb. 1993.

[5] J. Ciric and C. Sechen, “Efficient canonical form for Boolean match-
ing of complex functions in large libraries,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol.22, no.5, pp.535–544, May
2003.

[6] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral transforms for large Boolean functions with applications
to technology mapping,” Formal Methods in System Design: An
Int. Journal, vol.10, no.2, pp.137–148, April 1997.

[7] D. Debnath and T. Sasao, “A heuristic algorithm to design AND-OR-
EXOR three-level networks,” Proc. Asia and South Pacific Design
Automation Conf., pp.69–74, Feb. 1998.

[8] D. Debnath and T. Sasao, “Fast Boolean matching under permuta-
tion using representative,” Proc. Asia and South Pacific Design Au-
tomation Conf., pp.359–362, Jan. 1999.

[9] D. Debnath and T. Sasao, “Efficient computation of canonical form
for Boolean matching in large libraries,” Proc. Asia and South Pa-
cific Design Automation Conf., pp.591–596, Jan. 2004.

[10] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, New York, 1994.

[11] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K.A. El-Ayat, and
A. Mohsen, “An architecture for electrically configurable gate ar-
rays,” IEEE J. Solid-State Circuits, vol.24, no.2, pp.394–398, April
1989.

[12] S. Ercolani and G. De Micheli, “Technology mapping for electrically
programmable gate arrays,” Proc. IEEE/ACM Design Automation
Conf., pp.234–239, June 1991.

[13] M.A. Harrison, Introduction to Switching and Automata Theory,
McGraw-Hill, New York, 1965.

[14] L. Hellerman, “A catalog of three-variable OR-invert and AND-
invert logical circuits,” IEEE Trans. Electron. Comput., vol.EC-12,
no.3, pp.198–223, June 1963.

[15] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,”
Proc. IEEE/ACM Design Automation Conf., pp.206–211, June
1998.

[16] M. Hütter and M. Scheppler, “Memory efficient and fast Boolean
matching for large functions using rectangle representation,”
IEEE/ACM 12th Int. Workshop on Logic and Synthesis, May 2003.

[17] K. Keutzer, K. Kolwicz, and M. Lega, “Impact of library size on
the quality of automated synthesis,” Proc. IEEE/ACM Int. Conf. on
Computer-Aided Design, pp.120–123, Nov. 1987.

[18] Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean matching using binary
decision diagrams with applications to logic synthesis and verifica-
tion,” Proc. IEEE Int. Conf. on Computer Design, pp.452–458, Oct.
1992.

[19] F. Mailhot and G. De Micheli, “Algorithms for technology map-
ping based on binary decision diagrams and on Boolean operations,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.12, no.5,
pp.599–620, May 1993.

[20] Y. Matsunaga, “A new algorithm for Boolean matching utilizing
structural information,” IEICE Trans. Inf. & Syst., vol.E78-D, no.3,
pp.219–223, March 1995.

[21] J. Mohnke, P. Molitor, and S. Malik, “Limits of using signatures for
permutation independent Boolean comparison,” Formal Methods in
System Design: An Int. Journal, vol.21, no.2, pp.167–191, Sept.
2002.

[22] S. Muroga, Logic Design and Switching Theory, John Wiley &
Sons, New York, 1979.

[23] U. Schlichtmann, F. Brglez, and M. Hermann, “Characterization of
Boolean functions for rapid matching in EPGA technology map-
ping,” Proc. IEEE/ACM Design Automation Conf., pp.374–379,
June 1992.



3140
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

[24] U. Schlichtmann and F. Brglez, “Efficient Boolean matching in tech-
nology mapping with very large cell libraries,” Proc. IEEE Custom
Integrated Circuits Conf., pp.3.6.1–3.6.6, May 1993.

[25] V. Tiwari, P. Ashar, and S. Malik, “Technology mapping for low
power in logic synthesis,” Integration: The VLSI Journal, vol.20,
no.3, pp.243–268, July 1996.

[26] C. Tsai and M. Marek-Sadowska, “Boolean functions classification
via fixed polarity Reed-Muller forms,” IEEE Trans. Comput., vol.46,
no.2, pp.173–186, Feb. 1997.

[27] K.-H. Wang, T. Hwang, and C. Chen, “Exploiting communication
complexity for Boolean matching,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol.15, no.10, pp.1249–1256, Oct. 1996.

[28] Q. Wu, C.Y.R. Chen, and J.M. Acken, “Efficient Boolean match-
ing algorithm for cell libraries,” Proc. IEEE Int. Conf. on Computer
Design, pp.36–39, Oct. 1994.

[29] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide
(Version 3.0), Technical Report, Microelectronics Center of North
Carolina (MCNC), Jan. 1991.

[30] K. Zhu and D.F. Wong, “Fast Boolean matching for field-
programmable gate arrays,” Proc. IEEE European Design Automa-
tion Conf., pp.352–357, Sept. 1993.

Debatosh Debnath received the B.Sc.Eng.
and M.Sc.Eng. degrees from the Bangladesh
University of Engineering and Technology,
Dhaka, Bangladesh, in 1991 and 1993, respec-
tively, and the Ph.D. degree from the Kyushu In-
stitute of Technology, Iizuka, Japan, in 1998. He
held research positions at the Kyushu Institute of
Technology from 1998 to 1999 and at the Uni-
versity of Toronto, Ontario, Canada, from 1999
to 2002. In 2002, he joined the Department of
Computer Science and Engineering at the Oak-

land University, Rochester, Michigan, as an Assistant Professor. His re-
search interests include logic synthesis, design for testability, multiple-
valued logic, and CAD for field-programmable devices. He was a recipient
of the Japan Society for the Promotion of Science Postdoctoral Fellowship.

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in electronics engineering
from Osaka University, Osaka, Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan, the IBM T.J. Watson Research Center,
Yorktown Heights, New York, and the Naval
Postgraduate School, Monterey, California. He
is now a Professor of the Department of Com-
puter Science and Electronics at the Kyushu In-
stitute of Technology, Iizuka, Japan. His re-

search areas include logic design and switching theory, representations of
logic functions, and multiple-valued logic. He has published more than
nine books on logic design, including Logic Synthesis and Optimization,
Representation of Discrete Functions, Switching Theory for Logic Synthe-
sis, and Logic Synthesis and Verification, Kluwer Academic Publishers,
1993, 1996, 1999, and 2001, respectively. He has served as Program Chair-
man for the IEEE International Symposium on Multiple-Valued Logic (IS-
MVL) many times. Also, he was the Symposium Chairman of the 28th
ISMVL held in Fukuoka, Japan, in 1998. He received the NIWA Memorial
Award in 1979, Distinctive Contribution Awards from the IEEE Computer
Society MVL-TC in 1987, 1996, and 2004 for papers presented at ISMVLs,
and Takeda Techno-Entrepreneurship Award in 2001. He has served as an
Associate Editor of the IEEE Transactions on Computers. He is a fellow of
the IEEE.


