
On LUT Cascade Realizations of FIR Filters

Tsutomu Sasao 1 Yukihiro Iguchi 2 Takahiro Suzuki 2

1 Kyushu Institute of Technology, Dept. of Comput. Science & Electronics, Iizuka 820-8502, Japan
2 Meiji University, Dept. of Computer Science, Kawasaki 214-8571, Japan

Abstract

This paper first defines the n-input q-output WS function,
as a mathematical model of the combinational part of the
distributed arithmetic of a finite impulse response (FIR) fil-
ter. Then, it shows a method to realize the WS function by an
LUT cascade with k-input q-output cells. Furthermore, it 1)
shows that LUT cascade realizations require much smaller
memory than the single ROM realizations; 2) presents new
design method for a WS function by arithmetic decomposi-
tion, and 3) shows design results of FIR filters using FPGAs
with embedded memories.

Keywords: Digital filter, Distributed arithmetic, LUT
cascade, Functional decomposition, Binary decision dia-
gram, FPGA.

1 Introduction

Digital filters are important elements in signal processing
[9], and can be classified into two types: FIR (Finite Im-
pulse Response) filters and IIR (Infinite Impulse Response)
filters. FIR filters have nonrecursive structure, and so al-
ways have stable operations. Also, FIR filters can have lin-
ear phase characteristics, so they are useful for waveform
transmission.

To realize FIR filters on FPGAs, we can use Distributed
Arithmetic to convert the multiply-accumulation operations
into table-lookup operations [7, 13, 14]. For table lookup,
embedded memory blocks in FPGAs can be used. In this
paper, we propose a method to implement the combina-
tional part of the FIR filter by an LUT cascade, shown in
Fig. 3.1, a series connection of memories. The LUT cas-
cade realizations require much smaller memory than a sin-
gle memory realization. Our method is useful in the design
of FIR filters by embedded memories in FPGAs[2], or ded-
icated LUT cascade chips [8].

The rest of the paper is organized as follows. Section 2
introduces FIR filters. Section 3 introduces LUT cascades

Σ

Register

Output

Multiplication
by constant

qqqqq

q

Figure 2.1. Parallel Realization of FIR Filter.

and functional decomposition. Section 4 defines the WS
function, and shows its realization by an LUT cascade. Sec-
tion 5 introduces the arithmetic decomposition of WS func-
tions, Section 6 shows experimental results, and Section 7
concludes the paper.

2 FIR Filter

Definition 2.1 The FIR filter computes

Y(n) =
N−1∑

i=0

hi · X (n − i), (2.1)

where X (i) is the value of the input X at the time i, and
Y(i) is the value of the output Y at the time i 1 . hi is a
filter coefficient represented by a q-bit fixed-point binary
number, and N is the number of taps in the filter 2 .

Fig. 2.1 implements (2.1) directly. It consists of an N -
stage q-bit shift register, N copies of q-bit multipliers, and
an adder for N q-bit numbers. To reduce the amount of
hardware in Fig. 2.1, we use the bit-serial method shown
in Fig. 2.2. Here, PSC denotes the parallel to series con-

1 In this paper, X and Y denotes the values of signal in the filters, xi

denotes a logic variable, �X1 and �X2 denote the vectors of logic variables.
2 In general, the number of bits for hi and Y can be different. However,

for simplicity, we assume that they are both represented by q bits.

Σ Output

Input

q

q

q q

q

Figure 2.2. Series Realization of FIR Filter.

Sign

Figure 2.3. Realization of ACC.

verter. In this case, the inputs to h0, h1, . . . , hN−1 are either
0 or 1, so the multipliers can be replaced by AND gates. In
Fig. 2.2, ACC denotes the shifting accumulator, which ac-
cumulates the numbers while doing shifting operations. The
ACC can be implemented by, for example, the network in
Fig. 2.3.

This method reduces the amount of hardware to 1/q, but
increases the computation time q times. The combinational
part in Fig. 2.2 has N -inputs and q-outputs. This part re-
alizes the WS function, which will be defined later. In FIR
filters that have linear phase characteristics, coefficients sat-
isfy the relation hi = hN−i−1. Such a filter is symmetric.
A symmetric filter can be implemented by Fig. 2.4. It re-
quires less hardware than Fig. 2.2. In this case, we use an
(N + 1)/2-input adder for q-bit numbers. The ⊕ symbol in
Fig. 2.4 denotes a serial adder 3 .

In Fig. 2.5, the combinational part is implemented by a
ROM. For example, when the number of inputs is three, the
ROM stores the precomputed values shown in Table 2.1.
Note that this is an example of a WS function defined later.

This method is called Distributed Arithmetic, and is

3 At the beginning of the serial addition, we have to clear the register
and flip-flops by adding the reset signals.

Σ

Input

q q

q

Figure 2.4. Series-and-Symmetric Realization
of FIR Filter.

Input

Output
q

q

Figure 2.5. FIR Filter (Series and Symmetric
ROM Realization).

often used to implement convolution operations, since many
multipliers and multi-input adders can be replaced by one
memory [1, 3, 6, 7, 13, 14]. This method is applicable only
when the coefficients hi are constants. In FIR filters, the
coefficients hi are constants, so we can apply this method.
Note that a ROM with n-inputs and q-outputs requires q2n

bits.

3 LUT Cascade and Functional Decomposi-
tion

This chapter describes a relationship between LUT cas-
cades and functional decompositions.

Definition 3.1 An LUT cascade realizes a given logic
function by the network structure shown in Fig. 3.1. Each
block is called a cell, and each cell realizes an arbitrary
logic function. The signal lines connecting adjacent cells
are called rails.

2

Table 2.1. Example of WS Function.
Address Data
x2x1x0

000 0
001 h0

010 h1

011 h0 + h1

100 h2

101 h0 + h2

110 h1 + h2

111 h0 + h1 + h2

Figure 3.1. LUT Cascade.

Definition 3.2 �F (�X) has a (multi-output) functional de-
composition if �F (�X) is to represented as �F =
g(h(�X1), �X2). In this case, the variables in �X1 are bound
variables, and the variables in �X2 are free variable. Note
that h is a multiple-valued function 4 .

Definition 3.3 In the decomposition chart of �F (�X1, �X2),
variables values of �X1 label columns, and variables values
of �X2 label rows. The values of �F (�X1, �X2) are the entries
of the chart. In the case of a q-output function, each element
of the chart is a q-bit vector. The number of different column
patterns is the column multiplicity.

Example 3.1 Table 3.1 shows an example of a decompo-
sition chart for a 5-input 3-output logic function, where
�X1 = (x0, x1, x2) and �X2 = (x3, x4). In this case, the
column multiplicity is five.

Theorem 3.1 Let �F (�X) = g(h(�X1), �X2), and let the col-
umn multiplicity of the decomposition chart be µ. Then,

Table 3.1. Example of Decomposition Chart.

�X1 = (x0, x1, x2)
000 001 010 011 100 101 110 111

00 001 010 011 100 001 100 100 100
�X2 = (x3, x4) 01 111 110 000 011 111 010 010 011

10 010 110 010 001 010 010 010 001
11 010 011 101 010 010 011 011 010

4 [4] only considers the case where h is a two-valued function. [5] only
considers the case where �F is a single-output function.

Figure 3.2. Functional Decomposition.

�F (�X) is realized by the structure shown in Fig. 3.2. The
number of signal lines between two block H and G is at
most �log2 µ�.

Theorem 3.2 Let �X = (x0, x1, . . . , xn−1) be the vari-
ables of function �F . If the column multiplicity of the de-
composition chart for �F (�X1, �X2) is at most 2q for all
i (q < i < n − 1), where �X1 = (x0, x1, . . . , xi) and
�X2 = (xi+1, . . . , xn−1), then �F is realized by the LUT cas-
cade with k-input q-output cells, where k > q.

(Proof) Let �X1 = (x0, x1, . . . , xk−1) and �X2 =
(xk, . . . , xn−1). By decomposing �F (�X), we have the net-
work in Fig. 3.2. Let q be the number of signal lines be-
tween two blocks. Then, G is an (n−k+ q)-input network.
Apply the functional decomposition to G again. In this case,
include all the the intermediate variables (i.e., the output
signals of H) in the bound variables. Note that, the column
multiplicity of the decomposition chart is also at most 2q.
By applying the functional decompositions repeatedly, we
form the cascade shown in Fig. 3.1. �

4 WS Function and Its LUT Cascade Real-
ization

Definition 4.1 An n-input q-output WS function[11]
�F (x0, x1, . . . , xn−1) computes

n−1∑

i=0

hi · xi (4.1)

and represent a value as a q-bit binary number 5 . Here, hi

denotes a coefficient represented as a q-bit binary number.
We use the fixed-point 2’s complement representation, and
assume that q includes one bit for the sign. Let the binary
representation of hi be (�hi)2, then �F satisfies relations:

�F (1, 0, . . . , 0) = (�h0)2
�F (0, 1, . . . , 0) = (�h1)2

...
�F (0, 0, . . . , 1) = (�hn−1)2.

5 For non-symmetric filter n = N , and for symmetric filter n = (N +
1)/2

3

Note that the WS function is generated first by rounding the
coefficients into q bits, and then adding the coefficients.

The next lemma shows that the column multiplicity of the
decomposition chart for any q-output WS functions is at
most 2q.

Lemma 4.1 Let �F (x0, x1, . . . , xn−1) be an n-input q-
output WS function. Let (�X1, �X2) be a partition of �X =
(x0, x1, . . . , xn−1), where �X1 = (x0, x1, . . . , xi−1) and
�X2 = (xi, xi+1, . . . , xn−1). Consider the decomposition
chart of �F , where �X1 are the bound variables and �X2 are
the free variables. The column multiplicity of the decompo-
sition chart is at most 2q.

(Proof) When i ≤ q, the column multiplicity is at most
2q. So, we will examine the case of i > q. Consider the
first row of the decomposition chart, i.e., the row for �X2 =
(0, 0, . . . , 0). The number of different elements is at most
2q, since each element of the decomposition chart is a vector
of q bits. Thus, for two different vectors�a,�b ∈ {0, 1}i, there
exist two columns that correspond to the assignments �a, �b
to �X1 such that �F (�a,�0) = �F (�b,�0).

Next, consider the j-th row (j > 0). Let �c be the value
of �X2 = (xi, xi+1, . . . , xn−1). Then, by Definition 4.1, �F
satisfies the relation

�F (�a,�c) = �F (�a,�0) + �F (�0,�c)
�F (�b,�c) = �F (�b,�0) + �F (�0,�c),

where the symbol + denotes the integer addition of bi-
nary numbers. Therefore, we have the relation: �F (�a,�c) =
�F (�b,�c). Since this relation holds for all j > 0, two column
patterns that correspond to vectors �a and�b are the same.

From the above, we can show that the column multiplic-
ity of the decomposition chart is at most 2q. �

Example 4.1 Table 4.1 shows an example of a decompo-
sition chart for n = 5, where �X1 = (x0, x1, x2) and
�X2 = (x3, x4). Suppose that q = 2, that is, each ele-
ment is a binary vector of two bits. In this case, only four
different vectors can exist. So, in the first row of the decom-
position chart, the row for (x3, x4) = (0, 0), at least two
elements are equal. Suppose that the values for the columns
(x0, x1, x2) = (0, 1, 1) and (x0, x1, x2) = (1, 0, 0) are
equal: h1 + h2 = h0. This implies that in the sec-
ond row of the decomposition table, that is in the row
for (x3, x4) = (0, 1), the corresponding two elements are
equal: h1 + h2 + h4 = h0 + h4. This is obvious since
the same numbers are added to the both elements. In simi-
lar ways, we can show that the remaining rows, the entries
for the columns (x0, x1, x2) = (0, 1, 1) and (x0, x1, x2) =
(1, 0, 0) are equal. That is, if the two elements in the first

Figure 4.1. LUT Cascade Realization of WS
Function.

row are equal, then the patterns of the two columns are
the same. Hence, we can see that the column patterns for
(x0, x1, x2) = (0, 1, 1) and (x0, x1, x2) = (1, 0, 0) are the
same.

Theorem 4.1 An arbitrary q-output WS function can be
implemented by an LUT cascade consisting of cells with
(q + 1) inputs and q outputs.

(Proof) By Lemma 4.1 and Theorem 3.2, the number of
lines between two blocks is q. We need at least one external
input for each cell. �

Theorem 4.2 An arbitrary n-input q-output WS function
can be implemented by an LUT cascade of at most

�n − k − 1
k − q

� + 2 cells with k inputs and q outputs.

(Proof) When we implement the WS function by the
method of Theorem 3.2, we have the LUT cascade shown
in Fig. 4.1. Let q be the number of rails in the cas-
cade, and s be the number of cells. Let t be the num-
ber of inputs to the final cell, then we have the relations
k +(s− 2)(k− q)+ t = n and 1 ≤ t ≤ k− q. From these,

we have s ≤ �n − k − 1
k − q

� + 2. �

Since a k-input q-output cell requires q2k bits, we have
the following:

Corollary 4.1 To implement an n-input q-output WS func-
tion by an LUT cascade with k-input q-output cells, we need

at most q(�n − k − 1
k − q

� + 2)2k bits.

Lemma 4.2 The ROM for an n-input q-output WS function
requires q2n bits.

Corollary 4.2 Assume that an LUT cascade uses k-input
q-output cells, then the ratio for the amount of memory for
the LUT cascade to the ROM for an n-input q-output WS

function is (�n − k − 1
k − q

� + 2)2k−n.

4

Table 4.1. Example of Decomposition Chart for WS Function.

�XL = (x0, x1, x2)
000 001 010 011 100 101 110 111

00 0 h2 h1 h1 + h2 h0 h0 + h2 h0 + h1 h0 + h1 + h2

01 h2+ h1+ h1 + h2+ h0+ h0 + h2+ h0 + h1+ h0 + h1 + h2+
h4 h4 h4 h4 h4 h4 h4 h4

�XH = (x3, x4) 10 h2+ h1+ h1 + h2+ h0+ h0 + h2+ h0 + h1+ h0 + h1 + h2

h3 h3 h3 h3 h3 h3 h3 h3

11 h2+ h1+ h1 + h2+ h0+ h0 + h2+ h0 + h1+ h0 + h1 + h2+
h3 + h4 h3 + h4 h3 + h4 h3 + h4 h3 + h4 h3 + h4 h3 + h4 h3 + h4

By setting k = q + 1 in Corollary 4.2, we have the ratio
(n − q)2q−n+1. This shows that the larger the value n − q,
the larger the reduction ratio by using an LUT cascade.

5 Arithmetic Decomposition of WS Func-
tions

Consider filter realizations where q is the number of
quantization bits. Experimental results show that q output
WS functions require (q + 1)-input q-output cells. Thus,
when q is large, large embedded memories in an FPGA are
required. To implement WS functions with many outputs
on a small FPGA, we can decompose WS functions into
smaller ones.

A 2q-output WS function can be decomposed into a pair
of WS functions as follows: Let, hi be a coefficient of 2q
output WS function. Then, hi can be written as

hi = 2qhAi + hBi,

where hAi denotes the most significant q bits, and hBi de-
notes the least significant q bits. In this case, we can im-
plement the 2q output WS function by using a pair of WS
functions and an adder, as shown in Fig. 5.1. Note that the
adder has 2q inputs and q outputs.

Theorem 5.1 A 2q-output WS function F (�X) that repre-
sents

n−1∑

i=0

hixi

can be decomposed into a pair of WS functions �FA(�X) and
�FB(�X), where �FA(�X) is a q-output WS function represent-
ing

n−1∑

i=0

hAixi,

and �FB(�X) is a q + �log2 n�-output WS function represent-
ing

n−1∑

i=0

hBixi,

+ Nq 2log−

 N2log N2log

+ Nq 2log−

 N2log N2log

x

+ N

N

q

q

q

2log−

 N2log N2log

q

0

A

B

Figure 5.1. Arithmetic Decomposition of 2q
output WS Function.

 N2log

A

 N2log

 Nq 2log+

N
x

 N2log

A

 N2log

 Nq 2log+

N q

q

q

q

q

q

q

q

q0

0

0

++
++

B

C

D

 N2log

2

 Nq 2log−

 N2q 2log−

Figure 5.2. Arithmetic Decomposition of 4q-
output WS Function.

and
hi = 2qhAi + hBi.

This is an arithmetic decomposition of a WS function.
In a similar way, a 4q output WS function can be de-

5

compose into four WS functions as follows: Let, hi be a
coefficient of the 4q output WS function. Then, hi can be
written as

hi = 23qhAi + 22qhBi + 2qhCi + hDi,

where hAi , hBi, hCi, and hDi denote q-bit numbers. As
shown in Fig. 5.2, we realize the 4q-output WS function
by using four q-output WS functions and adders. Note that
block A realizes a q-output WS function, while blocks B, C,
and D realize (q + �log2 N�)-output WS functions.

Note that the output adder has 4q inputs and 2q outputs.

6 Experimental Results

6.1 Method of Experiment

To confirm the theoretical results in the previous chap-
ters, we designed many WS functions for FIR filters by us-
ing LUT cascades. To design LUT cascades, we used binary
decision diagrams (BDDs) instead of decomposition charts
[10, 12]. In this case, the width of the BDD corresponds
to the column multiplicity of the decomposition chart. The
parameters of the filters are as follows:

• Type of the filters: (HPF, LPF, BPF, BEF)
• The number of taps N : (9,17,33)
• The number of quantization bits q: (8,10,12,14,16)
• Type of the window functions: (Kaizer window func-

tion, Hanning window function)

In total, we designed more than 100 different WS functions.
We rounded the filter coefficients by ignoring the lower bits
when the (q + 1)-th bit is 0, and by adding 1 to the q-th bit
when the (q + 1)-th bit is 1.

6.2 Mapping to FPGAs

We used Altera Cyclone II FPGAs [2] which contain
M4K embedded memory blocks in addition to LUT-type
logic elements (LEs). The M4K has 4096 bits and 521 par-
ity bits, and can be configured as memories with different
numbers of inputs and different numbers of outputs. We im-
plemented LUT cascades by using M4Ks. The environment
of FPGA mapping is shown in Table 6.1.

6.3 Analysis of Results

Table 6.2 compares ROM and LUT cascade realizations
of WS functions. Due to the page limitation, only the cases
for (N = 33, and Kaizer window function) are shown in
the table. Also, we considered symmetric filters, so n =
(N + 1)/2.

Table 6.1. Environment and conditions for ex-
periments.

FPGA device: Cyclone II
Device type: EP2C70F896C7[2]
Number of LEs: 68416
I/O pins: 622 (out of 896 total pins)
Memory bits: 1152000
Number of M4Ks: 250
DSP blocks (9-bit): 300

Tool for Logic Synthesis and Fitting
Altera, Quartus II V4.1 [2]

Optimization Parameter for the Tool
Timing-driven compilation:

Optimize timing,
Analysis Synthesis Settings:

Auto Fit
(reduce Fitter effort after meeting timing requirements)

When the number of the quantization bits is less than 16,
many of the filter coefficients h0, h1, . . . , hn1 are rounded
to zero. Thus, the WS function depends on only the part of
the input variables, and the filters do not work properly. So,
we have to increase the number of quantization bits. Since
a q-bit output WS function requires (q + 1)-input q-output
cells, the implementation requires a large embedded mem-
ory in an FPGA. To reduce the size of the memory cells, we
used the arithmetic decomposition shown in Fig. 5.2, where
q = 4. Since each WS function has at most q + �log2 N�
outputs, where q = 4 and N = 17, the WS function can
be realized with cells with at most q + �log2 N� + 1 = 10
inputs, as proven in Theorem 4.1. Table 6.2 shows realiza-
tions of filters in the form of Fig. 5.2, where the number
of the quantization bits is 16. The table shows the size of
each cascade, maximum width of BDDs, memory bits for
each cascade, total memory bits, number of M4Ks, number
of LEs, and operating frequency. In all cases, cascade re-
alizations reduced the sizes of memory. A single memory
realization requires 217 × 16 = 221 = 2M bits, while LUT
cascade realizations require 29 ∼ 40 k bits. These realiza-
tions used 4 to 5 % of total M4K of the FPGA, and less
than 1 % of LEs. Note that the target FPGA(Cyclone II)
contains 250 M4Ks. Thus, the total amount of memory is
1 Mega bits. So, the simple memory realization does not fit
into the target FPGA.

The operating frequency is 101 to 109 MHz.

In Fig. 2.4, the variable x0 that corresponds to h0

is placed to the root-side of the BDD, and the variable
x(N−1)/2 that corresponds to h(N−1)/2 is placed to the leaf-
side of the BDD. This initial ordering of the BDD produced
smaller BDDs, and produced smaller LUT cascades. The
WS functions with larger q and larger N tend to have larger

6

Table 6.2. ROM and LUT Cascade Realization of WS Functions.
Filter Type HPF LPF BPF BEF

(Cut Off Frequency) (5kHz) (5kHz) (5k-10kHz) (5k-10kHz)
Window Function Kaiser Kaiser Kaiser Kaiser
Tap [n] 33 33 33 33
Quantization Bit [bits] 16 16 16 16

ROM
#IN 17 17 17 17

#OUT 16 16 16 16
#Cascades 4 4 4 4
Cascade A B C D A B C D A B C D A B C D
#Cells 1 2 2 3 1 2 3 3 1 2 3 2 1 2 3 3

Cell0
#IN 10 10 10 10 7 8 9 10 7 10 9 10 9 10 10 10

#OUT 4 6 7 7 4 5 5 6 4 7 6 6 4 7 7 7

Cell1
#IN 8 9 10 9 10 10 6 10 10 7 10 9

#OUT 6 7 6 8 7 7 5 6 6 6 7 6

Cell2
#IN 7 8 9 5 6 6

#OUT 5 6 7 4 5 5
Max Width BDD 11 56 66 90 8 130 91 111 8 88 63 58 10 50 71 78
Cascade Memory Bits
[bits] 4096 7680 14336 13952 512 5376 11264 16896 512 7488 9344 12288 2048 7936 14656 10560
Total Memory Bits [bits] 40064 34048 29632 35200
Number of M4K’s 13 12 12 13
(Out of 250) 5 % 4 % 4 % 5 %
Number of LEs 586 585 564 568
(Out of 68,416) < 1 % < 1 % < 1 % < 1 %
Operating frequency
[MHz] 105 104 109 101

column multiplicities.

7 Conclusion

In this paper, we defined the WS function that represents
the combinational part of the distributed arithmetic in an
FIR filter. Also, we showed methods to realize a WS func-
tion by LUT cascades and adders. Major results are

1. WS functions have arithmetic decomposition, and can
be implemented in the form of Figs. 5.1 or 5.2.

2. LUT cascade realizations require much smaller mem-
ory than single ROM realizations.

3. Arithmetic decompositions are effective in implement-
ing FIR filters.

When the number of quantization bits is large, we have
to partition the outputs into several groups by arithmetic de-
composition.

Also, when the number of taps are large, we have to par-
tition the inputs into groups. For each group, we can im-
plement a WS function, and finally, we can obtain the sum
by using an adder [1]. This greatly reduces the necessary
amount of memory. Note that LUT cascades can be used
for these WS functions and the adder.

In this paper, we defined the WS function as a model of
the combinational part of the distributed arithmetic for digi-
tal filters. Note that WS functions can be used to implement
Discrete Cosine Transform (DCT), Discrete Fourier Trans-
form (DFT) and other convolution operations.

Acknowledgments

A part of this work is supported by the Grant in Aid for
Scientific Research of MEXT and JSPS, and the grant of
Kitakyushu Area Innovative Cluster Project. We appreciate
Prof. Jon T. Butler and Dr. Shinobu Nagayama for discus-
sion, and Mr. Munehiro Matsuura and Hiroki Nakahara for
the LUT cascade design tool. Reviewers comments greatly
improved the paper.

References

[1] Actel Corporation, “CoreFIR: Finite impulses response
(FIR) filter generator,”
http://www.actel.com/ipdocs/CoreFIR IP DS. BPF

[2] Altera: http://www.altera.com/
[3] R. J. Andraka, “FIR filter fits in an FPGA using a bit serial

approach,” Proceedings of the EE-Times 3rd Annual PLD
design Conference and Exhibit, March 1993.

7

[4] R. L. Ashenhurst, “The decomposition of switching func-
tions,” In Proceedings of an International Symposium on the
Theory of Switching, pp. 74-116, April 1957.

[5] H. A. Curtis, A New Approach to The Design of Switching
Circuits, D. Van Nostrand Co., Princeton, NJ, 1962.

[6] T-T. Do, H. Kropp, C. Reuter, and P. Pirsch, “A flexible im-
plementation of high-performance FIR filters on Xilinx FP-
GAs,” FPL 1998, Estonia, Aug. 31 - Sept. 3, 1998, pp. 441-
445.

[7] L. Mintzer, “FIR filters with field-programmable gate ar-
rays,” Journal of VLSI Signal Processing, pp. 120-127, Aug.
1993.

[8] K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka,
K. Yoshizumi, H. Qin, and Y. Iguchi, “Programmable logic
device with an 8-stage cascade of 64K-bit asynchronous
SRAMs,” Cool Chips VIII, IEEE Symposium on Low-Power
and High-Speed Chips, April 20-22, 2005, Yokohama,
Japan.

[9] K. K. Parhi, VLSI Digital Signal Processing Systems Design
and Implementation, John Wiley, New York, 1999.

[10] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization
of multiple-output function for reconfigurable hardware,”
International Workshop on Logic and Synthesis (IWLS01),
Lake Tahoe, CA, June 12-15, 2001, pp. 225-230.

[11] T. Sasao, “Analysis and synthesis of weighted-sum func-
tions,” International Workshop on Logic and Synthesis, Lake
Arrowhead, CA, USA, June 8-10, 2005 (to be published).

[12] T. Sasao and M. Matsuura, “A method to decompose
multiple-output logic functions,” 41st Design Automation
Conference, San Diego, CA, USA, June 2-6, 2004, pp. 428-
433.

[13] S. Yu and E. E. Swartzlander, “DCT implementation with
distributed arithmetic,” IEEE Trans. on Computers, Vol. 50,
No. 9, Sept. 2001, pp. 985-991.

[14] S. A. White, “ Applications of distributed arithmetic to dig-
ital signal processing: a tutorial review,” IEEE ASSP Maga-
zine, Vol. 6, No. 3, July 1989, pp. 4-19.

8

