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Abstract In this paper, we consider two typesrebit adders with
This paper considers two types of n-bit addepple carry minimum tests for stuck-at fault models: Ripple carry adders
adders and cascaded carry look-ahead addérs minimum and cascaded carry look-ahead adders. First, we show the
tests for stuck-at fault models. In the first part, we present twominimality of full adders shown in Fig. 1. They contain the
types of full adders consisting of five gates, and show theirminimum number of gates among adders consisting of only 2-
minimality. We also prove that one of the full adders can beinput gates. We also show that the sizes of the minimum tests
tested by only three test patterns for single stuck-at faults. Wedor single stuck-at faults in the full adders of Fig. 1A and 1B
also present two types of 4-bit carry look-ahead adders andare five and three, respectively. To our knowledge, the full
their minimum tests. In the second part, we consider the tests
for the cascaded adders, an n-bit ripple carry adderanda g —
4m-bit cascaded carry look-ahead adders. These tests are b

considerably smaller than previously published ones.

<
1. Introduction Cin /]E— S

Adders are used in almost all kinds of arithmetic

processing units. The basic unit in an adder is a full adder. — g

Fig. 1A and 1B show two realizations of a full adder using

EXOR gates. By cascading the full adders, we have a ripple E Cout
carry adder shown in Fig. 2. This kind of networks is called an %

iterative logic array [1]. In terms of iterative logic array, a
ripple carry adder is referred to as an array, and the full adder Fig. 1A: Full adder using AND, OR, EXOR gates
is referred to as a cell. The fault assumption in a cell of the
iterative logic array is that a faulty cell can change its
behavior in any arbitrary way, as long as it remains a a —‘
combinational circuit. In a single cell fault model (i.e., at most

one cell may be faulty), anybit ripple carry adder can be b

tested by eight tests independently of the value[@]. In a oﬁj >
multiple cell fault model (i.e., more than one cells can be G, —~ 9 S
faulty at the same time), amybit ripple carry adder can be

tested by 11 tests independently of the valug[g]. The tests — g

for the cascaded adders where each cqlthg adder has

been also considered in [2]. In this case, the size of the test is E Cout
3 x 2p—1_ g4

The ripple carry adders are simple and useful whin ) ]

small. For example, INTEL 8080 micro-processors used Fig. 1B: Full adder using AND, EXOR gates
ripple carry adders [3]. However, whetis large, ripple carry
adders are slow since the maximum carry propagation timeis & b a b, a, b,
proportional ton. Thus, carry look-ahead adders are often | | | | | |
used for high-speed addition. Fig. 3A and 3B showtwo |[a b a b a b
realizations of a 4-bit carry look-ahead adder. Becker [4—c, c,, Cn Cou
showed that 6 (log) - 4 tests are sufficient to test theoit o s G s G Cos s G,
. . . DD
carry look-ahead adder, for single stuck-at faults in a given set | | |
of basic cells.

S S S,

Fig. 2: Ripple carry adder
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adder in Fig. 1B has the smallest test size. Next, we show thaTheorem 1. Consider the network consisting of only 2-input
the sizes of the minimum tests for single stuck-at faults in thegates. The full adders shown in Fig. 1 contain the minimum
4-bit carry look-ahead adders shown in Fig. 3A and 3B are 10number of gates.
and 12, respectively. Then, we consider the tests for the(Proof) Here, we will show that there is no full adder with
cascaded adders. In the case ofidit ripple carry adder, the  four or fewer 2-input gates. Since we need two gates for sum
size of the minimum tests for single faults are the same as thadnd carry, the full adder must have the structure as shown in
of the full adder, and all multiple stuck-at faults can be Fig. 4. By considering all possible networks, we can show
detected by six tests. In the case ofHit cascaded carry that it is impossible to realize a full adder. Thus, the minimum
look-ahead adders, we show that the size of the minimumadder consists of at least five 2-input gates. (Q.E.D.)
tests are less than 12 for single stuck-at faults. Note that the The full adder shown in Fig. 1A is more popular [5] than
size of the tests is constant, and is independent of the value adne in Fig. 1B that contains only AND and EXOR gates.
nandm. These tests are considerably smaller than that of [2],Without using EXOR (EXNOR) gates, we need more gates to
where %28-1=767 tests are necessary. realize a full adder. For example, a full adder using eight 2-
input gates is shown in [6].
2. Adders and their tests

2.1 Minimum full adder 2.2 Tests for the full adder
First, we consider two different realizations of full adders, ~ Under the assumption of the single stuck-at fault model,
Fig 1A and 1B, both consist of five 2-input gates. there is no redundant fault in both of the full adders in Fig. 1A
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Fig. 3A: 4-bit carry look-ahead adder using AND, OR, EXOR gates
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Fig. 4: Proof of minimality of full adder

Fig. 3B: 4 bit carry look-ahead adder using AND, EXOR gates

stuck-at 1 fault on the fanout branch of gatetg gate g.
Table 2 shows necessary assignments for each fault which are
a logic value on signal lines necessarily to detect the fault.
Since necessary assignments for any pair of faults have a
conflict, it is impossible to generate a test that detects them at
the same time. Therefore, the fault set is an independent fault
set [7] , and at least five tests are necessary to detect all
faults. On the other hand, five tests in Table 1 detect all the
faults. Thus, the test set in Table 1A is the minimum for the
circuit in Fig. 1A. For the adder in Fig. 1B, at least three tests
are necessary to detect all faults because there are 2-input

and F|g 1B. All the faults can be detected by the tests in Tablegatesl Hence the test set in Table 1B is the minimum for the
1A and Table 1B, where yO {0, 1}.

Theorem 2. Table 1A and Table 1B give minimum test sets forrg our best knowledge, Fig. 1B is the full adder with the
single stuck-at faults in the full adders in Fig. 1A and Fig. 1B, smallest test size. Other full adders using more gates require

respectively.

(Proof) For the adder in Fig. 1A, consider the fault sat {g/
1, a g/1, b_a/l, g1, g/1}, where g_gs/1 denotes the
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circuit in Fig. 1B. (Q.E.D.)

more tests.

2.3 Carry Look-Ahead Adders



Various carry look-head adders exist. Among them, one  For the adder in Fig. 3B, an independent fault set with 12
shown in Fig. 3A [3] is popular. However, to investigate the faults was found, and 12 tests as shown in Table 3B can detect
testability, we will also consider two other realizations. all single faults. Thus, the 12 tests form a minimum test set for

As the first variation, consider the circuits where all the the adder in Fig 3B. This is larger than the size of the
OR gates in the inputs (i.e., ones realizng by) are replaced  minimum tests for the adder in Fig. 3A. One of the
by EXOR gates. It also works as an adder [8]. As the seconctonsiderable reasons is that we used trees of 2-input EXOR
variation, consider a circuit in Fig. 3B. This is obtained by gates, instead of multiple-input EXOR gates. For example, a
replacing all the OR gates in Fig. 3A by two-input EXOR 2-input EXOR gate requires three tests for single stuck-at
gates. Note that it consists of ANDs and EXORs. This alsofaults, but a 3-input EXOR gate can be tested by only two
works as an adder as shown below: tests. Therefore, the use of multiple-input EXOR gates may
Theorem 3. The circuit where all the OR gates in Fig. 3A arereduce the number of tests.
replaced by EXOR gates also works as an adder.

(Proofis in [12]) 3. Minimum tests for cascaded adders

One might think of yet another variation of the adder: A 3 1 Tests for ripple carry adders
realization derived by replacing the OR gates in the large  pg ripple carry adder shown in Fig. 2 consists of cells of
dashed box in Fig. 3A Wlth. EXOR gates (|.e.,.OR gates in the.ha full adders, where the primary outpegs, of the full
small dashed boxes remain), unfortunately, it does not work, yqer is connected to the primary inpai, of the next full

as an adder. adder. In this section, we show how to construct minimum
tests for the ripple carry adder as an array of the full adder.
2.4 Tests for the Carry Look-Ahead Adders In order to use the tests of the full adder for the ripple

We used a compact test generator [9] to generate &arry adder, it is required to satisfy two conditions below:
minimal test set and to find a maximal independent fault set of(l) to apply the tests of the full adder for each cell.
the carry look-ahead adders. For the adder in Fig. 3A, an2) to observe the output of each cell where fault effect may
independent fault set with 10 faults was found, and 10 tests tqye propagated.
detect all single stuck-at faults as shown in Table 3A wereThe following theorems show that these condition can be
generated. Thus, the 10 tests form a minimum test set for thegtisfied.
adder in Fig. 3A. Theorem 4. Any tests for the full adder can be applied to each
cell of the ripple carry adder.
(Proof) For the first cell, the theorem holds. For the ith cell

Table 1A: Tests for the full adder in Flg. 1A ! _ ] ) )
(i=2), the signal line g that connects the (i-1) th cell with the

In Out i th cell is controllable using the primary inputg and k..
test| a b an S Gout Hence, the theorem holds. (Q.E.D.)
t 0 0 1 1 0 Theorem 5. If tests for the full adder are applied to each cell
tp O 1 0 1 0 of the ripple carry adder, faults in the ripple carry adder are
ts 1 0 O 1 0 detected.
ty 1 1 x x 1 (Proof) Suppose that tests for the full adder are applied to the
ts y Ty 1 0 1 ith cell of the ripple carry adder. If effects of a fault in the ith
cell are propagated to;sthe fault can be detected. Even if
. fault effects are propagated tg, @ can be detected at the
Table 1B: Tests for the full adder in Fig. 1B primary output §1 independently of the logic values ¢fia
In Out and bs1. Thus, any fault in a cell is detected by the tests for
test| a b o | s cu the cell, and the theorem holds. (Q.E.D.)
The logic value aty0f theith cell corresponds to the
t1 0 1 1 0 1 . .
logic value afc, of the {(+1)th cell. For the array of cells in
:2 i 2 2 i (1) Fig. 1A, whenever the tes, t3, orts in Table 1A are applied
S to theith cell, the same test can be applied to th#)th cell
because logic values requiredcgtof the {(+1)th cell andcoyt
Table 2: Necessary Assignments of theith cell are identical. However, when tésis applied to
theith cell, to the it1)th cell, another test which requires
fault a b G 93 g4 G logic value 0 ati, should be applied. We achieve it by
01/l 0 O 1 0 0 O assigning logic value 0 toof testts. Conversely, when tett
a g/l 0 1 0 0 0 0 is applied to théth cell, test; is applied to thei¢1)th cell.
b _g/1 1 0 0 0 0 0 As a result, by assigning logic value Oxtof testt, and
0s/1 1 1 X 0 1 1 logic value 0 toy of testts, we can obtain five tests as shown
g4/l y Ty 1 1 0 1 in Table 4 to detect all single faults in the ripple carry adder
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based on the full adders in Fig. 1A. Similarly, we can obtain combination of stuck-at faults on checkpoints [10]. Both of
three tests for the ripple carry adder based on the full adders ithe full adders in Fig. 1A and 1B have 11 checkpointsd.e.,
Fig. 1B because logic valuesat andcyy are identical for b, cin, fanin lines of gate, gz, gz, andg,. If we treat multiple
every test. These tests obtained for the array are minimunstuck-at faults in the ripple carry adders, we must assume
because their sizes are the same as those of the minimum tedtults on every checkpoints in each cell.

for each cell. The tests in Table 1A can detect all multiple stuck-at
faults in the full adder of Fig. 1A. Any multiple fault which

3.2 Tests for multiple stuck-at faults in ripple carry contains stuck-at faults on lines between the primary inputs,

adders a, b, ¢, and the primary outpwgare detected & And any

Under the assumption of the multiple stuck-at fault model, Multiple fault which contains stuck-at faults on fanin lines of
stuck-at faults are taken into account only at fanout branchegateds andgs are detected @by
and the primary inputs which are calleeckpointsThis is For the ripple carry adder, however, the five tests in Table
because every multiple stuck-at fault can be represented by 4 ¢annot detect all multiple faults. For example, a multiple
fault (ax/1, bo/0,g1_gs/1, a_g/0,b_a/1) remains undetected.
Although we can produce other 5 tests to detect all single

Table 3A: Tests for the carry look-ahead adder in Fig. 3A faults by assigning logic value 1yan Table 1A, the multiple

In Out fault cannot be detected. As any other five tests cannot detect
test| a a a a bi by by ba| co all single faults, at least six tests are required for detecting all
ty 0 1 1 1 0 0 0 0 1 0 mUltIp'e faults.
t 1 1 1 0 1 1 1 0 1 0 _ By. adding a test sugh that the logic valu.e of every primary
ta 1 0 0 o 1 0 1 1 1 0 input is 1 to f[he tests in Table 4,.aII multiple faults can bg
ts 1 1.0 1 0 1 1 0 0o 1 detecteq. It is proven using an idea of the fault analysis
s |1 1 1 0 1 0 0o 1| o0 1 method in [11] . , _
tg o o o o0 1 1 1 1 1 1 Theorem 6. Slx tests in Table 5 dgtgct all multiple stuck_—at
t, 1 1.0 1 1 1 0 o0 1 0 fgults of the ripple carry adder consisting of the full adders in
t |0 1 1 0 1 0o 1 1| o0 1 Fig. 1A. -
t |1 0 0 1 0 0o 0 1| 1 1 (Proofisin[12]) . .
to|l 0 0 o 0 1 1 1 1 0 0 Since it is impossible to detect all multiple faults by five

tests, the tests in Table 5 are minimum. Also, they detect all
) multiple faults in the ripple carry adder using the full adder in
Table 3B: Tests for the carry look-ahead adder in Fig. 3B Fig 1B. But they may not be minimum tests for the circuit.

In Out
test| a a a a b1 by by by | co ¢4 3.3 Tests for single stuck-at faults in d-bit carry
t1 1 1 1 1 0 0 0 o0 1 1 look-ahead adders
to 1 0 0 O 1 1 1 1 1 1 By cascading the 4-bit carry look-ahead adders in Fig. 3A
t3 O 1. 0 O 1 o0 1 1 0 0 or Fig. 3B, we can realize aMbit adder. We consider the
ts O 1. 0 0 1 0 1 o0 1 0 size of tests for single faults in the cascaded carry look-ahead
| 1 1 0 0o 1 1 1 1| o 1 adder. . . . B
te 1 0 o 1 1 1 0 O 0 0 As shown in Section 2.4, the size of the minimum tests for
1 0 1 1 0 1 1 0 O 0 0 the adder in Fig. 3A is 10. However, we could not produce a
tg 1 1. 0 0 1 1 0 1 0 o test set whose size is 10 using the tests in TableTBA.
tg 1 1 1 0 0 o0 1 0 0 0 number of tests which requires logic value tjats six (i.e.,
t10 1 0 1 0 0 0 0 1 1 0 t1, o, t3, ts, t7 @andtg), but the number of tests which produce
tn | 2 0 1 0 0 1 1 1 1 1
e L L 0o ! Table 5: Minimum tests for multiple faults of

the ripple carry adder

Table 4: Minimum tests for the ripple carry adder

test| a by Cc a by a3 by as bg o o o
test| a by c a by a3 by a bg e o - T, 0 0 1 1 1 0 0 1 16 o e
T |0 0 1 1 1 0 0 1 1+ ¢« T, 10 1 0 0 1 0 1 0 1+ ¢«
T, 10 1 0 0 1 0 1 0 1 ¢« T3 1 0 0 1 0 1 0 1 0=« =«
T3 1 0 0 1 0 1 0 1 0=« == T, 11 1 0 0 0 1 1 0 0= o«
T, /1 1 0 0 0 1 1 0 0= o« Ts | 0 1 1 0 1 0 1 0 1 ¢«
T, 0 1 1 0 1 0 1 0 1=« o - Te 1 1 1 1 1 1 1 1 1+ o«
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Table 6: Tests for the 4m-bit cascaded look-ahead adder

test( a a a3 a by by b3 by c a a a7 ag bs bg by bg o o

3]0 1 12 1 0 O O O 1 1 1 0 1 0 1 1 0= o =

/11 1 1 o0 1 1 1 0 1 1 1 1 0 1 0 0 1=+ o«

T3/12 0 0 O 1 0O 1 1 1 0 1 1 0 1 0 1 1=+ e«

7/]12 1 0o 1 0 1 1 0 O 0 1 1 1 0 0 0 0= o«

s/]1 1 12 0 1 0 O 1 0 1 1 1 0 1 1 1 0= = =

Ts|/0 0 O O 1 1 1 1 1 0 0 0 0 1 1 1 1=+ o =

77112 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1=+ o =

s /0 1 12 0 1 0 1 1 0 1 0 0 0 1 0 1 1=+ o«

Ty|/2 0 0 1 0 O 0 1 1 1 0 0 1 0 0 0 1=+ e«

To/O0O O 0 O 1 1 1 1 0 0 0 0 0 1 1 1 1=+ o =

T/0 1 12 o0 1 o0 1 1 0 1 1 0 1 1 1 0 0= = =
logic value 1 atcout is five (i.e.,ts, t5, t6, tg andty). [5] F. J. Hill, and G. R. Petersomtroduction to Switching
Accordingly, if we use the tests in Table 3A without repeating  ~ Theory and Logical Design (Third Editianjohn Wiley &
same one, one of the six tesennot be applied. In order to Sons, p. 180, 1981.
avoid missing any test, we add an additional test such thate] z. Kohavi, Switching and Automata TheoiyicGraw-Hill, p.
logic value 0 is assigned to inpgt and logic value 1 at 116, 1978.

outputceyt is producedAs a result, we obtain 11 tests for the [7] S. B. Akers, and B. Krishnamurthy, “On the Application of
cascaded look-ahead adder. An example of such tests is Test Counting to VLSI Testing;Technical Report NdCR-
shown in Table 6. Note that we have not proven the 85-12, Computer Research Laboratory, Tektronix
minimality of the tests in Table 6. Laboratories, April 1985.

For the 4m-bit carry look-ahead adder realized by [8] R. F. Tinder Digital Engineering DesignPrentice-Hall, p.
cascading the adders in Fig. 3B, we can obtain 12 tests to 274, 1991.
detect single stuck-at faults. The 12 tests are minimum for the9] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy,

circuit and it can be proven by the similar way to Theorem 4  “Cost-Effective Generation of Minimal Test Sets for Stuck-
and 5. at Faults in Combinational Logic CircuitéZEEE Trans. on

CAD.,, Vol. 14, No. 12, pp. 1496-1504, Dec. 1995.
[10] D. C. Bossen, and S. J. Hong, “Cause-Effect Analysis for

4. Con;lu5|on and comments . . Multiple Fault Detection in Combinational Network$ZEE
In this paper, we presented minimum tests for ripple carry Trans. on Computvol. C-20, pp. 1252-1257, Nov. 1971

adders and cgscaded carry look-ahead adders. Especially, ?1] H. Cox, and J. Rajski, “A Method of Fault Analysis for Test
presented a ripple carry adder that can be tested by only three “aneration and Fault Diagnosi¢ZEE Trans. on CADvol.
tests. These tests are considerably smaller than previously 7 pp. 813-833, July 1988.

published ones. This is due to the compact full adder using[12] s. Kajihara, and T. Sasao, “Minimum tests for stuck-at
more EXOR gates. Without EXOR gates, adders and their test  fauits of the addersJEICE Technical Report, Vol. FTS-96
will be more complex. Thus, for the stuck-at fault model, we Oct. 1997. (to appear)

can say as follows: “EXOR based ripple carry adders are[13] M. J. Batek, and J. P. Hayes, “Test-set Preserving Logic

easily testable.” Transformations,” 29th ACM/IEEE Design Automation
Conferencepp. 454-8, 1992.

REFERENCES [14] B. Becker, R. Drechsler, and P. Molitor, “On the Generation

[1] W. H. Kautz, “Testing for Faults in Cellular Logic Arrays,” of Area-time Optimal Testable Adders” IEEEans. on
8th Annu. Sympo. Switching and Automata Theupy 161- CAD., vol. 14, no. 9, 1049-66, Sept. 1995.
174, 1967. [15] B. Becker, R. Drechsler, R. Krieger, and S. M. Reddy, “A

[2] W. -T. Cheng, and J. H. Patel, “A Minimum Test set for Fast Optlmal Robust Path Delay Fault Testable Adder,”
Multiple Fault Detection in Ripple carry AddersEEE European Design and Test Conference ED&TCH6 491-
Trans. Comput.vol. C-36, no. 7, 891-5, July 1987. 498, 1996.

[3] S. Muroga,Logic Design and Switching Thegrwiley- [16] T. -K. Liu, K. R. Hohlin, L. -E. Shiau, and S. Muroga,
Interscience Publication, pp. 518-520, 1979. “Optimal One-bit Full Adders with Different Types of

[4] B. Becker, “Efficient Testing of Optimal Time Adders,” Gates,”IEEE Trans. Computvol. C-23, No. 1, pp. 63-70,
IEEE Trans. Computvol. 37, no. 9, 1113-21, Sept. 1988. Jan. 1974.

Proceedings of the 5th Asian Test Symposium (ATS '97)
1081-7735/97 $10.00 © 1997 IEEE



