
On the Adders with Minimum Tests

Seiji Kajihara   and   Tsutomu Sasao

Dept. of Computer Science and Electronics,  Kyushu Institute of Technology

Abstract
This paper considers two types of n-bit adders, ripple carry
adders and cascaded carry look-ahead adders, with minimum
tests for stuck-at fault models. In the first part, we present two
types of full adders consisting of five gates, and show their
minimality. We also prove that one of the full adders can be
tested by only three test patterns for single stuck-at faults. We
also present two types of 4-bit carry look-ahead adders and
their minimum tests. In the second part, we consider the tests
for the cascaded adders, an n-bit ripple carry adder and a
4m-bit cascaded carry look-ahead adders. These tests are
considerably smaller than previously published ones.

1. Introduction
Adders are used in almost all kinds of arithmetic

processing units. The basic unit in an adder is a full adder.
Fig. 1A and 1B show two realizations of a full adder using
EXOR gates. By cascading the full adders, we have a ripple
carry adder shown in Fig. 2. This kind of networks is called an
iterative logic array [1]. In terms of iterative logic array, a
ripple carry adder is referred to as an array, and the full adder
is referred to as a cell. The fault assumption in a cell of the
iterative logic array is that a faulty cell can change its
behavior in any arbitrary way, as long as it remains a
combinational circuit. In a single cell fault model (i.e., at most
one cell may be faulty), any n-bit ripple carry adder can be
tested by eight tests independently of the value of n [2]. In a
multiple cell fault model (i.e., more than one cells can be
faulty at the same time), any n-bit ripple carry adder can be
tested by 11 tests independently of the value of n [2]. The tests
for the cascaded adders where each cell is p-bit adder has
been also considered in [2]. In this case, the size of the test is
3 × 2p-1.

The ripple carry adders are simple and useful when n is
small. For example, INTEL 8080 micro-processors used
ripple carry adders [3]. However, when n is large, ripple carry
adders are slow since the maximum carry propagation time is
proportional to n. Thus, carry look-ahead adders are often
used for high-speed addition. Fig. 3A and 3B show two
realizations of a 4-bit carry look-ahead adder. Becker [4]
showed that 6 (log2n) - 4 tests are sufficient to test the n-bit
carry look-ahead adder, for single stuck-at faults in a given set
of basic cells.

In this paper, we consider two types of n-bit adders with
minimum tests for stuck-at fault models: Ripple carry adders
and cascaded carry look-ahead adders. First, we show the
minimality of full adders shown in Fig. 1. They contain the
minimum number of gates among adders consisting of only 2-
input gates. We also show that the sizes of the minimum tests
for single stuck-at faults in the full adders of Fig. 1A and 1B
are five and three, respectively. To our knowledge, the full

Fig. 1B: Full adder using AND, EXOR gates

Fig. 1A: Full adder using AND, OR, EXOR gates
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Theorem 1. Consider the network consisting of only 2-input
gates. The full adders shown in Fig. 1 contain the minimum
number of gates.
(Proof) Here, we will show that there is no full adder with
four or fewer 2-input gates. Since we need two gates for sum
and carry, the full adder must have the structure as shown in
Fig. 4. By considering all possible networks, we can show
that it is impossible to realize a full adder. Thus, the minimum
adder consists of at least five 2-input gates. (Q.E.D.)

The full adder shown in Fig. 1A is more popular [5] than
one in Fig. 1B that contains only AND and EXOR gates.
Without using EXOR (EXNOR) gates, we need more gates to
realize a full adder. For example, a full adder using eight 2-
input gates is shown in [6].

2.2 Tests for the full adder
Under the assumption of the single stuck-at fault model,

there is no redundant fault in both of the full adders in Fig. 1A

Fig. 3A: 4-bit carry look-ahead adder using AND, OR, EXOR gates

adder in Fig. 1B has the smallest test size. Next, we show that
the sizes of the minimum tests for single stuck-at faults in the
4-bit carry look-ahead adders shown in Fig. 3A and 3B are 10
and 12, respectively. Then, we consider the tests for the
cascaded adders. In the case of an n-bit ripple carry adder, the
size of the minimum tests for single faults are the same as that
of the full adder, and all multiple stuck-at faults can be
detected by six tests. In the case of 4m-bit cascaded carry
look-ahead adders, we show that the size of the minimum
tests are less than 12 for single stuck-at faults. Note that the
size of the tests is constant, and is independent of the value of
n and m. These tests are considerably smaller than that of [2],
where 3×28-1=767 tests are necessary.

2. Adders and their tests
2.1 Minimum full adder

First, we consider two different realizations of full adders,
Fig 1A and 1B, both consist of five 2-input gates.

a1

b1

a3

b3

a2

b2

c0

a4

b4

a3

b3

s3

a4

b4

s4

a2

b2

s2

c4

a1

b1

s1

Proceedings of the 5th Asian Test Symposium (ATS '97)  
1081-7735/97 $10.00 © 1997 IEEE  



and Fig. 1B. All the faults can be detected by the tests in Table
1A and Table 1B, where x, y ∈ {0, 1}.
Theorem 2. Table 1A and Table 1B give minimum test sets for
single stuck-at faults in the full adders in Fig. 1A and Fig. 1B,
respectively.
(Proof) For the adder in Fig. 1A, consider the fault set {g1_g3/
1, a_g4/1, b_g4/1, g4/1, g3/1}, where g1_g3/1 denotes the

stuck-at 1 fault on the fanout branch of gate g1 to gate g3.
Table 2 shows necessary assignments for each fault which are
a logic value on signal lines necessarily to detect the fault.
Since necessary assignments for any pair of faults have a
conflict, it is impossible to generate a test that detects them at
the same time. Therefore, the fault set is an independent fault
set [7] , and at least five tests are necessary to detect all
faults. On the other hand, five tests in Table 1 detect all the
faults. Thus, the test set in Table 1A is the minimum for the
circuit in Fig. 1A. For the adder in Fig. 1B, at least three tests
are necessary to detect all faults because there are 2-input
gates. Hence the test set in Table 1B is the minimum for the
circuit in Fig. 1B. (Q.E.D.)
To our best knowledge, Fig. 1B is the full adder with the
smallest test size. Other full adders using more gates require
more tests.

2.3 Carry Look-Ahead Adders
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Fig. 3B: 4 bit carry look-ahead adder using AND, EXOR gates

Fig. 4: Proof of minimality of full adder
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Table 1A: Tests for the full adder in FIg. 1A

In Out
test a b cin s cout

t1 0 0 1 1 0
t2 0 1 0 1 0
t3 1 0 0 1 0
t4 1 1 x x 1
t5 y y 1 0 1

Table 1B: Tests for the full adder in FIg. 1B

In     Out
test a b cin s cout

t1 0 1 1 0 1
t2 1 0 0 1 0
t3 1 1 1 1 1

Table 2: Necessary Assignments

fault a b cin g3 g4 g5

g1_g3 
/1 0 0 1 0 0 0

a_g4 
/1 0 1 0 0 0 0

b_g4 
/1 1 0 0 0 0 0

g3 
/1 1 1 x 0 1 1

g4 
/1 y y 1 1 0 1

Various carry look-head adders exist. Among them, one
shown in Fig. 3A [3] is popular. However, to investigate the
testability, we will also consider two other realizations.

As the first variation, consider the circuits where all the
OR gates in the inputs (i.e., ones realizing ai ∨ bi) are replaced
by EXOR gates. It also works as an adder [8]. As the second
variation, consider a circuit in Fig. 3B. This is obtained by
replacing all the OR gates in Fig. 3A by two-input EXOR
gates. Note that it consists of ANDs and EXORs. This also
works as an adder as shown below:
Theorem 3. The circuit where all the OR gates in Fig. 3A are
replaced by EXOR gates also works as an adder.
(Proof is in [12])

One might think of yet another variation of the adder: A
realization derived by replacing the OR gates in the large
dashed box in Fig. 3A with EXOR gates (i.e., OR gates in the
small dashed boxes remain), unfortunately, it does not work
as an adder.

2.4 Tests for the Carry Look-Ahead Adders
We used a compact test generator [9] to generate a

minimal test set and to find a maximal independent fault set of
the carry look-ahead adders. For the adder in Fig. 3A, an
independent fault set with 10 faults was found, and 10 tests to
detect all single stuck-at faults as shown in Table 3A were
generated. Thus, the 10 tests form a minimum test set for the
adder in Fig. 3A.

For the adder in Fig. 3B, an independent fault set with 12
faults was found, and 12 tests as shown in Table 3B can detect
all single faults. Thus, the 12 tests form a minimum test set for
the adder in Fig 3B. This is larger than the size of the
minimum tests for the adder in Fig. 3A. One of the
considerable reasons is that we used trees of 2-input EXOR
gates, instead of multiple-input EXOR gates. For example, a
2-input EXOR gate requires three tests for single stuck-at
faults, but a 3-input EXOR gate can be tested by only two
tests. Therefore, the use of multiple-input EXOR gates may
reduce the number of tests.

3. Minimum tests for cascaded adders
3.1 Tests for ripple carry adders

The ripple carry adder shown in Fig. 2 consists of cells of
the full adders, where the primary output, cout, of the full
adder is connected to the primary input, cin, of the next full
adder. In this section, we show how to construct minimum
tests for the ripple carry adder as an array of the full adder.

In order to use the tests of the full adder for the ripple
carry adder, it is required to satisfy two conditions below:
(1) to apply the tests of the full adder for each cell.
(2) to observe the output of each cell where fault effect may
be propagated.
The following theorems show that these condition can be
satisfied.
Theorem 4. Any tests for the full adder can be applied to each
cell of the ripple carry adder.
(Proof) For the first cell, the theorem holds. For the ith cell
(i≥2), the signal line ci-1 that connects the (i-1) th cell with the
i th cell is controllable using the primary inputs, ai-1 and bi-1.
Hence, the theorem holds. (Q.E.D.)
Theorem 5. If tests for the full adder are applied to each cell
of the ripple carry adder, faults in the ripple carry adder are
detected.
(Proof) Suppose that tests for the full adder are applied to the
ith cell of the ripple carry adder. If effects of a fault in the ith
cell are propagated to si, the fault can be detected. Even if
fault effects are propagated to ci, it can be detected at the
primary output si+1 independently of the logic values of ai+1

and bi+1. Thus, any fault in a cell is detected by the tests for
the cell, and the theorem holds. (Q.E.D.)

The logic value at cout of the ith cell corresponds to the
logic value at cin of the (i+1)th cell. For the array of cells in
Fig. 1A, whenever the test t2, t3, or t5 in Table 1A are applied
to the ith cell, the same test can be applied to the (i+1)th cell
because logic values required at cin of the (i+1)th cell and cout

of the ith cell are identical. However, when test t1 is applied to
the ith cell, to the (i+1)th cell, another test which requires
logic value 0 at cin should be applied. We achieve it by
assigning logic value 0 to x of test t4. Conversely, when test t4
is applied to the ith cell, test t1 is applied to the (i+1)th cell.

As a result, by assigning logic value 0 to x of test t4 and
logic value 0 to y of test t5, we can obtain five tests as shown
in Table 4 to detect all single faults in the ripple carry adder
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based on the full adders in Fig. 1A. Similarly, we can obtain
three tests for the ripple carry adder based on the full adders in
Fig. 1B because logic values at cin and cout are identical for
every test. These tests obtained for the array are minimum
because their sizes are the same as those of the minimum tests
for each cell.

3.2 Tests for multiple stuck-at faults in ripple carry
adders

Under the assumption of the multiple stuck-at fault model,
stuck-at faults are taken into account only at fanout branches
and the primary inputs which are called checkpoints. This is
because every multiple stuck-at fault can be represented by a

combination of stuck-at faults on checkpoints [10]. Both of
the full adders in Fig. 1A and 1B have 11 checkpoints, i.e., a,
b, cin, fanin lines of gate g1, g2, g3, and g4. If we treat multiple
stuck-at faults in the ripple carry adders, we must assume
faults on every checkpoints in each cell.

The tests in Table 1A can detect all multiple stuck-at
faults in the full adder of Fig. 1A. Any multiple fault which
contains stuck-at faults on lines between the primary inputs,
a, b, cin and the primary output s are detected at s. And any
multiple fault which contains stuck-at faults on fanin lines of
gate g3 and g4 are detected at cout.

For the ripple carry adder, however, the five tests in Table
4 cannot detect all multiple faults. For example, a multiple
fault (a2/1, b2/0, g1_g3/1, a_g4/0, b_g4/1) remains undetected.
Although we can produce other 5 tests to detect all single
faults by assigning logic value 1 to y in Table 1A, the multiple
fault cannot be detected. As any other five tests cannot detect
all single faults, at least six tests are required for detecting all
multiple faults.

By adding a test such that the logic value of every primary
input is 1 to the tests in Table 4, all multiple faults can be
detected. It is proven using an idea of the fault analysis
method in [11] .
Theorem 6. Six tests in Table 5 detect all multiple stuck-at
faults of the ripple carry adder consisting of the full adders in
Fig. 1A.
(Proof is in [12])

Since it is impossible to detect all multiple faults by five
tests, the tests in Table 5 are minimum. Also, they detect all
multiple faults in the ripple carry adder using the full adder in
Fig 1B. But they may not be minimum tests for the circuit.

3.3 Tests for single stuck-at faults in 4m-bit carry
look-ahead adders

By cascading the 4-bit carry look-ahead adders in Fig. 3A
or Fig. 3B, we can realize a 4m-bit adder. We consider the
size of tests for single faults in the cascaded carry look-ahead
adder.

As shown in Section 2.4, the size of the minimum tests for
the adder in Fig. 3A is 10. However, we could not produce a
test set whose size is 10 using the tests in Table 3A. The
number of tests which requires logic value 1 at cin is six (i.e.,
t1, t2, t3, t6, t7 and t9), but the number of tests which produce

Table 4: Minimum tests for the ripple carry adder

test a1 b1 c0 a2 b2 a3 b3 a4 b4 •    •    •

T1 0 0 1 1 1 0 0 1 1 •    •    •
T2 0 1 0 0 1 0 1 0 1 •    •    •
T3 1 0 0 1 0 1 0 1 0 •    •    •
T4 1 1 0 0 0 1 1 0 0 •    •    •
T

5
0 1 1 0 1 0 1 0 1 •    •    •

Table 5: Minimum tests for multiple faults of
 the ripple carry adder

test a1 b1 c0 a2 b2 a3 b3 a4 b4 •    •    •

T1 0 0 1 1 1 0 0 1 1 •    •    •
T2 0 1 0 0 1 0 1 0 1 •    •    •
T3 1 0 0 1 0 1 0 1 0 •    •    •
T4 1 1 0 0 0 1 1 0 0 •    •    •
T5 0 1 1 0 1 0 1 0 1 •    •    •
T6 1 1 1 1 1 1 1 1 1 •    •    •

Table 3A: Tests for the carry look-ahead adder in FIg. 3A

In Out
test a1 a2 a3 a4 b1 b2 b3 b4 c0 c4

t1 0 1 1 1 0 0 0 0 1 0
t2 1 1 1 0 1 1 1 0 1 0
t3 1 0 0 0 1 0 1 1 1 0
t4 1 1 0 1 0 1 1 0 0 1
t5 1 1 1 0 1 0 0 1 0 1
t6 0 0 0 0 1 1 1 1 1 1
t7 1 1 0 1 1 1 0 0 1 0
t8 0 1 1 0 1 0 1 1 0 1
t9 1 0 0 1 0 0 0 1 1 1
t10 0 0 0 0 1 1 1 1 0 0

Table 3B: Tests for the carry look-ahead adder in FIg. 3B

In Out
test a1 a2 a3 a4 b1 b2 b3 b4 c0 c4

t1 1 1 1 1 0 0 0 0 1 1
t2 1 0 0 0 1 1 1 1 1 1
t3 0 1 0 0 1 0 1 1 0 0
t4 0 1 0 0 1 0 1 0 1 0
t5 1 1 0 0 1 1 1 1 0 1
t6 1 0 0 1 1 1 0 0 0 0
t7 0 1 1 0 1 1 0 0 0 0
t8 1 1 0 0 1 1 0 1 0 0
t9 1 1 1 0 0 0 1 0 0 0
t10 1 0 1 0 0 0 0 1 1 0
t11 1 0 1 0 0 1 1 1 1 1
t12 1 0 1 1 1 1 0 1 0 1
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logic value 1 at cout is five (i.e., t4, t5, t6, t8 and t9).
Accordingly, if we use the tests in Table 3A without repeating
same one, one of the six tests cannot be applied. In order to
avoid missing any test, we add an additional test such that
logic value 0 is assigned to input cin and logic value 1 at
output cout is produced. As a result, we obtain 11 tests for the
cascaded look-ahead adder. An example of such tests is
shown in Table 6. Note that we have not proven the
minimality of the tests in Table 6.

For the 4m-bit carry look-ahead adder realized by
cascading the adders in Fig. 3B, we can obtain 12 tests to
detect single stuck-at faults. The 12 tests are minimum for the
circuit and it can be proven by the similar way to Theorem 4
and 5.

4. Conclusion and comments
In this paper, we presented minimum tests for ripple carry

adders and cascaded carry look-ahead adders. Especially, we
presented a ripple carry adder that can be tested by only three
tests. These tests are considerably smaller than previously
published ones. This is due to the compact full adder using
more EXOR gates. Without EXOR gates, adders and their test
will be more complex. Thus, for the stuck-at fault model, we
can say as follows: “EXOR based ripple carry adders are
easily testable.”
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