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Abstract— This paper shows a new type of a cycle-based logic
simulation method using a Look-Up Table (LUT) cascade emu-
lator. The method first transforms a given circuit into LUT cas-
cades through BDD (Binary Decision Diagram). Then, it stores
LUT data to the memory of an LUT cascade emulator. Next, it
generates the C code representing the control circuit of the LUT
cascade emulator. And, finally, it converts the C code into the
execution code. This method is compared with a Levelized Com-
piled Code (LCC) simulator with respect to the simulation time
and setup time. Although we used standard PC to simulate the
circuit, experimental results show that this method is 12-64 times
faster than the LCC.

I. INTRODUCTION

With the increase of the integration of LSIs, the time for

the verification of the design increases. Thus, high-speed logic

simulators are needed.

Logic simulators can be roughly divided into two types:

event-driven simulators and cycle-based simulators. In an

event-driven simulator, only the logic gates whose input sig-

nal change are evaluated. On the other hand, in a cycle-based

logic simulator, the operation order of gates are determined

statically beforehand, and all the logic values of the gates are

evaluated for each clock cycle. Although the cycle-based logic

simulator does not perform the timing verification, it is often

faster than the event-driven simulator.

An LCC [1] is a kind of a cycle-based logic simulator using

a general-purpose CPU. An LCC generates a program code for

each gate of a logic circuit, and evaluates the circuit in a topo-

logical order from the inputs towards the outputs. An event-

driven simulator that emulates only logic gates whose outputs

change has been developed [16]. It is at most two times faster

than the LCC. In this paper, we will present a cycle-based logic

simulator using an LUT cascade emulator. An LUT cascade

emulator [2] consists of a control part, memories, and regis-

ters. Each register is connected to a programmable intercon-

nection circuit, and the LUT cascade emulator evaluates the

logic circuit stored in the memory. Murgai-Hirose-Fujita [11]

also developed a logic simulator using large memories. Their

method first converts a given circuit into a random logic net-

work of single-output LUTs, then stores them in the memory,

and finally evaluates the circuit by an event-driven logic sim-

ulator implemented by a hardware accelerator. In our method,

we first convert the given circuit into a cascade rather than ran-
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Fig. 2. LUT cascade.

dom logic, so the control part is simpler than Murgai-Hirose-

Fujita’s method. Also, our method uses multiple-output LUTs

rather than single-output LUTs. In this paper, we consider

the software-based logic simulation system where the LUT

cascade emulator is simulated on a PC. Compared with the

hardware-based logic simulator, logic simulator using a stan-

dard PC is much cheaper, and can be enhanced with the im-

provement of the performance of PCs.

II. LUT CASCADE EMULATOR

A. LUT Cascade

Fig. 1 shows a model for a sequential circuit, where X de-

note inputs, Z denote outputs, Y denotes the inputs to flip-

flops, Y ′ denotes the outputs of flip-flops, and |Y | denotes

the number of state variables. We first consider an LUT cas-
cade [3] that realizes the combinational part of the sequential

circuit, then consider the LUT cascade emulator that emulates

the LUT cascade.

An LUT cascade is shown in Fig. 2, where multiple-output

LUTs (cells) are connected in series to realize a multiple-

output function. The wires connecting adjacent cells are called

rails. Also, each cells may have external outputs in addition to

the rail outputs. In this paper, Xi denotes the external inputs
to the i-th cell; Y ′

i denotes the state inputs to the i-th cell;

Zi denotes the external outputs of the i-th cell; Yi denotes

the state outputs of the i-th cell; Ri−1 denotes the rail in-
puts to the i-th cell; and Ri denotes the rail outputs from the

i-th cell. We can obtain the LUT cascades by applying func-
tional decomposition repeatedly to the BDD that represents

the multiple-output function [4].

Definition 2.1 Let �X = (x1, x2, . . . , xn) be the input vari-
ables, �Y = (y1, y2, . . . , ym) be the output variables, and
�f = (f1( �X), f2( �X), . . . , fm( �X)) be the corresponding out-
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put functions. The characteristic function of the multiple-

output function is �χ( �X, �Y ) =
m∧

i=1

(yi ≡ fi( �X)).

The characteristic function of an n-input m-output function

is a two-valued logic function with (n + m) inputs. It

has input variables xi (i = 1, 2, . . . , n), and output vari-

ables yj for output fj . Let B = {0, 1}, �a ∈ Bn, �F =
(f1(�a), f2(�a), . . . , fm(�a)) ∈ Bm, and �b ∈ Bm. Then, the

characteristic function satisfies the relation

�χ(�a,�b) =
{

1 (when �b = �F (�a))
0 (otherwise)

Definition 2.2 A support variable of a function f is a vari-
able on which f actually depends.

Definition 2.3 [5] The BDD for CF of a multiple-output
function �f = (f1, f2, . . . , fm) is the ROBDD [10] for the char-
acteristic function �χ. In this case, we assume that the root node
is in the top of the BDD, and the variable yi is below the sup-
port variable of fi, where yi is the variable representing fi.

Definition 2.4 The width of the BDD for CF at height k is
the number of edges crossing the section of the graph between
xk and xk+1, where the edges incident to the same nodes are
counted as one. Also, in counting the width of the BDD for CF,
we ignore the edges that incident to the constant 0 node.

Let X1 and X2 be sets of input variables, Y1 and Y2 be

sets of output variables, (X1, Y1, X2, Y2) be the variable or-

dering of a BDD for CF for the multiple-output function �f =
(f1, f2, . . . , fm), and W be the width of the BDD for CF at

the height (X1, Y1) in Fig. 3. By applying functional decom-

position to �f , we obtain the network in Fig. 4, where the num-

ber of lines connecting two blocks is t = �log2 W � [4].

Theorem 2.1 [5] Let µmax be the maximum width of the
BDD for CF that represents an n-input logic function �f . If
u = �log2 µmax� ≤ k − 1, then �f can be realized by a cir-
cuit shown in Fig. 4, where |X1| = k. By applying functional
decompositions s − 1 times, we have the cascade having the
structure of Fig. 2.

B. LUT Cascade Emulator

Fig. 5 shows an LUT cascade emulator for a sequential

circuit.
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Fig. 7. Emulation of a sequential circuit

An LUT cascade emulator stores the cell data of an LUT

cascade in the memory for logic. The address of cell data is

calculated from inputs, state variables, and rail outputs of the

preceding cell. The LUT cascade emulator reads the cell out-

puts from the memory for logic, and send them to the State
Register and the Output Register. The Input Register stores

the values of the primary inputs; the MAR (Memory Address

Register) stores the address of the memory; the MBR (Mem-

ory Buffer Register) stores the outputs of the memory; the Pro-
grammable Interconnection Network connects the input reg-

ister, the state register, and the MAR, also it connects the MBR

and the MAR; the Memory for Interconnection stores data

for the interconnections; and the Control Network generates

necessary signals to obtain functional values.

To emulate a sequential circuit, the LUT cascade emula-

tor stores state variables and output variables in the registers.

Fig. 6 shows the Double-Rank Flip-Flop for the state register

and the output register, where L1 and L2 are D-latches. Set the

select signals to high when all the cells in a cascade are eval-

uated, and send the values into L1 latches. When all the cas-

cades are evaluated, the values of the state variables are sent to

L2 latches. This can be done by adding a pulse to S Clock.

Example 2.1 Fig. 7 illustrates the emulation of the sequential
circuit whose combinational part realizes the LUT cascade in
Fig. 2.

At T ime = 1, to evaluate Cell 1, the two most significant

bits of the address are set to (0,0) to specify Page 1. Also, the



inputs to Cell 1 X1 and Y ′
1 are set to the lower address bits

through the programmable interconnection network. By read-

ing Page 1, the outputs of Cell 1 are sent to MBR. For the out-

puts that become the primary output Z1, store it in the output

register, while for the output that becomes the state output Y1,

store it in the state register (Fig. 7(a)).

At T ime = 2, to evaluate Cell 2, the two most significant

bits of the address are set to (0,1) to specify Page 2. Also,

the outputs of Cell 1, R1 are connected to the middle address

bits, and the input variables of Cell 2 X2 and Y ′
2 are set to the

lower address bits through the programmable interconnection

network. By reading Page 2, the outputs of Cell 2 are sent to

MBR. For the output that becomes the primary output Z2, store

it in the output register, while for the output that becomes the

state output Y2, store it in the state register (Fig. 7(b)).

At T ime = 3, to evaluate Cell 3, the two most significant

bits of the address are set to (1,0) to specify Page 3. Also,

the outputs of Cell 2, R2 are connected to the middle address

bits, and the input variables of Cell 3 X3 and Y ′
3 are set to the

lower address bits through the programmable interconnection

network. By reading Page 3, the outputs of Cell 3 are sent to

MBR. For the output that becomes the primary output Z3, store

it in the output register, while for the output that becomes state

output Y3, store it in the state register (Fig. 7(c)).

When all the cells of cascades are evaluated, Con-

trol Network sends a pulse to S Clock of the state reg-

ister and the output register, and the values of state out-

puts Y1, Y2, Y3 are sent to the L2 latches. Also, the val-

ues of the output register Z1, Z2, Z3 are sent to the primary

outputs. (End of Example)

III. SYNTHESIS OF THE LUT CASCADE EMULATOR

A. Partition of the outputs

When the number of outputs is large, we partition the out-

puts into groups, and realize a cascade for each group inde-

pendently. Usually, the BDD for CF for all the outputs are too

large to construct. Even if the BDD for CF is constructed, it

can be too large to be realized by an LUT cascade. Also, con-

structing a single BDD for CF for all the outputs is inefficient,

since the optimization of a large BDD for CF is time consum-

ing.

In order to construct as small BDD for CFs as possible, we

partition the outputs so that each group has a small number of

support variables.

Definition 3.5 Let F = {f1, f2, . . . , fm} be the set of the out-
puts functions, G ⊆ F , and fi ∈ F − G. Then, the similarity
of the output fi with G is defined as follows:

Similarity(i, G, F ) = |Sup(fi) ∩ Sup(G)|, (1)

where Sup(F ) denotes the set of support variables of F .

Algorithm 3.1 (Partition the Outputs and Construction of
BDD for CF)
Let F = {f1, f2, . . . , fm} be the set of m logic functions,

Z = {G1, G2, . . . , Gr} be the set of subset of output functions
after partitioning, r be the number of partitions, and Th node
be the threshold of the number of nodes.

1. Z ← φ, r ← 0.

2. While F 	= φ, do Steps (a)-(d).

(a) Node ← 0, Gr ← φ.

(b) While Node ≤ Th node, F 	= φ, and Gr is cas-

cade realizable, do Steps i-iii.

i. Select fi with the maximum

Similarity(i, Gr, F ). If Gr = φ, then

select fi that has the largest support.
ii. Gr ← Gr ∪ {fi}, F ← F − {fi}.

iii. Construct BDD for CF that realizes Gr, and

Node ← (the number of nodes).
(c) If Gr is not cascade realizable, then Gr ← Gr −

{fi}, F ← F ∪ {fi}.
(d) Z ← Z ∪ {Gr}, r ← r + 1.

3. Terminate.

This method merges outputs into a group while a cascade is

realizable and the number of nodes in the BDD is equal to or

less than the threshold. Algorithm 3.1 partitions the outputs

into the groups so that the resultant BDDs are small enough.

B. Memory Packing

By Alogrithm 3.1, a given multiple-output function is repre-

sented by a set of BDD for CFs. Then, the LUT cascades are

constructed, and LUT data is allocated into the memory of the

LUT cascade emulator.

Example 3.2 Fig. 8 shows the LUT cascade consisting of 4-
input cells. Fig. 9(a) illustrate the memory map of cell data,
where the memory has 6-bit address inputs, and each word
consists of four bits. The dark parts in the figure are unused,
and Pi denotes the page number. (End of Example)

In Example 3.2, each cell data are stored in a separate page

of the memory. The data of a cell must be stored in the same

page, and must be read simultaneously. However, if there are

any extra space in the same page, multiple cell data can be

stored in the same page. This method to reduce the memory

area is called memory-packing [6].

Example 3.3 In Fig. 9(a), by storing the cell data r5 and z1 to
Page 1, we have the memory map in Fig. 9(b), where a half of
the memory is enough to store all the data. (End of Example)

IV. LOGIC SIMULATION USING AN LUT CASCADE

EMULATOR

A. Generation of the execution code for the simulation

Fig. 10 shows the data flow of the logic simulation system

using LUT cascade emulator.



x1x2x3x4 x5x6 x7y’1 x8
r1
r2

r3
r4

r5

y1 z1

x9

1 2 3 4

Fig. 8. Example of LUT cascade.

r1 r2
r3 r4

r5
y1

z1

r1 r2
r3 r4 y1
r5z1

(a) (b)

P1

P2

P3

P4

Fig. 9. Example of memory-packing.

*.v
*.vhd *.bdd

*.c

*.memBDD
Generation

C Code
Generation

Cascade Realization
and Memory Mapping

LUT Cascade
Emulator

Compilation
Output Vectors

Input Vectors

Fig. 10. Flow of data for the logic simulation system using LUT cascade

emulator.

First, it converts the Verilog-VHDL code describing the

given circuit into shared-BDDs [9]. Then, it reduces the num-

ber of nodes of BDDs by changing variable orders [7]. Next,

it generates the LUT cascades from BDDs using the functional

decomposition described in Chapter 2, and it maps them to the

memory of the LUT cascade emulator. Also, it generates the

C code that simulates the control circuit of the LUT cascade

emulator. Next, it complies the C code into the execution code

for simulation of the LUT cascade emulator. And, finally the

simulator evaluates the output of the given circuit, by using the

memory map of the LUT cascade emulator.

B. Program code that simulates the LUT cascade emulator

This system generates the program code that describes the

following operations.

Step 1 Set the input register, and initialize the state register.

An input value is set to the input register. Also, the value

of the state register is initialized.

Step 2 Evaluate of each cell.

Step 2.1 Simulate the programmable interconnection net-

work.

The address of the memory for logic is generated

from the values of the input register, the state input

register, the MBR, and a page address.

Step 2.2 Read the memory for logic.

The content of the memory for logic is read using

the address generated by Step 2.1.

Step 2.3 Distribute output values of the memory for logic.

The values read by Step 2.2 are sent to the output

register and the state register.

Step 3 Perform the state transitions.

The output values of the state register is updated by

S Clock.

Assigning each memory output to each register consumes

CPU time. Fortunately, the memory outputs are stored in the

order of primary outputs, state outputs, and rail outputs. For a

32-bit processor, we can evaluate up to 32 outputs at a time. To

obtain required outputs, we shift the memory outputs covered

by a mask, and assign to a 32-bit variable. In this way, we

can evaluate the multiple outputs simultaneously. Also, there

is an additional merit for performing the state transition. Let

|Y | be the number of state variables for given logic function,

then the number of evaluations for the state transition is
⌈
|Y |
32

⌉
for a 32-bit machine.

Since cascades have much fewer signal lines than the origi-

nal circuit, the compilation time for cascades are much shorter

than that of the conventional LCC method.

C. Analysis of Simulation Time

When the LUT cascade emulator is implemented on a ded-

icated hardware [2], the evaluation time is proportional to the

number of cells. However, when the LUT cascade emulator is

implemented on a standard PC, we need extra time since the

inputs and outputs of a cell are evaluated sequentially.

To do high-speed simulation for the LUT cascade emulator

on a PC, we have to consider two different objects:

a. Reduction of the number of cells.

This can be done by increasing the number of inputs of

each cell. However, the increase of the number of inputs

of each cell also increases the evaluation time per cell.

b. Reduction of the number of cell inputs.

This decreases the evaluation time per cells, but increases

the number of cells.

To find the best strategy, we did following experiments. We

implemented 10 MCNC benchmark functions [8] on the LUT

cascade emulator. By changing the maximum number of in-

puts for cells, we obtained the average number of cell inputs,

the number of cells, and the execution time of the LUT cas-

cade emulator. Fig. 11 shows the experimental results, where

the horizontal axis denotes the maximum number of cell in-

puts; 0 denotes the lower bound on the maximum number of

inputs of cells, that is �log2 µmax�+1; the vertical axis denotes

the ratios of the number of cells, the number of the average cell

inputs, and simulation time. We set 1.00 to the ratios when the

number of cell inputs is �log2 µmax� + 1.

Fig. 11 shows that the simulation time increases with the

number of cell inputs. To compute the address of the memory

for logic, we need CPU time. This CPU time increase with the

number of inputs of a cell. Therefore, our strategy is to reduce

the number of cell inputs in the LUT cascade emulator.

V. EXPERIMENTAL RESULTS

A. Comparison with LCC

We simulated selected MCNC benchmark functions by LUT

cascade emulator and LCC on a same PC. Table I shows the
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experimental results. Name denotes the name of benchmark

function; In denotes the number of inputs; Out denotes the

number of outputs; State denotes the number of state variables;

Cas denotes the number of LUT cascades; Cell denotes the

total number of cells; and Mem denotes the amount of mem-

ory (Mega Bits). Also, EXT.in denotes the average number

of external inputs to cells; P.out denotes the total number of

cells with external output(s); and S.out denotes the total num-

ber of cells with state output(s). Sim denotes the evaluation

time (sec). In order to obtain the raw evaluation time for the

simulation, we generated the one million random test vectors,

and evaluated the time excluding the time for reading and writ-

ing vectors. Setup denotes the setup time (sec) for a simula-

tion. Setup of LCC is the time for the C code generation and

the compilation, while Setup of the LUT cascade emulator is

the time for BDD generation, LUT cascades synthesis, mem-

ory mapping, C code generation, and the compilation. Literals
denotes the total number of literals in expressions of lines of

the C code generated by the LCC. Ratio denotes that of the

simulation setup time or that of the simulation execution time

(LCC/LUT cascade emulator). To produce the executable code

for LCC, we used gcc compiler with optimization option -O3.

Also, we generated program codes for LUT cascade emula-

tor, and compiled them with the same conditions as LCC. In

the experiments, we used an IBM PC/AT compatible machine,

Pentium4 Xeon 2.8GHz, L1 Cache: 8KB, L2 Cache: 512KB,

Memory: 4GByte, and OS: Redhad (Linux 7.3). For the bench-

mark function clma, it has many redundant primary inputs, pri-

mary outputs, and logic gates. For pre-processing, we simpli-

fied the Verilog-VHDL descriptions of benchmark functions

by using Quartus II version 5.0 [13]. Note that, the time for

the pre-processing is not included in the setup time.

Table I shows that the LUT cascade emulator is 12 - 64 times

faster than the LCC. Also, the setup speed for the LUT cascade

emulator is 1.20 - 5.22 times faster than the LCC, except for

s5378 and clma.

The number of operations in the LUT cascade emulator is
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estimated as follows:

EST.LUT = EXT.in× Cell

+Cell + P.out + S.out + Rail, (2)

where Rail = Cell − Cas. The first term of expression (2)

corresponds to the setup time of all the external inputs of the

cells; the second term corresponds to the access time to the

memory for logic; the third term corresponds to the setup time

for the output register; the fourth term corresponds to the setup

time for the state register; and the last term corresponds to the

setup time for the rail inputs.

In Fig. 12, the right vertical axis denotes the experimental

value EXP.LUT (sec), and the left vertical axis denotes the es-

timated number of operations EST.LUT. Also, we conjecture

that Literals is proportional to the simulation time for LCC.

In Fig. 13, the right vertical axis denotes the experimental

value EXP.LCC (sec), and the left vertical axis denotes the esti-

mated number of literals EST.LCC = Literals. Figs. 12 and 13

show that the EXP.LUT and EXP.LCC can be estimated from

EST.LUT and EST.LCC, respectively.

In Figs. 12 and 13, note that EXP.LUT is smaller than

EXP.LCC, while EST.LUT (number of operations) is larger

than EST.LCC (number of literals) for some functions. This

may look strange. To see the reason, we converted the C codes



TABLE I

RESULTS OF REALIZATION OF BENCHMARK FUNCTIONS.

Name In Out State LUT cascade emulator LCC Ratio
Cas Cell Mem EXT.in P.out S.out Setup Sim Literals Setup Sim Setup Sim

[Mbit] [sec] [sec] [sec] [sec]
s5378 35 49 164 40 543 0.82 2.39 105 28 14.59 0.49 4424 10.26 10.46 0.70 21.35

s9234 36 39 211 44 599 0.91 2.63 26 120 14.68 0.71 8220 41.01 20.64 2.79 29.07

s13207 62 152 638 93 1245 3.28 2.27 109 390 31.09 1.46 11954 83.04 43.76 2.67 29.97

s15850 77 150 534 105 3370 8.95 1.95 115 338 79.25 3.25 14328 115.72 58.71 1.46 18.06

s38417 28 106 1636 389 9411 45.36 2.55 60 964 763.07 9.87 33769 917.40 245.63 1.20 24.89

s38584 38 304 1426 270 5118 16.90 2.55 232 956 159.09 7.61 34485 830.27 230.76 5.22 30.33

dsip 229 197 224 45 473 6.60 1.96 108 115 10.90 0.42 5959 26.39 27.08 2.42 64.48

bigkey 263 197 224 48 541 3.76 1.97 171 121 11.74 0.42 9262 27.58 16.26 2.35 38.71

clma 101 81 33 9 45 0.16 3.28 27 21 3.59 0.11 2994 2.87 1.37 0.79 12.45

of the LUT cascade emulator and the LCC into the assembly-

codes, and analyzed them. The size of the assembly-code for

the LCC is several times larger than EST.LCC. This is because

the LCC compiler generates extra codes to evaluate the nega-

tive literals and the logic gates, and to produce the output sig-

nals. On the other hand, the size of the assembly-code for LUT

cascade emulator does not depend on EST.LUT, and is much

smaller than EST.LUT. In the LCC, it’s operands frequently

move between register and memory. For the gate with fan-

outs, the LCC stores the output values of the gate into a vari-

able temporarily, and uses it as the input of two or more gates.

On the other hand, the LUT cascade emulator uses only the rail

values in the single register variable. Therefore, only the input

and output register and the memory for logic requires mem-

ory references. Experimental results show that the simulator

based on an LUT cascade emulator is 12-64 times faster than

the LCC. One reason for this is the difference of the represen-

tations: the cascade has many fewer signals than the random

logic network. Another reason is due to the CPU architecture

of the PC. The access time of the data in the main memory

is about 200 times longer than one in the L1 cache. So, the

CPU time heavily depends on the frequency of cache miss. In

the case of the LCC simulator, the circuit data and control are

mixed, and the instruction data is too large to be stored in the

data cache. On the other hand, in the case of an LUT cascade

emulator, the cascade data and control are separated. Control

data is in the instruction cache, while the cascade data is in the

data cache. Thus, we can expect fewer cache miss in the LUT

cascade emulator.

B. Comparison with Commercial Tools

We compare the our method with two commercial simu-

lators: Super-FinSim [14] version 6.2.9 and ModelSim [15]

Altera-Edition (AE) 6.0c. ModelSim (AE) is an event-driven

logic simulator, bundled with Quartus II. It supports functional

simulation involving the ’zero-delay’. To obtain the evaluation

time for the functional simulation, first, we generate a verilog

code for a testbench including 104 test vectors. Then, we com-

piled the verilog codes, representing benchmark circuit and

testbench, using a command ’vlog [benchmark name.v]’ with

option ’+notimingcheck’ and ’no notifier’. Next, we evaluate

the simulated time using commands which are ’vsim -c’ and

TABLE II

RESULTS OF COMPARISON WITH COMMERCIAL TOOLS.

Name Simulation time Ratio
FinSim ModelSim LUT Cascade v.s.FinSim v.s.ModelSim

Emulator

s5378 1.45 35.77 0.09 16.11 397.44

s9234 1.73 44.72 0.11 15.73 406.55

s13207 6.59 46.50 0.17 38.76 273.53

s15850 14.84 68.63 0.58 25.59 118.33

s38417 17.93 72.70 3.28 5.47 22.16

s38584 58.21 155.84 1.76 33.07 88.55

dsip 14.31 30.42 0.16 89.44 190.13

bigkey 2.99 37.28 0.08 37.38 466.00

clma 41.13 88.86 0.09 457.00 987.33

’run 10000’. Super-FinSim supports both the enhanced cy-

cle simulation (ECS) and the event-driven simulation at the

same time. To compare the our method with the ECS, we

generated the testbench similar to ModelSim, and we com-

plied verilog codes using a command ’finvc’ with option ’+de-

lay mode zero’, ’-dsm com’, ’-ol 1’, ’-acc’, ’-fastgate’, ’+no-

timingcheck’, and ’+no notifier’. Then, we built an execution

file using the command ’finbuild’, and evaluated the simulation

time. We used Microsoft Visual C++ version 6.0 for Super-

FinSim. In the experiments, we used an IBM PC/AT compat-

ible machine, Pentium4 3.06GHz, L1 Cache: 8KB, L2 Cache

512KB, Memory 2GByte, and OS: Windows XP Professional

SP2. To realize the LUT cascade emulator for Linux on Win-

dows, we used gcc compiler version 3.2 on the cygwin.dll ver-

sion 1.3.22 which emulates Linux API using Windows API.

Table II compares the results. Simulation time denotes the

actual simulation time including the time for reading and writ-

ing 104 vectors; and Ratio denotes that of the simulation execu-

tion time (Super-FinSim / LUT cascade emulator) and (Mod-

elSim / LUT cascade emulator), respectively.

Table II shows that the LUT cascade emulator is 22.16-

987.33 times faster than ModelSim, and 5.47-457.00 times

faster than FinSim.

Especially, for benchmark clma, our method is hundreds

times faster than commercial tools. clma is a special bench-

mark circuit with redundant input-and-output signals and re-

dundant gates. In order to perform a high-speed simulation,

our method converted the circuit into BDDs to remove these
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Fig. 14. Percentage of each process for setup time.

redundancy. However, ModelSim and FinSim used original

circuits, so the redundancy of circuits affected the simulation

time.

C. Setup Time for the LUT Cascade Emulator

Fig. 14 shows the percentage of each process of the setup

time for the LUT cascade emulator. The labels of the verti-

cal axis show function names. The horizontal axis shows the

percentage of the processing time for BDD for CF generation

(BDD); LUT cascade synthesis (cascade); C code generation

and compilation (compile); and memory mapping (mapping).

overall denotes the average percentage of each process. Fig. 14

shows that BDD generation and compilation consume most of

the CPU time. For BDD generation, optimization of variable

orders for BDDs consumes most of the CPU time. Reduction

of the code size, e.g., reduction of the number of cells, is effec-

tive to reduce the compilation time. Increase of cells increases

the simulation setup time. The time for memory mapping in-

creases with the number of cell inputs. The amount of memory

for each cell is 2k ·u, where k is the number of inputs of a cell,

and u is the number of outputs of a cell. Therefore, the num-

ber of cell inputs influences the total amount of data. In our

experiment, since the average number of cell inputs is small,

the memory mapping time did not influence the setup time.

VI. CONCLUSION AND COMMENTS

In this paper, we showed a cycle-based logic simulator us-

ing the LUT cascade emulator running on a standard PC. This

method converts the circuit into LUT cascades. Then, it stores

the LUT data in the memory of the LUT cascade emulator.

Next, it generates the program code for the control circuit of

the LUT cascade emulator. The program code is suitable for

logic simulation on a standard PC due to the better memory ref-

erence patterns. Experimental results using benchmark func-

tions show that this method is 12-64 times faster than LCC on

a standard PC.

Our method converts the circuit into BDDs, where the sizes

of BDDs representing the circuits are limited due to the avail-

able memory. To avoid this limitation, we partition the output

functions into groups. However, when the BDD representing a

single output is excessively large, our method fails to perform

the emulation.

One of the future projects is to derive a partition method for

the circuit and to represent the circuits by smaller BDDs.
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