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Abstract—This paper presents an efficient technique for solv-
ing a Boolean matching problem in cell-library binding, where
the number of cells in the library is large. As a basis of the
Boolean matching, we use the notion NP-representative (NPR);
two functions have the same NPR if one can be obtained from
the other by a permutation and/or complementation(s) of the
variables. By using a table look-up and a tree-based breadth-
first search strategy, our method quickly computes NPR for a
given function. Boolean matching of the given function against
the whole library is determined by checking the presence of
its NPR in a hash table, which stores NPRs for all the library
functions and their complements. The effectiveness of our
method is demonstrated through experimental results, which
shows that it is more than two orders of magnitude faster than
the Hinsberger-Kolla’s algorithm—the fastest Boolean match-
ing algorithm for large libraries.
Index Terms—Logic synthesis, Boolean matching, cell-library
binding, technology mapping, canonical form.

I. I NTRODUCTION

Determining whether a circuit can be functionally equivalent
to another under a permutation of its inputs, complementa-
tion of its one or more inputs, and/or inversion of its output is
an important problem in logic synthesis, andBoolean match-
ing technique is used to solve it. Algorithms for Boolean
matching have applications in cell-library binding where it
is necessary to repeatedly check if some part of a multiple-
level representation of a Boolean function can be realized
by any of the cells from a given library [7], in logic verifi-
cation where correspondence of the inputs of two circuits are
unknown [14, 24], and in table look-up based logic synthe-
sis [5]. In this paper, we consider Boolean matching problem
for cell-library binding. An exhaustive method for Boolean
matching is computationally expensive even for functions
with only few variables, because the time complexity of such
an algorithm for ann-variable function isO(n!22n).

Boolean matching phase is one of the most time con-
suming steps in cell library binding, and because of their
importance in synthesizing cost effective circuits, Boolean
matching problems received much attention and many al-
gorithms have been developed to efficiently solve them [1].

Signatures, which are computed from some properties of
Boolean functions, are extensively used in Boolean match-
ing [1]. Equality in the signatures are a necessary con-
dition for Boolean matching of two functions; although it
is not the sufficient condition, signature-based algorithms
have successfully demonstrated their effectiveness. Some
of the signature-based algorithms are efficient for perform-
ing pair-wise Boolean matching [14, 18, 23, 24]; however, to
match a function against a library they often require to per-
form pair-wise matchings of the function with all the library
cells. Therefore, Boolean matching techniques based on
them are unsuitable for handling libraries with large number
of cells. There are other signature-based algorithms that are
successfully used with cell libraries; however, they can han-
dle libraries with only modest size [4, 16, 22]. Moreover, due
to the lack of sufficient information in the signatures, algo-
rithms based on them in many cases are unable to conclude
a Boolean match. Thus, an exhaustive search is necessary
to obtain a conclusive result. Some other Boolean matching
algorithms consider only some restricted form of Boolean
matching [8, 12, 20, 21].

There are other categories of Boolean matching algo-
rithms that are based on the computation of some canonical
form for Boolean functions [2, 3, 6, 10, 25]. Two functions
match if their canonical forms are the same. The Boolean
matching technique that we consider in this paper falls under
this category. Burch and Long introduced a canonical form
for matching under complementation and a semi-canonical
form for matching under permutation of the variables [2].
These two forms can be combined to check Boolean match-
ing under permutation and complementation of variables.
However, a large number of forms for each cells are required
when using the method in cell library binding. Ciric and
Sechen [3], Debnath and Sasao [6], and Wuet al. [25] also
proposed canonical forms for efficient Boolean matching;
however, their techniques are applicable for Boolean match-
ing under permutation of the variables only. Hinsberger and
Kolla introduced a canonical form for solving the general
Boolean matching problem that we are considering in this
paper [10]. To the best of our knowledge, it is the fastest
Boolean matching algorithm that can handle libraries with



large number of cells under permutation and complementa-
tion of the variables as well as inversion of the function; how-
ever, the method still requires considerable computation.

In this paper, we present an efficient technique for com-
puting a canonical form for Boolean functions. The canoni-
cal form—which we refer to asNP-representative (NPR)—
remains unchanged under permutation and complementa-
tion of the variables. The set of functions that can be
made identical under permutation and complementation of
the variables form anNP-equivalence class[9, 11, 19]. In
an NP-equivalence class, the function that has the smallest
value in the binary representation is the NPR of the class,
and every NP-equivalence class has a unique NPR. Thus,
if the NPRs for the functions represented by the two cir-
cuits are equal, they are functionally equivalent under the
permutation and complementation of inputs. It should be
noted that our canonical form is similar to that of Hinsberger
and Kolla [10]. For efficient computation of NPRs we use
precomputedNP-transformation tables (NPTTs), which are
used to quickly generate any functions in an NP-equivalence
class. To make the search even more efficient, our method
combines an NPTT with a search tree for each variables and
performs breadth-first searches.

Although NPRs can identify functional equivalence of two
circuits under permutation and complementation of inputs,
they are unable to directly ascertain the functional equiva-
lence if it involves determining whether the output of one
circuit is also complemented. Thus, to handle the output
complementation we use the following strategy. Letf and
g be the Boolean functions represented by two circuitsF and
G, respectively. To check ifF andG are functionally equiva-
lent under permutation and complementation of inputs ofG
as well as possible complementation of its output, we com-
pute the NPRs forf , g, and ḡ. If the NPRs for f and g
are equal,G can be made functionally equivalent toF by
permutation and complementation of inputs ofG; however,
if the NPRs for f and ḡ are equal, complementation of the
output ofG is also required in addition to permutation and
complementation of its inputs to makeF andG functionally
equivalent.

For using our method in cell library binding the library
requires to be preprocessed. A set of personalized modules
can be obtained from each library cells by bridging some of
its inputs and/or setting some of its inputs to constant val-
ues [10]. In the preprocessing phase we generatelibrary
functions, which are the collection of functions represented
by the library cells and by the personalized modules obtained
from the library cells.

For Boolean matching of cell libraries we precompute
the NPRs for the library functions and their complements.
When we require to find a Boolean match of a given func-
tion against the whole library, we compute its NPR and check
whether the same NPR is present in the precomputed NPRs
for the library functions. An affirmative answer indicates a
Boolean matching with a cell in the library. For efficient
equivalence checking of NPRs we use a hash table to store
the NPRs for the library functions.

Based on the above discussions, our Boolean matching
technique for library binding can be summarized as:

• Build the breadth-first search trees for each variables.

• Generate the library functions; for each of them, com-
pute two NPRs—one for it and the other for its
complement—and store them in a hash table.

• Compute the NPR for the function to be matched
against the library.

• Check the hash table for the presence of the NPR;
a matching is found if the NPR is in the table.

We will refer to the first two of the above steps as thesetup
phaseand the last two steps as thematching phase.

Usually Boolean matching for libraries with large number
of cells is computationally expensive; on the other hand, an
increase in the number of the cells in a library often improves
the quality of the mapped circuits [15, 21]. Since pair-wise
matchings are unnecessary, the computational complexity of
our Boolean matching technique is almost independent of
the number of cells in the library. Moreover, our method
is independent of any cell architecture and any functional
properties. However, functional properties can be used with
our method asfilters for quickly detecting the functions that
cannot be matched against a library [4, 14, 16, 17, 20, 22].
Experimental results and comparison with another method
demonstrate that the proposed technique is highly effective.

The remainder of the paper is organized as follows: Sec-
tion II formally introduces the terminology. Section III de-
velops the techniques for computing the NPR, which is the
basis of our Boolean matching technique. Section IV reports
experimental results and compares our technique with an-
other method. Section V presents conclusions.

II. D EFINITIONS AND TERMINOLOGY

Definition 1 Let theminterm expansionof an n-variable
function f (x1,x2, . . . ,xn) bem0 · x̄1x̄2 · · · x̄n∨m1 · x̄1x̄2 · · ·xn∨
·· ·∨m2n−1 ·x1x2 · · ·xn,wherem0,m1, . . . ,m2n−1∈{0,1}. Let
the2n bit binary numberm0m1 · · ·m2n−1, which is obtained
by the concatenation ofm0,m1, . . . ,m2n−1 in this order, be
thebinary representationof f . To denote a binary number,
usually a subscripted 2 is used after it.

Example 1 Consider the three-variable function
f (x1,x2,x3) = x̄1x2x3∨x1x̄2x̄3. The binary representation of
f is 000110002.

Definition 2 Two functionsf andg are NP-equivalentif g
can be obtained fromf by a permutation of the variables
and/or complementation of one or more variables [9, 11, 19].
NP-equivalent functions form anNP-equivalence classof
functions.

Example 2 Consider the four functions: f1(x1,x2,x3) =
x̄1x̄2x̄3 ∨ x1x2x3, f2(x1,x2,x3) = x̄1x̄2x3 ∨ x1x2x̄3,
f3(x1,x2,x3) = x̄1x2x̄3∨x1x̄2x3, and f4(x1,x2,x3) = x̄1x2x3∨
x1x̄2x̄3. Sincef2(x1,x2, x̄3) = x̄1x̄2x̄3∨x1x2x3 = f1(x1,x2,x3),



f1 and f2 are NP-equivalent. Similarly, we can show thatf3
and f4 are also NP-equivalent tof1. Therefore, the functions
f1, f2, f3, and f4 belong to the same NP-equivalence class.

Definition 3 The function that has the smallest value
in the binary representation among the functions of an
NP-equivalence class is theNP-representative (NPR)of that
class.

Example 3 From Example 2, all the functions of an
NP-equivalence class arēx1x̄2x̄3 ∨ x1x2x3, x̄1x̄2x3 ∨ x1x2x̄3,
x̄1x2x̄3 ∨ x1x̄2x3, and x̄1x2x3 ∨ x1x̄2x̄3. In binary represen-
tation: x̄1x̄2x̄3 ∨ x1x2x3 = 100000012, x̄1x̄2x3 ∨ x1x2x̄3 =
010000102, x̄1x2x̄3 ∨ x1x̄2x3 = 001001002, and x̄1x2x3 ∨
x1x̄2x̄3 = 000110002. Since000110002 < 001001002 <
010000102< 100000012, the NP-representative of the class
is x̄1x2x3∨x1x̄2x̄3.

Variables of ann-variable function can be permuted inn!
ways and complemented in2n ways; thus the total number
of possible combinations aren!2n. However, for many func-
tions some of these combinations generate the same function.
Therefore, for ann-variable function there are at mostn!2n

NP-equivalents. Among them, our objective is to quickly
find the NP-equivalent that has the smallest value in the bi-
nary representation.

III. C OMPUTING NP-REPRESENTATIVE

In this section, we show a method to compute
NP-representative (NPR) by using three-variable functions
and discuss how the technique can be extended to functions
with more variables.

3.1. Binary Representations Under Permutation and Com-
plementation of Variables

Binary representations of a given function under different
permutation and complementation of variables can be easily
generated if the function is represented as minterm expan-
sion. For example, let

f (x1,x2,x3) = m0x̄1x̄2x̄3∨m1x̄1x̄2x3∨
m2x̄1x2x̄3∨m3x̄1x2x3∨
m4x1x̄2x̄3∨m5x1x̄2x3∨
m6x1x2x̄3∨m7x1x2x3 (1)

be the minterm expansion of a three-variable function, where
m0,m1, . . . ,m7 ∈ {0,1}. The permutation of the variables in
(1) is (x1,x2,x3). When the permutation of the variables is
(x3,x2,x1), we have

f (x3,x2,x1) = m0x̄3x̄2x̄1∨m1x̄3x̄2x1∨
m2x̄3x2x̄1∨m3x̄3x2x1∨
m4x3x̄2x̄1∨m5x3x̄2x1∨
m6x3x2x̄1∨m7x3x2x1

= m0x̄1x̄2x̄3∨m4x̄1x̄2x3∨
m2x̄1x2x̄3∨m6x̄1x2x3∨
m1x1x̄2x̄3∨m5x1x̄2x3∨
m3x1x2x̄3∨m7x1x2x3. (2)

f (x1,x2,x3) f (x1, x̄3,x2) f (x̄3,x2, x̄1) f (x̄2, x̄1,x3)
m0 m2 m5 m6
m1 m0 m1 m7
m2 m3 m7 m2
m3 m1 m3 m3
m4 m6 m4 m4
m5 m4 m0 m5
m6 m7 m6 m0
m7 m5 m2 m1

Figure 1: Four of the NP-equivalents of a three-variable
function f (x1,x2,x3).

From (1) and (2), the binary representations of
f (x1,x2,x3) and f (x3,x2,x1) are m0m1m2m3m4m5m6m7

andm0m4m2m6m1m5m3m7, respectively.
When variables are complemented, the binary representa-

tion can also be generated in a similar manner. For example,
by replacingx1 by x̄1 in (2), we have

f (x3,x2, x̄1) = m0x1x̄2x̄3∨m4x1x̄2x3∨
m2x1x2x̄3∨m6x1x2x3∨
m1x̄1x̄2x̄3∨m5x̄1x̄2x3∨
m3x̄1x2x̄3∨m7x̄1x2x3

= m1x̄1x̄2x̄3∨m5x̄1x̄2x3∨
m3x̄1x2x̄3∨m7x̄1x2x3∨
m0x1x̄2x̄3∨m4x1x̄2x3∨
m2x1x2x̄3∨m6x1x2x3,

which gives m1m5m3m7m0m4m2m6 as the binary rep-
resentation of f (x3,x2, x̄1). Several randomly chosen
NP-equivalents off (x1,x2,x3) are shown in Fig. 1, where
the binary representations are written vertically; in the sub-
sequent discussions, binary representations will often be dis-
played in this way.

3.2. Basic Idea

Fig. 1 shows four of the NP-equivalents off (x1,x2,x3).
There are at most 48(= 3!23) NP-equivalents of a three-
variable function. Our objective in computing the NPR is to
find the NP-equivalent that has the smallest value in the bi-
nary representation. Thus, we can generate NP-equivalents
with other permutations and complementations of the vari-
ables, and take the function that has the smallest value in the
binary representation as the NPR.

An observation to the minterms of the first and second
columns of Fig. 1 shows that all the minterms off (x1,x2,x3)
move to new positions inf (x1, x̄3,x2). For example, the first
minterm, m0, of f (x1,x2,x3) becomes the second minterm
of f (x1, x̄3,x2). Therefore, each time we want to change
the permutation and complementation of the variables of an
n-variable function, we must compute the new positions for
all the 2n minterms. Since ann-variable function has at
most n!2n NP-equivalents, to compute the NPR for ann-
variable function we must computen!22n new positions for



TABLE I
MAXIMUM NUMBER OF NP-EQUIVALENTS AND SIZE OF

NPTTS FORDIFFERENTNUMBER OF VARIABLES

Number of Maximum number Size of
variables of NP-equivalents NPTT

3 48 384
4 384 6144
5 3840 122880
6 46080 2949120
7 645120 82575360
8 10321920 2.64×109

the minterms, i.e., the time complexity of the algorithm is
O(n!22n). As a result the method requires significant amount
of computation time even for functions with as few as three
variables.

3.3. NP-Transformation Table (NPTT)

Fig. 1 shows that the new positions of the minterms are fixed
for each of the permutation and complementation of the vari-
ables. Therefore, our strategy is to compute the new posi-
tions of the minterms for all the permutation and comple-
mentation of the variables only once and to use them re-
peatedly for computing NPRs; this method is much faster
than the method presented in Section 3.2, because repeated
computation of the new positions for the minterms is un-
necessary. Fig. 2 shows a table of all such new positions
of the minterms for three-variable function; it is similar to
Fig. 1 except column headings are removed andmi is re-
placed byi (0 ≤ i ≤ 7). We will refer to such a table as
NP-transformation table (NPTT). Although column head-
ings are removed from Fig. 2 for ease of showing the whole
table, they are required by our algorithm.

The NPTT for ann-variable function has2n rows andn!2n

columns, i.e., it hasn!22n entries (Fig. 2). Table I shows the
maximum number of NP-equivalents in an NP-equivalence
class and the size of NPTTs for different number of vari-
ables. Since the size of the NPTTs grow exponentially, they
can be practically used for functions with up to seven vari-
ables, which is the upper bound on the variables for which
our Boolean matching technique can be applicable. It should
be noted that the maximum number of inputs to the cells in
many cell libraries is less than seven.

3.4. Breadth-First Search by Using NPTT

The straightforward method for computing NPR by using
NPTT that we presented in Section 3.3 first generates all the
n!2n NP-equivalents from a givenn-variable function, and
then chooses one with the smallest value in the binary rep-
resentation as the NPR. Since we are interested only in the
function that has the smallest value in the binary representa-
tion, we may avoid generating many of the NP-equivalents.
Each columns of the NPTT corresponds to an NP-equivalent,
and we use a breadth-first search technique to early detect

the columns that cannot lead to the NPR. In this method,
the row at the top of the NPTT is used at first to generate
the first minterms of all the NP-equivalents, where the first
minterm is the left most minterm in the binary representa-
tion. After generating the first minterms corresponding to all
the columns of the NPTT, we apply the following:

(a) if the minterms have both 0 and 1 values, we only keep
the columns that generate minterms with only 0 value
and discard other columns, and

(b) if all the minterms have either 0 or 1 values, we keep all
the columns.

Since NPR has the smallest value in the binary represen-
tation among all the NP-equivalents, step (a) effectively dis-
cards some of the columns that cannot lead to the NPR. We
then use second row of the NPTT for generating the second
minterms correspond to the columns that we kept in steps (a)
and (b), and apply steps (a) and (b) on the second minterms
for possibly discarding some of the remaining columns from
consideration. We continue this process until the bottom row
of the NPTT is considered. At this point search terminates,
and any of the remaining columns can generate an NPR. It
should be noted that the breadth-first search technique is dif-
ficult to apply if we cannot store NPTT.

3.5. Combining NPTT with a Breadth-First Search Tree

Although the breadth-first search by using NPTT can reduce
the search space quickly, by combining a search tree with
the NPTT we can make the search even more efficient. In
Section 3.4, NPTT is used row by row for computing NPR.
The breadth-first search by using NPTT in Fig. 2 requires
first to check all the 48 elements on the first row. An obser-
vation to Fig. 2 shows that there are 8 distinct elements on
the first row. Therefore, we can partition these elements in
to 8 groups and perform 8 checks—instead of 48—to deter-
mine any columns that cannot lead to NPR; in this case also
we use the breadth-first search strategy that are used in steps
(a) and (b) of Section 3.4; but the number of checks here is
only 8.

Fig. 2 also shows that each of these groups can be parti-
tioned in to 3 subgroups, which in turn can be again parti-
tioned in to 2 subgroups. These lead to abreadth-first search
tree shown in Fig. 3, where the branches of the tree are la-
beled with the elements of the first three rows of the NPTT.
Fig. 3 shows that the top three rows of Fig. 2 form the search
tree, while the bottom five rows stay the same. Therefore, the
search for an NPR starts at the root of the search tree; after
reaching the bottom of the tree the search continues from the
fourth row of the NPTT until its bottom row is considered.

The breadth-first search tree for ann-variable function can
be constructed in a similar manner. The root node of the
search tree has2n children; the number of children for each
of the nodes in the subsequent levels hasn, n−1, . . . , 3, and
2 children.
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Figure 2: NP-transformation table (NPTT) for three variables.
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Figure 3: Breadth-first search tree combined with partial NPTT for three variables.

IV. EXPERIMENTAL RESULTS

We implemented the proposed Boolean matching technique
for functions with up to seven variables on a Sun Fire 280R
Server. The program requires about 140 megabytes mem-
ory, of which about 85 megabytes are used to store the
NP-transformation tables (NPTTs); the data structure of the
breadth-first search trees and the code of the program use the
remaining 55 megabytes. It should be noted that additional
memory is required to store NP-representatives (NPRs) for
the library functions and their associated hash tables; how-
ever, this memory requirement is relatively lower as every
byte of memory can hold up to eight bits of the binary rep-
resentation of NPRs. During setup phase, the program con-
structs the breadth-first search trees; it takes about 0.50 sec-
onds.

To demonstrate the effectiveness of our technique, we con-
ducted an experiment by using 5,000,000 pseudo-random
functions with three to seven variables and tried to match
them against a cell library, which is represented by 50,000
randomly generated library functions. Table II summarizes
the average Boolean matching time in microseconds, which
is the time required to match a function against the entire
library whose cells generate 50,000 library functions. We
note that Boolean matching time of our algorithm is almost
independent of whether or not a matching is found.

Hinsberger and Kolla reported Boolean matching time for
their TEMPLATE technology mapping system in [10]. From
multiple-level networks of NOR gates,TEMPLATE generates

TABLE II
AVERAGE TIME FOR BOOLEAN MATCHING

Number of Time
variables (microseconds)

3 9.81
4 15.74
5 26.02
6 39.13
7 147.61

all possible single-outputcluster functions[7] with six and
fewer variables [13]. It then tries to find a Boolean match for
each of the cluster functions against thelib2 library from the
MCNC. In library binding of a set of 18 benchmark func-
tions by usinglib2—which consists of 27 cells—TEMPLATE

checks total 113,188 Boolean matchings in 9,141 seconds on
an HP 735/125, i.e., on the average 12.38 matching attempts
per second.

Since experimental results for both the systems are un-
available in the same format, a comparison of the speed per-
formance of our Boolean matching technique with that of
the TEMPLATE is not straightforward. We consider that a
Sun Fire 280R Server (900-MHz UltraSPARC-III proces-
sor) is about eight times faster than an HP 735/125 (usually
125-MHz PA-7150 RISC processor). Thus, if all the cluster
functions generated byTEMPLATE depends on four, five, and
six variables, our method is about 600, 400, and 250 times,
respectively, faster thanTEMPLATE. In practice none of



these assumptions about the distribution of the cluster func-
tions could be true, and the actual speed-up would probably
be in between these numbers.

V. CONCLUSIONS ANDCOMMENTS

Fast algorithms for Boolean matching can significantly
speed-up the cell library binding process, and Boolean
matching for cell library binding where the library contains
large number of cells can considerably improve the qual-
ity of the solutions. We used the notion NP-representative
(NPR) which is unique for any NP-equivalence classes, and
presented a table look-up based breadth-first search algo-
rithm to quickly compute it; we used NPRs to efficiently
check the functional equivalence of a given circuit against
a large library under permutation and complementation of
inputs and complementation of output. The method is more
than two orders of magnitude faster than Hinsberger-Kolla’s
algorithm [10].

Our technique is practical for functions with up to seven
variables; this number is sufficiently large to work with many
cell libraries such aslib2, which consists of cells with up to
six inputs and is extensively used by the research commu-
nity. Although the memory usage of our method is relatively
higher than most other Boolean matching algorithms, we be-
lieve its superior speed performance and the ability to han-
dle large libraries would outweigh any considerations for its
memory requirement. The data structure of our system is
only partially optimized, and there are scope for improve-
ment in both memory usage and speed performance.
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