Efficient Computation of Canonical Form for Boolean
Matching in Large Libraries

Tsutomu Sasao
Dept. of Computer Science & Electronics
Kyushu Institute of Technology
lizuka 820-8502, JAPAN
sasao@cse.kyutech.ac.jp

Debatosh Debnath
Dept. of Computer Science & Engineering
Oakland University, Rochester
Michigan 48309, U.S.A.
debnath@oakland.edu

Abstract—This paper presents an efficient technique for solv-
ing a Boolean matching problem in cell-library binding, where
the number of cells in the library is large. As a basis of the
Boolean matching, we use the notion NP-representative (NPR);
two functions have the same NPR if one can be obtained from

Signatures, which are computed from some properties of
Boolean functions, are extensively used in Boolean match-
ing [1]. Equality in the signatures are a necessary con-
dition for Boolean matching of two functions; although it

is not the sufficient condition, signature-based algorithms

the other by a permutation and/or complementation(s) of the

variables. By using a table look-up and a tree-based breadth-
first search strategy, our method quickly computes NPR for a

given function. Boolean matching of the given function against
the whole library is determined by checking the presence of
its NPR in a hash table, which stores NPRs for all the library

functions and their complements. The effectiveness of our
method is demonstrated through experimental results, which
shows that it is more than two orders of magnitude faster than

the Hinsberger-Kolla’s algorithm—the fastest Boolean match-

ing algorithm for large libraries.

Index Terms—Logic synthesis, Boolean matching, cell-library

have successfully demonstrated their effectiveness. Some
of the signature-based algorithms are efficient for perform-
ing pair-wise Boolean matching [14, 18, 23, 24]; however, to
match a function against a library they often require to per-
form pair-wise matchings of the function with all the library
cells. Therefore, Boolean matching techniques based on
them are unsuitable for handling libraries with large number
of cells. There are other signature-based algorithms that are
successfully used with cell libraries; however, they can han-
dle libraries with only modest size [4, 16, 22]. Moreover, due
to the lack of sufficient information in the signatures, algo-

binding, technology mapping, canonical form. rithms based on them in many cases are unable to conclude

a Boolean match. Thus, an exhaustive search is necessary
to obtain a conclusive result. Some other Boolean matching
algorithms consider only some restricted form of Boolean
Determining whether a circuit can be functionally equivalenmatching [8, 12, 20, 21].
to another under a permutation of its inputs, complementa- There are other categories of Boolean matching algo-
tion of its one or more inputs, and/or inversion of its output isithms that are based on the computation of some canonical
an important problem in logic synthesis, addolean match- form for Boolean functions [2, 3,6, 10, 25]. Two functions
ing technique is used to solve it. Algorithms for Booleanmatch if their canonical forms are the same. The Boolean
matching have applications in cell-library binding where itmatching technique that we consider in this paper falls under
is necessary to repeatedly check if some part of a multipléhis category. Burch and Long introduced a canonical form
level representation of a Boolean function can be realizéfidr matching under complementation and a semi-canonical
by any of the cells from a given library [7], in logic verifi- form for matching under permutation of the variables [2].
cation where correspondence of the inputs of two circuits aféhese two forms can be combined to check Boolean match-
unknown [14, 24], and in table look-up based logic synthehg under permutation and complementation of variables.
sis [5]. In this paper, we consider Boolean matching problertdowever, a large number of forms for each cells are required
for cell-library binding. An exhaustive method for Booleanwhen using the method in cell library binding. Ciric and
matching is computationally expensive even for functionSechen [3], Debnath and Sasao [6], and &Val. [25] also
with only few variables, because the time complexity of suchroposed canonical forms for efficient Boolean matching;
an algorithm for am-variable function i<O(n!22"). however, their techniques are applicable for Boolean match-
Boolean matching phase is one of the most time conng under permutation of the variables only. Hinsberger and
suming steps in cell library binding, and because of theiolla introduced a canonical form for solving the general
importance in synthesizing cost effective circuits, BooleaBoolean matching problem that we are considering in this
matching problems received much attention and many gbaper [10]. To the best of our knowledge, it is the fastest
gorithms have been developed to efficiently solve them [1Boolean matching algorithm that can handle libraries with

|. INTRODUCTION

large number of cells under permutation and complementa-Based on the above discussions, our Boolean matching
tion of the variables as well as inversion of the function; howtechnique for library binding can be summarized as:
ever, the method still requires considerable computation.

In this paper, we present an efficient technique for com-])
puting a canonical form for Boolean functions. The canoni- ® Generate the library functions; for each of them, com-
cal form—which we refer to ablP-representative (NPR} pute two NPRs—one for it and the other for its
remains unchanged under permutation and complementa- Complement—and store them in a hash table.
tion of the variables. The set of functions that can be e Compute the NPR for the function to be matched
made identical under permutation and complementation of against the library.
the variables form afNP-equivalence clag§, 11,19]. In e Check the hash table for the presence of the NPR;
an NP_-equwaI.ence class, the fgncpon that has the smallest 4 matching is found if the NPR is in the table.
value in the binary representation is the NPR of the class,
and every NP-equivalence class has a unique NPR. ThusWe will refer to the first two of the above steps as seéup
if the NPRs for the functions represented by the two cirPhaseand the last two steps as thetching phase
cuits are equal, they are functionally equivalent under the Usually Boolean matching for libraries with large number
permutation and complementation of inputs. It should bef cells is computationally expensive; on the other hand, an
noted that our canonical form is similar to that of Hinsbergeincrease in the number of the cells in a library often improves
and Kolla [10]. For efficient computation of NPRs we usdghe quality of the mapped circuits [15, 21]. Since pair-wise
precomputedNP-transformation tables (NPTT,s)hich are matchings are unnecessary, the computational complexity of
used to quickly generate any functions in an NP-equivalenegir Boolean matching technique is almost independent of
class. To make the search even more efficient, our methtfie number of cells in the library. Moreover, our method
combines an NPTT with a search tree for each variables aiglindependent of any cell architecture and any functional
performs breadth-first searches. properties. However, functional properties can be used with

Although NPRs can identify functional equivalence of twoour method afilters for quickly detecting the functions that
circuits under permutation and complementation of inputgannot be matched against a library [4, 14,16, 17, 20, 22].
they are unable to directly ascertain the functional equivdxperimental results and comparison with another method
lence if it involves determining whether the output of onelemonstrate that the proposed technique is highly effective.
circuit is also complemented. Thus, to handle the output The remainder of the paper is organized as follows: Sec-
complementation we use the following strategy. fednd tion Il formally introduces the terminology. Section Il de-

g be the Boolean functions represented by two cirdaiggd velops the techniques for computing the NPR, which is the
G, respectively. To check F andG are functionally equiva- basis of our Boolean matching technique. Section IV reports
lent under permutation and complementation of input&of experimental results and compares our technique with an-
as well as possible complementation of its output, we congther method. Section V presents conclusions.

pute the NPRs forf, g, andg. If the NPRs forf andg

are equal,G can be made functionally equivalent foby

permutation and complementation of inputs@fhowever, II. DEFINITIONS AND TERMINOLOGY

if the NPRs forf andg are equal, complementation of the
output of G is also required in addition to permutation and”€finition 1 Let the minterm expansionof an n-variable
complementation of its inputs to makeandG functionally functionf(xg, Xz, ..., Xn) DEMo - XaXp - Xn VM - X1Xp -+ -Xn V
equivalent. SV IMpn_1-X1X2 -+ Xn, wheremg, my, ..., mpn_j € .{O, 1}. _Let

For using our method in cell library binding the library the 2" bit binary numbemmomy - --mpn_;, which is obtained
requires to be preprocessed. A set of personalized moduf®s the concatenation afp, my, ..., Men_y in this order, be
can be obtained from each library cells by bridging some Jf'€ Pinary representatiorof f. To denote a binary number,
its inputs and/or setting some of its inputs to constant valSually a subscripted 2 is used after it.
ues [10]. In the preprocessing phase we gendiatary Example 1 Consider the three-variable function
functions which are the collection of functions represented (x;,x,, x3) = X1X2X3 VV X1X2X3. The binary representation of
by the library cells and by the personalized modules obtainefdis 000110005.
from the library cells. . . . Definition 2 Two functionsf and g are NP-equivalentif g

For Boolean matching of cell libraries we precompute . . .
the NPRs for the library functions and their complementscfan be obtained fronf by a permutation of the variables

When we require to find a Boolean match of a given funcgndlorqomplementqtlon of one or more yarlables 9,11, 19].
P-equivalent functions form aNP-equivalence classf

tion against the whole library, we compute its NPR and cheg, .

whether the same NPR is present in the precomputed NP anons.

for the library functions. An affirmative answer indicates @&Example 2 Consider the four functions:fi(xg,X,X3) =
Boolean matching with a cell in the library. For efficientxixoXs V XiXoXs, fa(X1,X0,X3) = XgXoX3 V X1XoXa,
equivalence checking of NPRs we use a hash table to stoigx1, X2, X3) = X1XoX3 V X1X2X3, and f4 (X1, X2, X3) = X1XoX3 V

the NPRs for the library functions. X1 X2X3. Sil’lCsz(X]_7 X2, X3) = XpXoX3 V X1XoX3 = f1(X1,X2, X3),

e Build the breadth-first search trees for each variables.

f1 and f, are NP-equivalent. Similarly, we can show tHat Foa,xa,xa) | (X0 %a%2) | (3, %0) | F (%%, X3)
and f4 are also NP-equivalent th. Therefore, the functions 1,%2,X3 1,%3, X2 %3, %2, X1 2,%1,X3
f1, fp, f3, and fs belong to the same NP-equivalence class. Mo m Mg Me
m m
Definition 3 The function that has the smallest value m; % m; g
in the binary representation among the functions of an mg my ms ms
NP-equivalence class is tiNP-representative (NPR)f that my mg my my
class. mg my Mo Mg
Example 3 From Example 2, all the functions of an % g g mo
NP-equivalence class amgxoxz V XiXoX3, X1X2X3 V X1XoX3, 1

X1XoX3 V X1XoX3, and Xi1XoX3 V X1XoX3. In binary represen- Figure 1: Four of the NP-equivalents of a three-variable
tation: XpXoX3 V XgXoXg = 100000012, X1XoX3 V XXXz = function f(x1,X2,X3).
010000105, X1XoX3 V X1XoX3 = 001001005, and X;XpX3 V

X1XoX3 = 000110002. Since 000110007 < 091001002 < From (1) and (2),
010000102 < 100000015, the NP-representative of the class

IS X1XoX3 V X1 X2X3.

the binary representations of
f(x1,%2,%3) and f(xs,x2,X1) are MoMumMpMsMuMsMeMy

_ . _ _ andmgmymymgMy MsMsmy, respectively.

Variables of am-variable function can be permutediih \When variables are complemented, the binary representa-

ways and complemented BY ways; thus the total number tjon can also be generated in a similar manner. For example,
of possible combinations are2". However, for many func- py replacings; by x; in (2), we have

tions some of these combinations generate the same function. F (Xa, X2, K1) = MoX15o5a \ MaXeXoXa V
Therefore, for am-variable function there are at mas@" 3,%2,%1) = MoX1X2X3 V My X1 XpX3
NP-equivalents. Among them, our objective is to quickly MpX1X2X3 V MeX1X2X3 V
find the NP-equivalent that has the smallest value in the bi- M X1 XoXa V MEX1 XoX3 V

nary representation. _ _
yrep MaX1X2X3 V MyX1 X2X3
= MyX1XX3 V MeX1X2X3 V

MaX1X2X3 V My X1 XoX3 V
Il\rI]P this sectticgn, (l\\IIVISR)SSOW a t1;]1ethod 'tgl cfomgfute MoX1X2X3 V MyX1 XoX3 V/
-representative y using three-variable functions —

and discuss how the technique can be extended to functions _ M2X1XoXs V IMeX1XoXs,

with more variables. which gives MMsMeMy MMy MM as the binary rep-

resentation of f(x3,X2,x1). Several randomly chosen

3.1. Binary Representations Under Permutation and Co IP-equivalents off (xi,Xz,X) are shown in Fig. 1, where
the binary representations are written vertically; in the sub-

plementation of Variables .) .) ; X
])))) sequent discussions, binary representations will often be dis-
Binary representations of a given function under dlﬁere%|ayed in this way.

permutation and complementation of variables can be easily
generated if the function is represented as minterm expan-

IIl. COMPUTING NP-REPRESENTATIVE

sion. For example, let 3.2. Basic Idea
f(X1,X2,X3) = MoX1XaXa V MyX1XaX3 V Fig.1 shows four of the NP-equivalents dfx;,x2,X3).
MHX1XoX3 V MaX1 XoX3 V There are at most 48= 3!23) NP-equivalents of a three-
MyX1XoX3 V MEX1XoX3 V variable function. Our objective in computing the NPR is to

find the NP-equivalent that has the smallest value in the bi-
be the mint . fath iable funcii h nary representation. Thus, we can generate NP-equivalents

€ the minterm expansion ot a three-variable function, Wne(G, iher nermutations and complementations of the vari-
Mo, My,,my € {0, 1}. The permutation of the variables in ables, and take the function that has the smallest value in the
(1) is (x1,%2,%3). When the permutation of the variables is_.~ ™ .
(X3, %2, X1), We have binary representation as the NPR.

Y ,f o 31) — MG 1T ot An observation to the minterms of the first and second
(X3, X2, X1) = MoXaXpXy V MXgXoX columns of Fig. 1 shows that all the mintermsfdky, x2, x3)

MeX1X2X3 V My X1 X2X3 1)

MpX3XaX1 V MeXaXaXy V move to new positions iffi (X, X3, X2). For example, the first
MyX3XoX1 V MeX3XoX1 V minterm, mo, of f(x1,x2,X3) becomes the second minterm
MeXaXoX1 V MyXgXoXq of f(x1,Xs3,%2). Therefore, each time we want to change

the permutation and complementation of the variables of an

= MoX1XX3 V MuXq XXz V . : "
_ _ n-variable function, we must compute the new positions for
mle)i2>i3vmexl)izx3v all the 2" minterms. Since am-variable function has at
My X1X2X3 V MeX1X2X3 V most n!2" NP-equivalents, to compute the NPR for an

MaX1XoX3 V My X1 X0X3. (2) variable function we must computé22" new positions for

TABLE |
MAXIMUM NUMBER OF NP-EQUIVALENTS AND SIZE OF
NPTTs FORDIFFERENTNUMBER OF VARIABLES

the columns that cannot lead to the NPR. In this method,
the row at the top of the NPTT is used at first to generate
the first minterms of all the NP-equivalents, where the first

Number of | Maximum number Size of minterm is the left most minterm in the binary representa-
variables of NP-equivalents NPTT tion. After generating the first minterms corresponding to all
3 48 384 the columns of the NPTT, we apply the following:
4 384 6144 , _
5 3840 122880 (a) if the minterms have both 0 and 1 value_s, we only keep
6 26080 5949120 thed(;qlumréls tr;]at ge?erate mlrtljterms with only 0 value
and discard other columns, an
; 102;511922% ;éiisfggo (b) if all the minterms have either 0 or 1 values, we keep all

the columns.

the minterms, i.e., the time complexity of the algorithm is Since NPR has the smallest value in the binary represen-
O(n122"). As a result the method requires significant amourfgtion among all the NP-equivalents, step (a) effectively dis-
of computation time even for functions with as few as thregards some of the columns that cannot lead to the NPR. We
variables. then use second row of the NPTT for generating the second
minterms correspond to the columns that we kept in steps (a)
and (b), and apply steps (a) and (b) on the second minterms
for possibly discarding some of the remaining columns from
Fig. 1 shows that the new positions of the minterms are fixegbnsideration. We continue this process until the bottom row
for each of the permutation and complementation of the varéf the NPTT is considered. At this point search terminates,
ables. Therefore, our strategy is to compute the new posind any of the remaining columns can generate an NPR. It

tions of the minterms for all the permutation and compleshould be noted that the breadth-first search technique is dif-
mentation of the variables only once and to use them rgcult to apply if we cannot store NPTT.

peatedly for computing NPRs; this method is much faster

than the method presented in Section 3.2, because repeated

computation of the new positions for the minterms is uns-2- Combining NPTT with a Breadth-First Search Tree

necessary. Fig.2 shows a table of all such new positiongthough the breadth-first search by using NPTT can reduce
of the minterms for three-v_ariable function, it is similar toihe search space quickly, by combining a search tree with
Fig. 1 except column headings are removed amds re- he NPTT we can make the search even more efficient. In
placed byi (0 <i <7). We will refer to such a table as ggction 3.4, NPTT is used row by row for computing NPR.
NP-transformation table (NPTT)Although column head- rhe preadth-first search by using NPTT in Fig. 2 requires
ings are removed from Fig. 2 for ease of showing the wholgg; ¢4 check all the 48 elements on the first row. An obser-
table, they are requwed_by our alg_orlthm.n , vation to Fig. 2 shows that there are 8 distinct elements on
The NPTT for am-variable function hag" rows anch!2 the first row. Therefore, we can partition these elements in

. . 2n . .
columns, i.e., it has!2" entries (Fig. 2). Table | shows the to 8 groups and perform 8 checks—instead of 48—to deter-

maximum number of NP-equivalents in an NP-equaIen(_:I%ine any columns that cannot lead to NPR; in this case also

class an_d the size of NPTTs for different number. of Varlye use the breadth-first search strategy that are used in steps
ables. Since the size of the NPTTs grow exponentially, the(yé) and (b) of Section 3.4: but the number of checks here is
can be practically used for functions with up to seven vari—nIy 8 o

ables, which is the upper bound on the variables for whic Fig. 2 al h that h of th b "
our Boolean matching technique can be applicable. It shou|d 'g. £ &S0 SNOWS that each of these groups can be partl-

be noted that the maximum number of inputs to the cells i oned n t0 3 subgroups, which in turn can b(_e again parti-
many cell libraries is less than seven tioned in to 2 subgroups. These lead foreadth-first search

tree shown in Fig. 3, where the branches of the tree are la-
]) beled with the elements of the first three rows of the NPTT.
3.4. Breadth-First Search by Using NPTT Fig. 3 shows that the top three rows of Fig. 2 form the search

The straightforward method for computing NPR by usindree, while the bottom five rows stay the same. Therefore, the
NPTT that we presented in Section 3.3 first generates all tisgarch for an NPR starts at the root of the search tree; after
ni2" NP-equivalents from a given-variable function, and reaching the bottom of the tree the search continues from the
then chooses one with the smallest value in the binary refpurth row of the NPTT until its bottom row is considered.
resentation as the NPR. Since we are interested only in theThe breadth-first search tree forwvariable function can
function that has the smallest value in the binary representde constructed in a similar manner. The root node of the
tion, we may avoid generating many of the NP-equivalentsearch tree ha®" children; the number of children for each
Each columns of the NPTT corresponds to an NP-equivalertf the nodes in the subsequent levels has— 1, ..., 3, and

and we use a breadth-first search technique to early det@cthildren.

3.3. NP-Transformation Table (NPTT)

0000001111112222223333334444445555556666667777|77
1122440033550033661122770055661144772244773355|66
2414123505033606032717125606054717144727245636|35
3536562427471417470506561217270306360305351214|24
424121535030636030727121656050747141747242656 3|53
5363654272744171745060652171723060633050532141|42
6655337744227744116655007722116633005533004422|11
7777776666665555554444443333332222221111110000/00
Figure 2: NP-transformation table (NPTT) for three variables.
0 1 2 3 4 5 6 7

oBo0Baly1/vafual\72\72\a863635

35365624274714174705065612172703063603053512142414
424121535030636030727121656050747141747242656353
536365427274417174506065217172306063305053214142
665533774422774411665500772211663300553300442211
777777666666555555444444333333222222111111000000
Figure 3: Breadth-first search tree combined with partial NPTT for three variables.
IV. EXPERIMENTAL RESULTS TABLE
AVERAGE TIME FOR BOOLEAN MATCHING
We implemented the proposed Boolean matching technique Number of ~ Time
for functions with up to seven variables on a Sun Fire 280R variables (microseconds)
Server. The program requires about 140 megabytes mem- 3 9.81
ory, of which about 85 megabytes are used to store the 4 15.74
NP-transformation tables (NPTTSs); the data structure of the 5 26.02
breadth-first search trees and the code of the program use the 6 39.13
remaining 55 megabytes. It should be noted that additional 7 147.61

memory is required to store NP-representatives (NPRs) for
the library functions and their associated hash tables; how- . . . L
ever, this memory requirement is relatively lower as ever I possple smgle—outpuﬂustgr fungtmns{?] with six and
byte of memory can hold up to eight bits of the binary rep_ewer variables [13]. It th_en tries 'Fo find a I_Boolean match for
resentation of NPRs. During setup phase, the program cofgch of the cluster functions against i library from the
structs the breadth-first search trees: it takes about 0.50 sSMENC. In library binding of a set of 18 benchmark func-
onds. tions by usindib2—which consists of 27 cellsFEMPLATE

To demonstrate the effectiveness of our technique, we cof1€Cks total 113,188 Boolean matchings in 9,141 seconds on
ducted an experiment by using 5,000,000 pseudo-randdth HP 735/125, i.e., on the average 12.38 matching attempts
functions with three to seven variables and tried to matcher second.
them against a cell library, which is represented by 50,000 Since experimental results for both the systems are un-
randomly generated library functions. Table Il summarizegvailable in the same format, a comparison of the speed per-
the average Boolean matching time in microseconds, whidarmance of our Boolean matching technique with that of
is the time required to match a function against the entirdle TEMPLATE is not straightforward. We consider that a
library whose cells generate 50,000 library functions. Wé&un Fire 280R Server (900-MHz UltraSPARC-III proces-
note that Boolean matching time of our algorithm is almosgor) is about eight times faster than an HP 735/125 (usually
independent of whether or not a matching is found. 125-MHz PA-7150 RISC processor). Thus, if all the cluster

Hinsberger and Kolla reported Boolean matching time fotunctions generated ByEMPLATE depends on four, five, and
their TEMPLATE technology mapping system in [10]. Fromsix variables, our method is about 600, 400, and 250 times,
multiple-level networks of NOR gateSEMPLATE generates respectively, faster thamEMPLATE. In practice none of

these assumptions about the distribution of the cluster funcf6] D. Debnath and T. Sasao, “Fast Boolean matching under per-
tions could be true, and the actual speed-up would probably ~mutation using representative,” Proc. Asia and South Pa-
be in between these numbers. cific Design Automation Confpp. 359-362, Jan. 1999.
[7] G.De Micheli,Synthesis and Optimization of Digital Circuits
McGraw-Hill, 1994.

V. CONCLUSIONS ANDCOMMENTS [8] S. Ercolani and G. De Micheli, “Technology mapping for

electrically programmable gate arrays,” fmoc. IEEE/ACM
Fast algorithms for Boolean matching can significantly pesign Automation Confpp. 234—239, June 1991.
speed-up the cell library binding process, and Boolearn9] M. A. Harrison, Introduction to Switching and Automata The-
matching for cell library binding where the library contains ory, McGraw-Hill, 1965.
large number of cells can considerably improve the quali0] U. Hinsberger and R. Kolla, “Boolean matching for large
ity of the solutions. We used the notion NP-representative libraries,” in Proc. IEEE/ACM Design Automation Conf.
(NPR) which is unique for any NP-equivalence classes, and PP. 206-211, June 1998. _
presented a table look-up based breadth-first search aldbt! S: L. Hurst, D. M. Miller, and J. C. MuzioSpectral Tech-
rithm to quickly compute it; we used NPRs to efficiently 2] r'\]/'lqu:;t'tzr[)fr:;alI\l;logéccﬁgggferp'C“;;er:zr';cé}ﬁlgggt' and fast
check th_e functional eqUIvaIen_Ce of a given circuit agaln& Boolean matching for large functions using rectangle repre-
_a large library under permutatlon and Complementa_ttlon of sentation,” inlEEE/ACM Int. Workshop on Logic Synthesis
inputs and complementation of output. The method is more \ay 2003.
than two orders of magnitude faster than Hinsberger-Kollajg 3] R. Kolla, “Personal communication,” June 2003.
algorithm [10]. [14] Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean matching using
Our technique is practical for functions with up to seven binary decision diagrams with applications to logic synthesis
variables; this number is sufficiently large to work with many and verification,” inProc. IEEE Int. Conf. on Computer De-
cell libraries such akb2, which consists of cells with up to sign, pp. 452-458, Oct. 1992. _
six inputs and is extensively used by the research commi}>] C. Liem and M. Lefebvre, “Performance directed techno-
nity. Although the memory usage of our method is relatively 109 Mapping using constructive matching,” IREE/ACM
. - . Int. Workshop on Logic Synthesiay 1991.
higher than most other Boolean matching algorithms, we be- . R .
. . . s ElG] F. Mailhot and G. De Micheli, “Algorithms for technology
lieve its Sl,Jpe”,or speed performance and the ab'_"ty to h? " mapping based on binary decision diagrams and on Boolean
dle large libraries would outweigh any considerations for its gperations”IEEE Trans. Computer-Aided Design of Inte-
memory requirement. The data structure of our system is grated Circuits and Systemsol. 12, no. 5, pp. 599-620,
only partially optimized, and there are scope for improve- May 1993.
ment in both memory usage and speed performance. [17] Y. Matsunaga, “A new algorithm for Boolean matching uti-
lizing structural information,1EICE Trans. Information and
Systemsvol. E78-D, no. 3, pp. 219-223, Mar. 1995.
ACKNOWLEDGEMENT [18] J. Mohnke and S. Malik, “Permutation and phase independent

. Boolean comparison,” iffroc. IEEE European Conf. on De-
We thank Professor Reiner Kolla for interesting discussions sign Automationpp. 86-92, Feb. 1993.

about Boolean matching IREMPLATE system. [19] S. Muroga,Logic Design and Switching Thegryohn Wiley
& Sons, 1979.
[20] U. Schlichtmann, F. Brglez, and M. Hermann, “Characteriza-
REFERENCES tion of Boolean functions for rapid matching in EPGA tech-
[1] L. Benini and G. De Micheli, “A survey of Boolean match- nology mapping,” inProc. IEEE/ACM Design Automation
ing techniques for library binding/ ACM Trans. Design Au- Conf, pp. 374-379, June 1992.
tomation of Electronic Systemsol. 2, no. 3, pp. 193-226, [21] U. Schlichtmann, F. Brglez, and P. Schneider, “Efficient
July 1997. Boolean matching based on unique variable ordering,” in
[2] J. R. Burch and D. E. Long, “Efficient Boolean function IEEE/ACM Int. Workshop on Logic Synthesip. 3b:1-3b:13,
matching,” inProc. IEEE/ACM Int. Conf. on Computer-Aided May 1993.
Design pp. 408—411, Nov. 1992. [22] E. Schubert and W. Rosenstiel, “Combined spectral tech-
[3] J. Ciric and C. Sechen, “Efficient canonical form for Boolean ~ hiques for Boolean matching,” iRroc. ACM Int. Symposium
matching of complex functions in large librarielZEE Trans. on Field-Programmable Gate Arraypp. 38-43, Feb. 1996.
Computer-Aided Design of Integrated Circuits and System$23] C. Tsai and M. Marek-Sadowska, “Boolean functions classi-
vol. 22, no. 5, pp. 535-544, May 2003. fication via fixed polarity Reed-Muller formsJEEE Trans.
[4] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and Comput. vol. 46, no. 2, pp. 173-186, Feb. 1997.
J. Yang, “Spectral transforms for large Boolean functions wit24] K.-H. Wang, T. Hwang, and C. Chen, “Exploiting com-
applications to technology mappinddrmal Methods in Sys- munication complexity for Boolean matchindEEE Trans.
tem Design: An Int. Journalvol. 10, no. 2, pp. 137-148, Computer-Aided Design of Integrated Circuits and Systems
Apr. 1997. vol. 15, no. 10, pp. 1249-1256, Oct. 1996.
[5] D. Debnath and T. Sasao, “A heuristic algorithm to desigri25] Q. Wu, C. Y. R. Chen, and J. M. Acken, “Efficient Boolean
AND-OR-EXOR three-level networks,” iProc. Asia and matching algorithm for cell libraries,” iRroc. IEEE Int. Conf.

South Pacific Design Automation Cqomfp. 6974, Feb. 1998. on Computer Desigrpp. 36—39, Oct. 1994.

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

