
On the Minimization of SOPs for Bi-Decomposable Functions

Tsutomu Sasao Jon T. Butler

Center for Microelectronic Systems Department of Electrical
and Department of Computer Science and Electronics and Computer Eng.

Kyushu Institute of Technology Naval Postgraduate School
Iizuka, Fukuoka, 820-8205 JAPAN Monterey, CA 93943-5121 U.S.A.

Tel: +81-948-29-2675 Tel: 831-656-3299
Fax: +81-948-29-2603 Fax: 831-656-2760

e-mail: sasao@cse.kyutech.ac.jp e-mail butler@cs.nps.navy.mil

Abstract— A function f is AND bi-decomposable if it can
be written as f (X1;X2) = h1(X1)h2(X2). In this case, a sum-of-
products expression (SOP) forf is obtained from minimum SOPs
(MSOP) for h1 and h2 by applying the law of distributivity. If
the result is an MSOP, then the complexity of minimization is re-
duced. However, the application of the law of distributivity to
MSOPs for h1 and h2 does not always produce an MSOP forf .
We show an incompletely specified function ofn(n�1) variables
that requires at mostn products in an MSOP, while2n�1 products
are required by minimizing the component functions separately.

We introduce a new class of logic functions, called orthodox
functions, where the application of the law of distributivity to
MSOPs for component functions off always produces an MSOP
for f . We show that orthodox functions include all functions with
three or fewer variables, all symmetric functions, all unate func-
tions, many benchmark functions, and few random functions with
many variables.

I. I NTRODUCTION

A logic function f is said to have a bi-decomposition if
f is written as f (X ;Y ) = g(h1(X);h2(Y )), where X \ Y =
/0. If g is the AND (OR) function, thenf has an AND
(OR) bi-decomposition. Many practical functions have bi-
decomposition [6], and minimum sum-of-products expressions
(MSOPs) for them are often easy to obtain.

For example, iff has an OR bi-decomposition:f = h1(X)_
h2(Y ), then the MSOP forf is obtained as the OR of MSOPs
for h1 andh2. This is a desirable property, since the time to
optimize ann-variable function given as an SOP oft products
is at leastO(nt2).

Assume thatf is known to have an AND bi-decomposition,
f = h1(X)h2(Y ). If an MSOP for f is obtained from MSOPs
for h1 andh2 followed by the application of the law of dis-
tributivity, then this computation would be much faster. Let the
number of products in MSOPs forh1 andh2 be t1 andt2, re-
spectively. Then, an SOP forf containst1t2 products. A func-
tion with this many products normally takes at leastO(n(t1t2)2)
time to minimize. However, since the law of distributivity
can be used to form the MSOP, one can minimize two smaller
component functions, requiring onlyO(nt 2

1 + nt2
2 + t1t2) time,

which is usually much less.
Unfortunately, in the case of AND bi-decompositon, we

cannot always achieve an MSOP by optimizing the compo-
nent functions independently. In this paper, we consider a

special case where the independent optimization of component
MSOPs indeed produces an MSOP forf .

II. N OTATION

Definition 2.1 x and x̄ are literals of a variable x. The AND
of literals is a product or implicant . The OR of products is a
sum-of-products expression(SOP).

Definition 2.2 A prime implicant (PI) of a function f is an
implicant that implies f , such that the deletion of any literal
results in a new implicant that does not imply f .

Definition 2.3 An irredundant sum-of-products expression
(ISOP) is the OR of PIs, such that no PI can be deleted without
changing the function represented by the expression.

Definition 2.4 Among the ISOPs for f , one with the fewest PIs
is a minimum SOP or MSOP.

Definition 2.5 τ(MSOP : f ) denotes the number of PIs in an
MSOP for f .

In the discussion to follow, we will use symmetric functions.
Definition 2.6 Sn

A, a (totally ) symmetric function, is 1 if m of
its n variables are 1, where m 2 A and is 0 otherwise.

Example 2.1 The AND and OR functions of n variables are
symmetric and represented by Sn

fng and Sn
f1;2;:::ng, respectively.

(End of Example)

Definition 2.7 Given an n-variable function f (X), f p denotes
the np-variable function

f p(X1[X2[ : : :[Xp) = f (X1) f (X2) : : : f (Xp);

where X1, X2, ... , and Xp are pairwise disjoint sets of variables.

III. PROBLEMS IN THE MINIMIZATION OF SOPS OF

BI-DECOMPOSABLEFUNCTIONS

A. AND and OR Bi-Decompositions

Lemma 3.1 Let p1 and p2 be implicants on X1 and X2, respec-
tively, such that X1\X2 = /0. p1 and p2 are PIs of h1(X1) and
h2(X2), respectively iff

1. p1 and p2 are PIs of h1(X1)_h2(X2), and
2. p1p2 is a PI of h1(X1)h2(X2).



We prove Part 1 of this lemma; Part 2 is done in a similar
manner. The ”if” part is true because ifp is a PI of eitherh1 or
h2, it is trivially an implicant ofh1_ h2. Because the variable
setsX1 andX2 do not overlap,p is also a PI ofh1_ h2. The
”only if” part is true as follows. Letp be a PI ofh1_ h2, and
let it be expressed asp = p1p2, wherep1 consists of literals
from X1 only andp2 consists of literals fromX2 only. Sincep
is a PI ofh1_h2, then an assignment of values to the variables
associated withp1p2 causes eitherh1 or h2 or both to be 1.
Supposeh1 is 1; the case whereh2 is 1 is similar. Sinceh1 is
1, p1 is an implicant ofh1. But, p1p2 cannot be a PI unless
p2 = 1. Further,p1 must be a PI ofh1. On the contrary, if not,
it implies a PI,p01 of h1. Thus,p01p2 must be an product that
impliesh1_ h2, that is implied byp1p2. But, this results in a
contradiction, sincep1p2 is a PI. It must be thatp1 is a PI of
h1.

The OR of MSOPs forh1(X1) andh2(X2) is an SOP that
representsh1(X1) _ h2(X2). Similarly, the AND of MSOPs
for h1(X1) andh2(X2) is an SOP that representsh1(X1)h2(X2).
Thus, it follows that

Lemma 3.2 Let h1(X1) and h2(X2) be functions each not iden-
tically 1, such that X1\X2 = /0. Then,

τ(MSOP : h1_h2)�τ(MSOP : h1)+ τ(MSOP : h2) and
τ(MSOP : h1h2)�τ(MSOP : h1)τ(MSOP : h2):

It is tempting to believe that Lemma 3.2 is true when the two
� relations are replaced by=. Consider these two statements
separately.

Proposition 3.1 Let h1(X1) and h2(X2) be functions each not
identically 1, such that X1\X2 = /0. Then,

τ(MSOP : h1_h2) = τ(MSOP : h1)+ τ(MSOP : h2):

Proposition 3.1 follows directly from 1. Lemma 3.1 and 2.
the observation that no PI ofh1 is a PI ofh2; i.e. they depend
on different variables.

Proposition 3.2 Let h1(X1) and h2(X2) be functions not iden-
tically 1, such that X1\X2 = /0. Then,

τ(MSOP : h1h2) = τ(MSOP : h1)τ(MSOP : h2):

That is, since the two variable sets,X1 andX2, are disjoint, it
seems reasonable that finding an MSOP forh1(X1) andh2(X2)
separately and forming an SOP by applying the law of distribu-
tivity to h1(X1)h2(X2) yields an MSOP.

B. A Counterexample

However, this isnot true. Voight-Wegener [7] show a 5-
variable function for which Proposition 3.2 doesnot hold. This
is related to a result by Odlyzko [3] who shows that the cover-
ing number of the product of two graphs is less than the prod-
uct of the covering numbers of the component graphs. In this
paper, we show a 4-variable counterexample,f (x1;x2;x3;x4)
that is simpler than that of Voight-Wegener [7]. As will be dis-
cussed, there is no simpler function with this property. Fig. 3.1
shows its Karnaugh Map.

00

01

11

10

00 01 11 10
x1x2

x3x4

1 111

1 1

1

1 11

Fig. 3.1. Example of a four variable function showing Proposition 3.2 does
not hold .

This figure shows all six PIs of this function. Three, shown
by dark ellipses, are essential. Of the remaining three, only
two are needed to completely cover the function. Therefore,
τ(MSOP; f ) = 5. Note that the three essential PIs cover three
minterms covered by the non-essential PIs, and, since all three
essential PIs are required in an MSOP, the essential PIs, in ef-
fect, create three don’t care minterms covered by non-essential
PIs. There are three MSOPs forf , one of which is

f (x1;x2;x3;x4) = [x̄1x̄2x3_ x̄1x2x̄3_ x1x̄2x̄3]_ [x2x4_ x1x4]:
(1)

Here, the first three terms in brackets represent the essential
PIs, while the last two terms in brackets represent the non-
essential PIs.

Consider the 8-variable functionf 2 = f (X) f (Y ). Using the
expression forf in (1), we can derive an expression forf 2 as
follows.

f 2= f (X) f (Y ) = f (x1;x2;x3;x4) f (y1;y2;y3;y4)
=A(X ;Y )_B(X ;Y )_C1(X ;Y );

where

A(X ;Y )=x̄1x̄2x3ȳ1ȳ2y3_ x̄1x̄2x3ȳ1y2ȳ3_ x̄1x̄2x3y1ȳ2ȳ3
_x̄1x2x̄3ȳ1ȳ2y3_ x̄1x2x̄3ȳ1y2ȳ3_ x̄1x2x̄3y1ȳ2ȳ3
_x1x̄2x̄3ȳ1ȳ2y3_ x1x̄2x̄3ȳ1y2ȳ3_ x1x̄2x̄3y1ȳ2ȳ3

B(X ;Y )=x̄1x̄2x3y2y4_ x̄1x̄2x3y1y4_ x̄1x2x̄3y2y4
_x̄1x2x̄3y1y4_ x1x̄2x̄3y2y4_ x1x̄2x̄3y1y4
_x2x4ȳ1ȳ2y3_ x2x4ȳ1y2ȳ3_ x2x4y1ȳ2ȳ3

_x1x4ȳ1ȳ2y3_ x1x4ȳ1y2ȳ3_ x1x4y1ȳ2ȳ3
C1(X ;Y )=x2x4y2y4_ x2x4y1y4_ x1x4y2y4_ x1x4y1y4

Here,A(X ;Y ) is the product of PIs that are essential in both
f (X) and f (Y ), B(X ;Y ) is the product of one essential and one
non-essential PI, whileC1(X ;Y ) is the product of PIs that are
non-essential in bothf ’s. There are a total of 25 PIs. However,
f 2 can be represented using only 24 PIs, as follows.

f 2=A(X ;Y )_B(X ;Y )_C2(X ;Y ); (2)

where

C2(X ;Y ) = x3x4y3y4_ x2x4y2y4_ x1x4y1y4:



This SOP is the same as the one above, except thatC2(X ;Y )
replacesC1(X ;Y ) achieving a reduction of one PI. This is a
counterexample to Proposition 3.2. We have shown, by a com-
puter program, that (2) is an MSOP forf 2, and soτ(MSOP :
f 2) = 24. This example shows that decomposing a function
into subfunctions on disjoint sets of variables, minimizing the
two SOPs separately, followed by applying the law of distribu-
tivity doesnot always yield an MSOP.

In this example, only a small penalty is paid for using func-
tional decomposition. This leads to the question of whether
a large reduction is possible. That is, are there any AND bi-
decomposable functions in which the application of the law of
distributivity to the MSOPs of component functions produces
an SOP with many more PIs than in the MSOP?

C. Incompletely Specified Functions

Definition 3.1 Let fS be an incompletely specified symmetric
function on n-variables given as

fS(x1;x2; :::;xn)=0 if all variables are 0
=1 if one or zero variables are 0
=� (don’t care) otherwise ;

where n > 2.

Example 3.1 An example of this function for n = 3 is shown
in Fig. 3.2.

00 01 11 10
x1x2

x3

0

1 1 11

1

Fig. 3.2. Example of a three variable incompletely specified function.

Definition 3.2 A completely specified function g is said to
cover an incompletely specified function f if g is 0 and 1 for
all assignments of values to variables for which f is 0 and 1,
respectively.

A cover for fS(x1;x2; :::;xn) is

fS(x1;x2; :::;xn) = xi_ x j; i 6= j;

and an SOP forf n�1
S is

[xi1 _ x j1] [yi2 _ y j2] � � �
�
zin�1_ z jn�1

�
| {z };

n�1 sum (OR) terms

which has 2n�1 PIs, when expanded into an SOP using the law
of distributivity. However, onlyn PIs are needed. That is,

x1 y1 : : : z1 _ x2 y2 : : : z2 _ : : : _ xn yn : : : zn| {z } (3)

n product (AND) terms
is also an SOP off n�1

S , wherex1, x2, ... , andxn are the vari-
ables of the firstf , y1, y2, ... ,yn are the variables of the second
f , ... , andz1, z2, ... ,zn are the variables of then�1th f . f n�1

S
is 1 when one or none ofx1;x2; : : : ; andxn are 0, one or none of
y1;y2; : : : ; andyn are 0,� � �, and one or none ofz1;z2; : : : ; and
zn are 0. At mostn�1 variables are 0; the remaining are 1.
For such an assignment of values, (3) is also 1, since there are
n product terms on distinct variables, and not enough 0’s for
all product terms to be 0. Further, (3) is 0 when all variables in
a group (i.e.,x1x2 : : :xn, y1y2 : : :yn, : : : , and z1z2 : : :zn) are 0,
as is f n�1. It follows that (3) is an SOP forf n�1

S . This proves

Theorem 3.1 An ISOP for f n�1
S formed by applying the law

of distributivity to the product of MSOPs of fS has 2n�1 PIs,
while an MSOP of f n�1

S has no more than n PIs.

We form a completely specified functiongS from fS by
adding one more variable. In general,

Definition 3.3 Let gS(x1;x2; : : : ;xn;xn+1) be the (n + 1)-
variable function

gS(x1;x2; : : : ;xn;xn+1)=Sn
f1;2;:::;n�2g(x1;x2; : : : ;xn)

_xn+1Sn
fn�1;ng(x1;x2; : : : ;xn);

where n > 2.

Example 3.2 The completely specified function shown in Fig.
3.1 is gS(x1;x2; : : : ;xn;xn+1) for n = 3. Removing the essential
PIs in that function yields an incompletely specified function of
the form shown in Fig. 3.2.

Each minterm ingSjxn+1=0 corresponds to values ofx1, x2,
... , andxn for which fS is a don’t care. Further, a covering of
gSjxn+1=0 = Sn

f1;2;:::;n�2g also covers corresponding minterms

in gSjxn+1=1, that are don’t care values in the underlying in-
completely specified function. These PIs are essential be-
cause they are the only PIs that cover the

�n
2

�
minterms in

gSjxn+1=0 with exactlyn� 2 1’s and two 0’s. There are only
two non-essential PIs, e.g.x1 andx2. Specifically,x1 covers all
minterms inSfn�1;ng exceptx1x2 : : :xn = 011: : :1 andx2 cov-
ers all minterms inSfn�1;ng exceptx1x2 : : :xn = 101: : :1. Thus,
OR’d together, they cover all minterms inSfn�1;ng. They also
cover other minterms covered by essential PIs. Sincen > 2,
the number of PIs needed is

� n
n�2

�
=

�n
2

�
[7]. Thus,gS has

�n
2

�
essential and two non-essential PIs. From this, we can state,

Theorem 3.2 An ISOP for gn�1 formed by applying the law of
distributivity to the product of MSOPs of g has

τ(ISOP : g)n�1 =

��
n
2

�
+2

�n�1

;

PIs, while an MSOP of gn�1 has

τ(SOP : gn�1) =

��
n
2

�
+2

�n�1

�2n�1+n:

PIs.



Theorem 3.2 shows that the reduction in PIs for the corre-
sponding completely specified function is not as significant as
in the case of the underlying incompletely specified function.

IV. ORTHODOX FUNCTIONS

As discussed in the previous section, minimization is eas-
ier when a functionf has an AND bi-decomposition, and an
MSOP is formed by applying the law of distributivity to the
component functions. We characterize a subclass of functions
with this property, orthodox functions.

A. Independent Sets of Minterms

Definition 4.1 Given a function f (X), let M( f ) be the set of
true minterms for f . Then, MI( f ) � M( f ) is an indepen-
dent set of minterms of f iff no PI of f covers more than
one minterm in MI( f ).

Definition 4.2 Given a function f (X), η( f ) is the number of
elements in a maximum independent set of minterms of f .

The concept of a maximal independent set of minterms was
proposed 30 years ago by Michalski and Kulpa [2]. It is used in
ESPRESSO [1] [5] to obtain a lower bound on the number of
products in an MSOP, which is useful in reducing computation
time.

Example 4.1
Symmetric function S3

f1;2g(x1;x2;x3) has two maximal inde-

pendent sets of minterms f001;010;100g and f110;101;011g.
Thus, η(S4

f1;2g(x1;x2;x3)) = 3. (End of Example)

Definition 4.3 Given a function f (X), let M( f ) be the set of
true minterms for f . Then, MD( f ) � M( f ) is a set of distin-
guished minterms if exactly one PI of f covers each minterm
in MD( f ).

Example 4.2 Symmetric function S3
f1;2g(x1;x2;x3) has no dis-

tinguished minterms, because every minterm is covered by two
PIs. However, S3

f1;2;3g(x1;x2;x3) = x1_ x2_ x3 has three dis-
tinguished minterms, 100, 010, and 001. (End of Example)

Note that a function covered only by essential PIs has a max-
imal independent set that corresponds to set of distinguished
minterms.

B. Relationship Between MSOPs and Independent Sets of
Minterms

Lemma 4.1

τ(MSOP : f )� η( f ):

Lemma 4.2 Let MI(g) be an independent set of minterms of
g(X) and MI(h) be an independent set of minterms of h(Y ).
Then, MI(g)�MI(h) is an independent set of minterms for
g(X)h(Y ), where MI(g)�MI(h) is the AND of all minterms in
MI(g) with all minterms in MI(h).

Definition 4.4 A function f (X) is orthodox iff

τ(MSOP : f (X)) = η( f ):

Otherwise, f (X) is non-orthodox.

Example 4.3 Symmetric function f = S3
f1;2g(x1;x2;x3) =

x1x̄2_ x2x̄3_ x3x̄1 is orthodox, since

τ(MSOP : f ) = η( f ) = 3:

(End of Example)

Theorem 4.1 Let f (X) and g(Y ) be orthodox. If X and Y are
disjoint sets of variables, then f (X)g(Y ) is orthodox.

It is possible to make a number of observations. First,

Theorem 4.2 Let f (X) and g(X) be orthodox, where X \Y =
/0. Then,

τ(MSOP : f (X)g(Y )) = τ(MSOP : f (X))τ(MSOP : g(Y )):

Definition 4.5 Function f (X) is NP-equivalent to g(X) if,
given g(X), a complementation and/or permutation of vari-
ables in X yields f (X).

Theorem 4.3 If f and g are NP-equivalent, then f is orthodox
iff g is orthodox.

This follows from the observation that an MSOP off (X)
can be formed fromg(X), which is NP-equivalent tof (X) by
a suitable complementation and permutation of variables inX .
Therefore, if the MSOP forg(X) hasα independent minterms,
so also doesf (X).

Definition 4.6 Function f (X) is NPN-equivalent to g(X) if,
given g(X), a complementation and/or permutation of vari-
ables in X and/or complementation of the function yields f (X).

Theorem 4.3 cannot be extended to NPN-equivalent func-
tions. For example, the function shown in Fig. 3.1, which is
non-orthodox, is NPN-equivalent to its complement function,
which is orthodox.

Lemma 4.3 If an MSOP of f (X) consists of essential PIs only,
then f is orthodox.

This follows from the observation that an essential PI cov-
ers a distinguished minterm that is covered by only that PI.
All such minterms form an independent set. It is interesting
that the converse does not hold. That is, a set of independent
minterms is not necessarily a set of distinguished minterms.
This is discussed in the next section.

C. Classes of Functions That Are Orthodox

Lemma 4.4 Unate functions are orthodox.

Lemma 4.5 Parity functions are orthodox.

These two lemmas follow from the observation that the
MSOPs for a unate function and a parity function consist of
essential PIs only.

Consider symmetric functions. In general, such functions
may or may not have essential PIs. The parity function is sym-
metric, has essential PIs only, and is thus orthodox. However,
the 3-variable symmetric functionS3

f1;2g has no essential PIs,
but it is orthodox. Thus, it has a non-empty set of independent
minterms, and an empty set of distinguished minterms.

Theorem 4.4 Symmetric functions are orthodox.



D. Functions With Three or Fewer Variables

Theorem 4.5 All switching functions of three or fewer vari-
ables are orthodox.

It is impossible to extend the statement of Theorem 4.5 to
four variables because the function in Fig. 3.1 is a four variable
function that is non-orthodox.

V. EXPERIMENTAL RESULTS

A. Non-Orthodox Functions With Four Variables

There are 65,536 functions of 4 variables. They are divided
into 402 NP-equivalence classes. By a computer program, it
has been verified that only four equivalence classes are non-
orthodox. A representative from each class occurs as an as-
signment of values to the don’t care values in Fig. 5.1.

1 111

1 1

1

1 11

00

01

11

10

00 01 11 10
x1x2

x3x4

Fig. 5.1. The four-variable non-orthodox functions.

Each representative function is NP-equivalent to 63 other
functions. So, there are 64�4= 256 non-orthodox functions,
representing 0.4% of the 65,536 4-variable functions. The
program has verified that each of these functions has the prop-
erty thatτ(MSOP : f 2)< τ(MSOP : f )2. Note that the running
example of Fig. 3.1 corresponds to choosing the two dashed
entries in Fig. 5.1 as 0’s.

B. Functions With Five or More Variables

Extending this observation to functions on more variables is
difficult because of the large number of functions. For exam-
ple, the number of NP-equivalence classes of 5 variable is more
than 1,200,000, so it is impractical to do exhaustive analysis.

For the functions with more than 4 variables, we generated
functions by using a pseudo-random number generator, and did
a computer simulation. For eachn, we generated 100 func-
tions with 2n�1 true minterms and determined which were non-
orthodox. Table 5.1 show the results. It can be seen that when
the number of variables is 10, the percentage of functions that
are non-orthodox is 100%. Thus, it is interesting to compare
this with functions on three or fewer variables, 0% of which
are non-orthodox.

Fig. 5.2 shows a plot of the percentage of 4-, 5-, ... , and 13-
variable functions that are non-orthodox verses the percentage
of true minterms. When the percentage of true minterms is
small, so also are the percentage of non-orthodox functions. In

TABLE 5.1
PERCENTAGE OFn-VARIABLE FUNCTIONSTHAT ARE NON-ORTHODOX

Number of Percentage that
Variables are Non-orthodox

5 1
6 4
7 13
8 34
9 81

10 100

this case, minterms tend to be isolated and most PIs are essen-
tial. As the percentage of true minterms increases, so also does
the percentage of functions that are non-orthodox, until most
of the minterms are true, in which case the function is covered
by a few large PIs. In the limit, when 100% of the minterms are
true, there is a single PI that covers a single function, and 0%
of the functions are non-orthodox. The data associated with
4-variable functions is exact, since we know the exact num-
ber of non-orthodox functions. For functions with more than 4
variables, the data is approximate. The program that computes
τ(MSOP : f ) andη( f ) applies a heuristic for finding an MSOP
and a maximal independent set.

n =13
n =12

n =11

n =10

n =9

n =8

n =7

n =6

n =5

n =4
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.

Percentage of Minterms That Are True

P
er

ce
nt

ag
e 

T
ha

t 
A

re
 N

on
-O

rt
ho

do
x

Fig. 5.2. Percentage of 4-, 5-, ... , and 13- variable functions that are
non-orthodox.

C. Benchmark Functions

Most logic functions used in practical logic design are not
random, but have special properties. Benchmark functions,
used to compare SOP minimization algorithms, are thus ap-
propriate subjects for experiments to determine the orthodox
property. We have analyzed the MCNC91 benchmark func-
tions with respect to this property. Table 5.2 shows the result.
For multiple-output functions with up to 30 input variables, we
minimized each output independently; orthodox functions are
only defined for single-output functions. For functions with



TABLE 5.2
BENCHMARK FUNCTIONS THAT ARE ORTHODOX.

Circuit No. No. No. No.Non No.
Name In. Out. Or’dx -Or’dx Unate

5xp1 7 10 10 0 2
9sym 9 1 1 0 0
apex4 9 19 18 1 1
b12 15 9 9 0 2
cps 24 109 107 2 50
duke2 22 29 29 0 8
ex1010* 10 10 9 1 *
inc 7 9 9 0 0
misex1 8 7 7 0 0
misex2 25 18 18 0 12
misex3 14 14 13 1 0
misex3c 14 14 13 1 0
pdc* 16 40 40 0 *
rd53 5 3 3 0 1
rd73 7 3 3 0 1
rd84 8 4 4 0 1
sao2 10 4 4 0 0
spla 16 46 46 0 12
t481 16 1 1 0 0
vg2 25 8 8 0 0

*This function is incompletely specified.

more input variables, the program failed to finish because of
memory overflow. Of the 20 functions analyzed, and of a to-
tal of 358 outputs, only 6 outputs or 1.7% are non-orthodox.
This, we feel, is interesting, given our experiments on random
functions, which show that, random functions with 10 or more
variables are predominantly non-orthodox. It suggests to us
that benchmark functions tend to be simpler than random func-
tions.

VI. CONCLUDING REMARKS

From the results of this paper, we can state the following
minimization algorithm.
Algorithm 6.1
1) If f has an OR bi-decomposition (f = g1(X1)_g2(X2)), then
minimize SOPs forg1 andg2, independently. The OR of two
MSOPs is an MSOP forf .
2) If f has an AND bi-decomposition (f = g1(X1)g2(X2)), de-
termine ifg1 andg2 are orthodox. If both are orthodox, min-
imize the SOPs forg1 andg2, independently. Use the law of
distributivity to derive the MSOP forf .
3) Otherwise, use a conventional approach to minimize the
SOP for f .

In this paper, we have shown that the AND of MSOPs of
certain functions followed by the application of the law of dis-
tributivity doesnot always produce an MSOP for the product
function. We show an incompletely specifiedn(n�1)-variable
function where the an MSOP requiresn PIs while an SOP de-
rived from independent optimization followed by the applica-

tion of the law of distributivity requires 2n�1 PIs.
In [6], many benchmark functions were analyzed to deter-

mine if they had functional decompositions. In this exper-
iment, each output was decomposed separately in the case
of multiple-output functions. The experimental results show
that 3027 functions out of 4388 functions or 69% have bi-
decompositions, most of which are AND or OR type bi-
decompositions. This shows the importance of orthodox func-
tions, suggesting that minimization of practical functions can
be done by a divide-and-conquer algorithm. That is, a bi-
decomposition allows one to identify two component functions
(each simpler than the original function) and then to minimize
those separately, and later combine them using the law of dis-
tributivity. We have proven that the MSOP will be obtained in
the case of orthodox functions.

It is important to note that that the majority of switching
functions do not have bi-decompositions and are not orthodox.
The benefit of our proposed approached is demonstrated by the
fact that a large number of switching functions used in practice
(e.g. unate, symmetric, and benchmark functions) have these
properties, and thus our techniques can be used to advantage.

VII. A CKNOWLEDGEMENTS

The authors acknowledge the research support of the Min-
istry of Education, Science, Sports and Culture of Japan.

REFERENCES

[1] R. K. Brayton, G. D. Hactel, C. T. Mc-
Mullen, and A. Sangiovanni-Vincentelli,Logic Minimization
Algorithms for VLSI Synthesis, Norwall, MA, Kluwer Aca-
demic Publishers, April 1984.

[2] R. S. Michalski and Z. Kulpa, ”A system of programs for the
synthesis of switching circuits using the method of disjoint
stars,”Proceedings of IFIP Congress, pp. 61-65, April 1971.

[3] A. Odlyzko, ”On covering a product of sets with products of
subsets,”Discrete Mathematics, pp. 373-380, 1973.

[4] W. J. Paul, ”Realizing Boolean functions on disjoint set of vari-
ables,”Theoretical Computer Science 2, pp. 383-396, 1976.

[5] R. L. Rudell and A. Sangiovanni-Vincentelli, ”Multiple-valued
minimization for PLA optimization,”IEEE Trans. Computer-
Aided Design, vol. CAD-6, No. 5 pp. 727-749, September 1987.

[6] T. Sasao and M. Matsuura, “DECOMPOS: An integrated sys-
tem for functional decomposition,”1998 International Work-
shop on Logic Synthesis, Lake Tahoe, pp. 471-477, June 1998.

[7] B. Voight and I. Wegener, ”A remark on minimal polynomi-
als of Boolean functions,”CSL’88, 2nd Workshop on Computer
Science Logic Proceedings, pp. 372-383, 1989.


	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


