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Abstract— A function f is AND bi-decomposable if it can
be written as f(Xy,X2) = h1(X1)h2(X2). In this case, a sum-of-
products expression (SOP) forf is obtained from minimum SOPs
(MSOP) for h; and hy by applying the law of distributivity. If
the result is an MSOP, then the complexity of minimization is re-
duced. However, the application of the law of distributivity to
MSOPs for h; and hy does not always produce an MSOP forf.
We show an incompletely specified function oh(n— 1) variables
that requires at mostn products in an MSOP, while2"~ products
are required by minimizing the component functions separately.

We introduce a new class of logic functions, called orthodox
functions, where the application of the law of distributivity to
MSOPs for component functions off always produces an MSOP
for f. We show that orthodox functions include all functions with
three or fewer variables, all symmetric functions, all unate func-
tions, many benchmark functions, and few random functions with
many variables.

|l. INTRODUCTION

A logic function f is said to have a bi-decomposition if

f is written asf(X,Y) = g(h1(X),h2(Y)), whereXnY =
0. If gis the AND (OR) function, thenf has an AND
(OR) bi-decomposition.

(MSOPs) for them are often easy to obtain.
For example, iff has an OR bi-decompositiof:=hy(X) Vv

Many practical functions have bi-
decomposition [6], and minimum sum-of-products expressions
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special case where the independent optimization of component

MSOPs indeed produces an MSOP for

Il. NOTATION

Definition 2.1 x and x are literals of a variable x. The AND
of literalsis a product or implicant. The OR of productsis a
sum-of-products expression(SOP).

Definition 2.2 A prime implicant (PI) of a function f is an
implicant that implies f, such that the deletion of any literal
results in a new implicant that does not imply f.

Definition 2.3 An irredundant sum-of-products expression
(ISOP) isthe OR of PlIs, such that no PI can be deleted without
changing the function represented by the expression.

Definition 2.4 Amongthe|SOPsfor f, onewith the fewest Pls
isaminimum SOP or MSOP.

Definition 2.5 T(MSOP : f) denotes the number of Plsin an
MSOP for f.

In the discussion to follow, we will use symmetric functions.

Definition 2.6 S}, a (totally) symmetric function, is 1if mof
itsnvariablesare 1, wherem e A and is O otherwise.

Example 2.1 The AND and OR functions of n variables are
Symmetric and represented by S?n} and 3?1 2.np respectively.
(End of Example)

hy(Y), then the MSOP fof is obtained as the OR of MSOPs Definition 2.7 Given an n-variablefunction f (X), f P denotes
for hy andh,. This is a desirable property, since the time tdhe np-variable function

optimize ann-variable function given as an SOPtgbroducts
is at leasO(nt?).

Assume thaff is known to have an AND bi-decomposition,
f = hy(X)h(Y). If an MSOP forf is obtained from MSOPs
for hy andh, followed by the application of the law of dis- WhereXy, Xz, ...

FP(XeUXoU...UXp) = f(X0) F(Xa)... F(Xp),

, and Xp are pairwise disjoint sets of variables.

tributivity, then this computation would be much faster. Let the

number of products in MSOPs ftr; andh, bet; andty, re-
spectively. Then, an SOP fdrcontaing 1t products. A func-
tion with this many products normally takes at le@si(t1t2)?)

IIl. PROBLEMS IN THE MINIMIZATION OF SOPs OF
BI-DECOMPOSABLEFUNCTIONS

time to minimize. However, since the law of distributivity 5 Anp and OR Bi-Decompositions
can be used to form the MSOP, one can minimize two smaller’

component functions, requiring on(nt? + nt2 + tyt,) time,
which is usually much less.

Lemma 3.1 Let p; and p2 beimplicants on X; and Xz, respec-
tively, such that X; N X, = 0. p; and py are Pls of hy(X;) and

Unfortunately, in the case of AND bi-decompositon, wehz(Xo), respectively iff
cannot always achieve an MSOP by optimizing the compo- 1. p; and pz are PIsof hi(X1) v ha(X2), and
nent functions independently. In this paper, we consider a 2. pipzisaPl of hi(X1)h2(X2).



We prove Part 1 of this lemma; Part 2 is done in a similar \Xlxz
manner. The "if” part is true becausegfis a Pl of eitheh or XXa\_00 01 11 10
hy, it is trivially an implicant ofhy v hy. Because the variable 00 1 1
setsX; and Xz do not overlapp is also a Pl ohy1 Vv hy. The
"only if” part is true as follows. Letp be a PI ofh; Vv hy, and o1 1 B
let it be expressed g3 = p1p2, Wherep; consists of literals \_
from X3 only andp, consists of literals fronx, only. Sincep 11 1 \1/ 1/
is a Pl ofh1 v hy, then an assignment of values to the variables
associated withp; p2 causes eitheh; or h, or both to be 1.
Supposéh; is 1; the case wher, is 1 is similar. Sincé; is
1, p1 is an implicant ofh;. But, p1p2 cannot be a Pl unless
p2 = 1. Further,p; must be a Pl oh;. On the contrary, if not,
it implies a PI,pj of hy. Thus,p}p2 must be an product that
implieshy Vv hy, that is implied byp;p2. But, this results in a
contradiction, sincgpyp, is a Pl. It must be thap; is a Pl of This figure shows all six Pls of this function. Three, shown
hs. by dark ellipses, are essential. Of the remaining three, only
The OR of MSOPs fohy(X;) andhy(Xz) is an SOP that two are needed to completely cover the function. Therefore,
representsy (Xy) vV hz(X2). Similarly, the AND of MSOPs t(MSOP, f) = 5. Note that the three essential Pls cover three
for hy(X1) andhz(Xz) is an SOP that represeritg(X1)h2(X2).  minterms covered by the non-essential Pls, and, since all three

Fig. 3.1 Example of a four variable function showing Proposition 3.2 does
not hold .

Thus, it follows that essential Pls are required in an MSOP, the essential Pls, in ef-
Lemma 3.2 Let hy(X;) and hy(Xz) befunctionseach notiden-  fect, create three don’t care minterms covered by non-essential
tically 1, such that X; N X, = 0. Then, Pls. There are three MSOPs fbyrone of which is
T(MSOP : hy v hy) <T(MSOP : h1) + T(MSOP : hy) and L o L
T(MSOP : h1hy) <T(MSOP : hy)T(MSOP : hy). f (X1, X2,X3,Xa) = [X1XoX3 V X1XoX3 V X1 X2X3] V [XoXa V X1 Xa]-
)

Itis tempting to believe that Lemma 3.2 is true when the twa4ere, the first three terms in brackets represent the essential
< relations are replaced by. Consider these two statementsp|s, while the last two terms in brackets represent the non-

separately. essential Pls.

Proposition 3.1 Let h1(X;) and hy(X2) be functions each not Consider the 8-variable functidi? = f(X)f(Y). Using the

identically 1, such that X; " Xy = 0. Then, expression forf in (1), we can derive an expression fbf as
follows.

T(MS:)P chv hz) = T(MS:)P : h1) +T(M3:)PZ hz).
F2=F(X)F(Y) = f(x1, %2, X3, Xa) f (Y1,Y2,Y3,Ya)

Proposition 3.1 follows directly from 1. Lemma 3.1 and 2. =A(X,Y)VB(X,Y)VCyi(X,Y),
the observation that no PI of; is a Pl ofhy; i.e. they depend
on different variables. where

Proposition 3.2 Let h1(X;) and hy(X2) be functions not iden-

A(X,Y)=X1XoXaY1Y2Y3 V X1 XoXaV1Y2Ya V X1 XaXaY 1YY
tically 1, such that Xy 1 X, 0. Then, (X,Y)=X1XoX3y1Y2y3 V X1X2X3y1Y2Y3 V X1X2X3Y1Y2Y3

VX1XoX3Y1Y2Y3 V X1 XoXaY1Y2Y3 V X1XoXaY1Y2Y3

T(MSOP : hihy) = T(MSOP : hy)T(MSOP : hy). VX1X2X3Y1Y2Y3 V X1X2X3Y1Y2Y3 V X1X2XaY1Y2Y3
B(X,Y)=X1XoXay2ya V X1XoXay1Ya V X1X2Xay2Ya
That is, since the two variable se¥g, andXy, are disjoint, it VX1X2X3Y1Ya V X1X2X3Y2Y4 V X1XoX3Y1Y4
seems reasonable that finding an MSOFHg(iX;) andhy(X2) VX2XaY1Y2Y3 V XoXaY1Y2Y3 V XoXay1Y2Y3
separately and forming an SOP by applying the law of distribu- VX1XaY1Y2Y3 V X1XaY1Y2Y3 V X1Xay1Y2Y3
tivity to hy(X1)hp(X2) yields an MSOP. C1(X,Y)=XaXay2Ya V XoXay1Ya V X1XaY2Y4 V X1X4y1Y4

Here,A(X,Y) is the product of Pls that are essential in both

B. A Counterexample f(X) andf(Y), B(X,Y) is the product of one essential and one

However, this isnot true. V0|ght Wegener [7] show a 5- non-essential Pl, Whl|€1(X,Y) is the product of Pls that are
variable function for which Proposition 3.2 domst hold. This ~ hon-essential in botf's. There are a total of 25 Pls. However,
is related to a result by Odlyzko [3] who shows that the coverf? can be represented using only 24 Pls, as follows.
ing number of the product of two graphs is less than the prod-
uct of the covering numbers of the component graphs. In this
paper, we show a 4-variable counterexamplecs, X2, X3,X4)
that is simpler than that of Voight-Wegener [7]. As will be dis-\ypere
cussed, there is no simpler function with this property. Fig. 3.1
shows its Karnaugh Map. C2(X,Y) = X3XaY3Yy4 V X2XaY2Y4 V X1X4Y1Y4-

f2=A(X,Y) VB (X,Y) Vv Ca(X,Y), )



This SOP is the same as the one above, excepftiiat,Y)
replacesC;(X,Y) achieving a reduction of one PI. This is a

counterexample to Proposition 3.2. We have shown, by a com-

puter program, that (2) is an MSOP féf, and sot(MSOP :
f2) = 24. This example shows that decomposing a functio
into subfunctions on disjoint sets of variables, minimizing th
two SOPs separately, followed by applying the law of distribu
tivity doesnot always yield an MSOP.

In this example, only a small penalty is paid for using func

&, ... andz, 2, ...

Z(lyl...lexzyg...ZZV...Vxnyn...zrl 3)

n product (AND) terms

is also an SOP ofé‘*l, wherexy, X2, ... , andx, are the vari-

Bbles of the firsf, Y1, Y2, ... ,Yn are the variables of the second
, ,Z, are the variables of the— 1th f. f2~*

is 1 when one or none &f, X2, ..., andx, are 0, one or none of

Y1,Y2,---, andyy are 0,---, and one or none of,2, ..., and

Z, are 0. At mosin— 1 variables are 0; the remaining are 1.

tional decomposition. This leads to the question of whethet,, 5,ch an assignment of values, (3) is also 1, since there are

a large reduction is possible. That is, are there any AND b

i product terms on distinct variables, and not enough 0's for

decomposable functions in which the application of the law 0§ b5 quct terms to be 0. Further, (3) is 0 when all variables in

distributivity to the MSOPs of component functions produces, group (i.e.x1%e...

an SOP with many more PIs than in the MSOP?

C. Incompletely Specified Functions

Definition 3.1 Let fs be an incompletely specified symmetric
function on n-variables given as

fs(X1, X2, ...,%n)=0if all variablesare 0
=1if oneor zero variablesare 0
— (don’t care) otherwise,

wheren > 2.

Example 3.1 An example of this function for n = 3 is shown
inFig. 3.2.

X1X2

X3 00 01 11 10
0 /_ /1\ N\
S D

Fig. 3.2 Example of a three variable incompletely specified function.

Definition 3.2 A completely specified function g is said to

cover an incompletely specified function f if gis 0 and 1 for

all assignments of values to variables for which f is0 and 1,

respectively.

A cover for fg(X1,X2, ..., Xn) iS
fs(X1,X2,..., %) =% VXj,

i #

and an SOP fofd™1is

[Xil ijl] [yiz Vyjz] T [zin—l v Zjn—l] )

N >

e

n—1 sum (OR) terms

which has 2-1 PIs, when expanded into an SOP using the law

of distributivity. However, onlyn Pls are needed. That is,

Xy YiV2---Yn, ..., @and z12»...zy) are 0,
as isf"1. It follows that (3) is an SOP fof2~*. This proves

Theorem 3.1 An ISOP for fé‘fl formed by applying the law
of distributivity to the product of MSOPs of fs has 21 Pls,
while an MSOP of 3! hasno morethann Pls.

We form a completely specified functiags from fs by
adding one more variable. In general,

Definition 3.3 Let gs(X1,X2,..-,%,Xn+1) be the (n+ 1)-
variable function

9s(X1, X2, - - X, Xn41)=S1 5 0y (X1, X2, -, %)
VXn+1Sr{]n_17n} (X]-:XZ: v 7Xn)7

wheren > 2.

Example 3.2 The completely specified function shown in Fig.
3.1isgs(X1,X2,. .- ,%n,Xn+1) for n = 3. Removing the essential
Plsin that function yields an incompl etely specified function of
the form shown in Fig. 3.2.

Each minterm irgs|x,,,—o corresponds to values af, xp,
.., andx, for which fsis a don'’t care. Further, a covering of
OSlxy =0 = Sr{1l,2,...,n72} also covers corresponding minterms
in gs|x,.,=1, that are don’t care values in the underlying in-
completely specified function. These Pls are essential be-
cause they are the only Pls that cover tﬁz‘e) minterms in
0slx,,1=0 With exactlyn—2 1's and two 0’'s. There are only
two non-essential Pls, e.g; andx,. Specificallyx; covers all
minterms inSy,_1 ) exceptxiXz...xn = 011...1 andx, cov-
ers all minterms irg;, 1 0y €XcepixiXz... X, = 101...1. Thus,
OR'd together, they cover all minterms 8},_1 ;. They also
cover other minterms covered by essential Pls. Simce2,
the number of PlIs needed {§",) = (3) [7]. Thus,gs has(5)
essential and two non-essential Pls. From this, we can state,

Theorem 3.2 AnISOP for g"~* formed by applying the law of
distributivity to the product of MSOPs of g has

1(1SOP: g)" 1 = ((;) +2> n—1’

Pls, while an MSOP of g"~1 has

T(SOP:g" 1) = <<2> + 2> "t 2" in

Pls.



Theorem 3.2 shows that the reduction in Pls for the corrd=xample 4.3 Symmetric function f = 5?1,2} (X1,%2,X3) =
sponding completely specified function is not as significant ag x, \ xoX3 \V x3X is orthodox, since
in the case of the underlying incompletely specified function.
T(MSOP: f) =n(f) =3.

IV. ORTHODOX FUNCTIONS (End of Example)

As discussed in the previous section, minimization is eag-heorem 4.1 Let f(X) and g(Y) be orthodox. If X and Y are
ier when a functionf has an AND bi-decomposition, and an disjoint sets of variables, then f(X)g(Y) is orthodox.
MSOP is formed by applying the law of distributivity to the

) _ ~ Itis possible to make a number of observations. First,
component functions. We characterize a subclass of functions
with this property, orthodox functions. Theorem 4.2 Let f(X) and g(X) be orthodox, where XNY =

0. Then,

A. Independent Sets of Minterms

Definition 4.1 Given a function f(X), let M(f) be the set of
true minterms for f. Then, MI(f) C M(f) is an indepen-
dent set of minterms of f iff no Pl of f covers more than
one mintermin MI(f).

T(MSOP: f(X)g(Y)) =T(MSOP: f(X))T(MSOP: g(Y)).

Definition 4.5 Function f(X) is NP-equivalent to g(X) if,
given g(X), a complementation and/or permutation of vari-
ablesin X yields f (X).

Definition 4.2 Given a function f(X), n(f) isthe number of Theorem 4.3 If f and g are NP-equivalent, then f is orthodox
elements in a maximum independent set of minterms of f. iff g is orthodox.

The concept of a maximal independent set of minterms was This follows from the observation that an MSOP ffX)
proposed 30 years ago by Michalski and Kulpa [2]. Itis used iBan be formed frong(X), which is NP-equivalent td (X) by
ESPRESSO [1] [5] to obtain a lower bound on the number o suitable complementation and permutation of variablés in
products in an MSOP, which is useful in reducing computatioiTherefore, if the MSOP fog(X) hasa independent minterms,

time.

Example 4.1

Symmetric function 5?1,2} (X1,%2,%3) has two maximal inde-
pendent sets of minterms {001,010, 100} and {110,101,011}.
Thus, ”(8?1,2} (X1,%2,%3)) = 3. (End of Example)
Definition 4.3 Given a function f(X), let M(f) be the set of
true minterms for f. Then, MD(f) C M(f) is a set of distin-
guished mintermsif exactly one Pl of f covers each minterm
in MD(f).

Example 4.2 Symmetric function 5?1,2} (X1,X%2,X3) hasno dis-
tinguished minterms, because every mintermis covered by two
Pls. However, 5?1,2,3} (X1,%2,X3) = X1 V X2 V X3 has three dis-
tinguished minterms, 100,010, and 001  (End of Example)

so also does(X).

Definition 4.6 Function f(X) is NPN-equivalent to g(X) if,
given g(X), a complementation and/or permutation of vari-
ablesin X and/or complementation of the functionyields f (X).

Theorem 4.3 cannot be extended to NPN-equivalent func-
tions. For example, the function shown in Fig. 3.1, which is
non-orthodox, is NPN-equivalent to its complement function,
which is orthodox.

Lemma 4.3 I1f an MSOP of f(X) consists of essential Plsonly,
then f is orthodox.

This follows from the observation that an essential PI cov-
ers a distinguished minterm that is covered by only that PI.
All such minterms form an independent set. It is interesting

Note that a function covered only by essential Pls has a mathat the converse does not hold. That is, a set of independent
imal independent set that corresponds to set of distinguish&interms is not necessarily a set of distinguished minterms.

minterms.

This is discussed in the next section.

B. Relationship Between MSOPs and Independent Sets Gf Classes of Functions That Are Orthodox

Minterms
Lemma4.1l

T(MSOP: f) > n(f).

Lemma 4.2 Let MI(g) be an independent set of minterms of
g(X) and MI(h) be an independent set of minterms of h(Y).
Then, MI(g) x MI(h) is an independent set of minterms for
g(X)h(Y), where M1 (g) x MI (h) isthe AND of all mintermsin
MI(g) with all mintermsin Ml (h).

Definition 4.4 Afunction f(X) isorthodox iff
T(MSOP: f(X)) =n(f).

Otherwise, f(X) isnon-orthodox.

Lemma 4.4 Unate functions are orthodox.
Lemma4.5 Parity functions are orthodox.

These two lemmas follow from the observation that the
MSOPs for a unate function and a parity function consist of
essential Pls only.

Consider symmetric functions. In general, such functions
may or may not have essential PIs. The parity function is sym-
metric, has essential Pls only, and is thus orthodox. However,
the 3-variable symmetric functi@{1 2 has no essential Pls,
but it is orthodox. Thus, it has a noﬁ—empty set of independent
minterms, and an empty set of distinguished minterms.

Theorem 4.4 Symmetric functions are orthodox.



D. Functions With Three or Fewer Variables

Theorem 4.5 All switching functions of three or fewer vari-

TABLE 5.1

PERCENTAGE OFN-VARIABLE FUNCTIONSTHAT ARE NON-ORTHODOX

ables are orthodox. Number of | Percentage that
It is impossible to extend the statement of Theorem 4.5 to Variables | are Non-orthodox
four variables because the function in Fig. 3.1 is a four variable 5 1
function that is non-orthodox. 6 4
7 13
8 34
V. EXPERIMENTAL RESULTS 9 81
A. Non-Orthodox Functions With Four Variables 10 100

There are 65,536 functions of 4 variables. They are divided
into 402 NP-equivalence classes. By a computer program

of the minterms are true, in which case the function is covered
by a few large PlIs. In the limit, when 100% of the minterms are

XeXe X1Xzoo ol 11 10 true, there is a single PI that covers a single function, and 0%
of the functions are non-orthodox. The data associated with
0| —1| 1 1 4-variable functions is exact, since we know the exact num-
ber of non-orthodox functions. For functions with more than 4
01 1 111 variables, the data is approximate. The program that computes

T(MSOP: f) andn(f) applies a heuristic for finding an MSOP

11| 1 1 111 and a maximal independent set.

10| 1 J—
Fig. 5.1 The four-variable non-orthodox functions. § 122:2 s n=9 ./'/H\T\
ve function | 3 [ =]
Each representative function is NP-equivalent to 63 othe | £ 70 =12 =X
functions. So, there are 644 = 256 non-orthodox functions, Z 600 ;:13 / ;" \\
representing 0.4% of the 65,536 4-variable functions. Th |< s00 / i “r\\
program has verified that each of these functions has the pro § 400 / Il 7 7 7 pyrs ‘\\
erty thatt(MSOP : f2) < 1(MSOP: f)2. Note that the running g, %0 T st VAN
example of Fig. 3.1 corresponds to choosing the two dashe g 200 / A s ‘\\
. . . B 10.0 — \“
entries in Fig. 5.1 as O's. B, WM e
0.0 125 250 375 500 625 750 875 100.
B. Functions With Five or More Variables Per centage of Minterms That Are True

Extending this observation to functions on more variables i
difficult because of the large number of functions. For exam
ple, the number of NP-equivalence classes of 5 variable is MOgjg 5 5 percentage of 4-, 5-, ..
than 1,200,000, so it is impractical to do exhaustive analysis.non-orthodox.

For the functions with more than 4 variables, we generate
functions by using a pseudo-random number generator, and ¢
a computer simulation. For each we generated 100 func-
tions with 2~ true minterms and determined which were non-
orthodox. Table 5.1 show the results. It can be seen that whi Most logic functions used in practical logic design are not
the number of variables is 10, the percentage of functions theandom, but have special properties. Benchmark functions,
are non-orthodox is 100%. Thus, it is interesting to comparesed to compare SOP minimization algorithms, are thus ap-
this with functions on three or fewer variables, 0% of whichpropriate subjects for experiments to determine the orthodox
are non-orthodox. property. We have analyzed the MCNC91 benchmark func-

Fig. 5.2 shows a plot of the percentage of 4-, 5-, ... , and 13ions with respect to this property. Table 5.2 shows the result.
variable functions that are non-orthodox verses the percentager multiple-output functions with up to 30 input variables, we
of true minterms. When the percentage of true minterms isinimized each output independently; orthodox functions are
small, so also are the percentage of non-orthodox functions. tmly defined for single-output functions. For functions with

., and 13- variable functions that are

C. Benchmark Functions



tion of the law of distributivity requires* PIs.
5 TABLES.2 In [6], many benchmark functions were analyzed to deter-
SR CHMARK T NCTIORS THAT ARE DRTHODOX mine if they had functional decompositions. In this exper-

Circuit | No.) No.| No. |No.Nonj No. iment, each output was decomposed separately in the case
Name | In. [Out.|Ordx | -Ordx ||Unate of multiple-output functions. The experimental results show
oxpl 71 10 10 0 2 that 3027 functions out of 4388 functions or 69% have bi-
9sym 9] 1 1 0 0 decompositions, most of which are AND or OR type bi-
apex4 9| 19 18 1 1 decompositions. This shows the importance of orthodox func-
b12 15( 9 9 0 2 tions, suggesting that minimization of practical functions can
cps 24| 109| 107 2 50 be done by a divide-and-conquer algorithm. That is, a bi-
duke2 | 22| 29 29 0 8 decomposition allows one to identify two component functions
ex1010% 10| 10 9 1 * (each simpler than the original function) and then to minimize
inc 71 9 9 0 0 those separately, and later combine them using the law of dis-
misex1 8 7 7 0 0 tributivity. We have proven that the MSOP will be obtained in
misex2 | 25/ 18| 18 0 12 the case of orthodox functions.
misex3 | 14| 14| 13 1 0 It is important to note that that the majority of switching
misex3cl 14| 14 13 1 0 functions do not have bi-decompositions and are not orthodox.
pdc* 16| 40 40 0 * The benefit of our proposed approached is demonstrated by the
rd53 5| 3 3 0 1 fact that a large number of switching functions used in practice
rd73 71 3 3 0 1 (e.g. unate, symmetric, and benchmark functions) have these
rds4 8l 4 4 0 1 properties, and thus our techniques can be used to advantage.
sao2 10 4 4 0 0
spla 16| 46| 46 0 12
481 6 1 1 0 0 VIl. ACKNOWLEDGEMENTS
vg2 25| 8 8 0 0 The authors acknowledge the research support of the Min-
*This function is incompletely specified. istry of Education, Science, Sports and Culture of Japan.
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In this paper, we have shown that the AND of MSOPs of
certain functions followed by the application of the law of dis-
tributivity doesnot always produce an MSOP for the product
function. We show an incompletely specifiegh— 1)-variable
function where the an MSOP requine®Is while an SOP de-
rived from independent optimization followed by the applica-

VI. CONCLUDING REMARKS



	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


