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Abstract| In logic simulation, we often have to e-

valuate logic functions in the presence of unknown in-

puts. However, the naive method often produces in-

correct values. In these cases, we can produce correct

values by evaluating regular ternary logic functions

instead of switching functions. This paper proposes

a realization of regular ternary logic functions by us-

ing double-rail logic. This implementation requires

O(2n=n) logic cells, and O(n) time to simulate an n-

variable logic function. We showed an FPGA real-

ization that is about 100 times faster than software

simulation.

I. Introduction

In logic simulation, we often have to evaluate logic func-

tions in the presence of unknown inputs. For example, if

some inputs do not a�ect the outputs, we want to retain

the inputs as unknown not 0's or 1's as is common. In

such a case, a naive method often produces incorrect val-

ues, or simulation takes too long for large networks. It is

known that correct values are obtained by evaluating the

regular ternary functions (RT functions) derived from the

given two-valued logic function[3].

BDD(binary decision diagram)-based simulators are

faster than conventional ones[1, 2]. However, the eval-

uation time increases exponentially when we evaluate

the functions in the presence of unknown inputs[4]!%K-
leene TDDs presented by Jennings[6] evaluate logic func-

tions in the presence of unknown inputs. A Kleene TDD-

based simulator produces correct results very quickly.

However, a Kleene TDD requires a large amount of mem-

ory.

This paper is organized as follows: Section 2 reviews a

proposed method to evaluate logic functions in the pres-

ence of unknown inputs. Section 3 presents a hardware

realization of RT functions using double-rail logic. We

show an FPGA realization that is about 100 times faster

than software simulation. Section 4 shows preliminary

experimental results.

II. Evaluation of Logic Functions in the

Presence of Unknown Inputs

Let B = f0; 1g. An n-variable switching function f

represents the mapping: f : Bn ! B.

Let ~a = (a1; a2; . . . ; an) be a binary vector, where ai 2 B.

We often have to evaluate the value f(~a) for ~a, where

some ai are unknown. In this section, we will review the

method to evaluate f in the presence of unknown inputs.

Let T = f0; 1; ug, where u denotes the truth value show-

ing an unknown input. Let ~� = (�1; �2; . . . ; �n) be a

ternary vector, where �i 2 T . If �i is either 0 or 1 for

all i, then ~� 2 Bn. In this case, f (~�) is either 0 or 1. If

�i = u for some i, then ~� 2 T n { Bn. In this case, for

some ~�, f (~�) is either 0 or 1, but for some other ~�, f (~�) is

undetermined. Therefore, it is convenient to introduce a

three-valued logic function, F : Tn ! T , which is derived

from f .

De�nition 2.1 Let ~� 2 Tn. A(~�) denotes the set of all

the binary vectors that are obtained by replacing all u with

0 or 1.

Let s be the number of u's in ~�, then the set A(~�) consists

of 2s binary vectors.

De�nition 2.2 Let f be a two-valued logic function, and

~� 2 Tn.

f (A(~�)) = ff(~a) j ~a 2 A(~�)g:

F(~�) =

8<
:
0 if f (A(~�)) = f0g.

1 if f (A(~�)) = f1g.

u if f (A(~�)) = f0; 1g.
Then, F is the regular ternary logic function[3] of

f(hereafter, we will call it an RT function).

Example 2.1 Consider the function, f(x1; x2; x3) =

�x1x2 _ x1x3. Let ~�1 = (0; 0; u), ~�2 = (u; 1; 1), and

~�3 = (u; 1; u). Then, F(~�1), F(~�2), and F(~�3) are de-

rived as follows:

f(A(~�1))=ff (0; 0; 0); f(0; 0; 1)g = f0g;

f(A(~�2))=ff (0; 1; 1); f(1; 1; 1)g = f1g;

f(A(~�3))=ff (0; 1; 0); f(0; 1; 1); f(1; 1; 0);

f(1; 1; 1)g = f0; 1g:



By De�nition 2.2, we have

F(~�1) = 0; F(~�2) = 1; and F(~�3) = u:

In a gate-level logic simulation, we extend binary log-

ic to ternary logic as shown in Figure 2.1. This is the

Kleenean strong ternary logic[5].

Example 2.2 Figure 2.2 shows an AND{OR network

that realizes the function in Example 2.1. When we e-

valuate the output f for the input ~�2 = (u; 1; 1) by using

a naive method, we evaluate signals from the primary in-

puts to the primary outputs. In this case, we have the

output u as shown in Figure 2.2. However, Example 2.1

shows that

F (~�2) = F(u; 1; 1) = 1:

Thus, a naive method produces an incorrect value for this

input.
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Figure 2.1: Ternary AND, OR, NOT, EXOR, and Align-

ment operations
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Figure 2.2: Realization of function in Example 2.1.

Several methods exist to evaluate output values accord-

ing to De�nition 2.2, i.e., to evaluate correct value by

computing RT functions: [7] use BDDs[8], and [6, 4] use

Kleene TDDs.

III. A Hardware Realization of RT Functions

In this section, we propose a realization of RT function-

s using double-rail logic. We will review the evaluation

method for f in the presence of unknown inputs.

A. DD-based Evaluation for Logic Functions

De�nition 3.1 [9] A BDD is a Quasi Reduced Ordered

Binary Decision Diagram (QROBDD) if it does not con-

tain distinct nodes v1 and v2 such that the subgraph rooted

by v1 and v2 are equivalent, and if every path from the root

node to the terminal nodes involves all the variables.

De�nition 3.2 [9] A BDD is a Reduced Ordered Binary

Decision Diagram (ROBDD) if it contains no node v with

low(v) = high(v), and if it does not contain distinct nodes

v1 and v2 such that the subgraph rooted by v1 and v2 are

equivalent.

Example 3.1 Figure 3.1(a) shows the binary decision

tree for the function in Example 2.1. The number 0(1) at-

tached to each edge incident to v denotes low(v)(high(v)).

Figure 3.1(b) and (c) show the QROBDD and ROBDD

for the function in Example 2.1, respectively.
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Figure 3.1: Example of BDDs

The next example explains the behavior of BDD-based

logic simulator.

Example 3.2 By tracing the edges of the ROBDD in

Figure 3.1(c), we can evaluate f(x1; x2; x3) = f (0; 1; 1)

for the function in Example 2.1. First, the label 1 of the

node v1 denotes the variable x1. As the value of x1 is 0,

we trace the edge 0, then reach the node v2. The label 2 of

the node v2 denotes the variable x2. As the value of x2 is

1, we trace the edge 1, then reach the terminal node 1 .

Thus, we have f (0; 1; 1) = 1.

In this way, the BDD-based simulator evaluates func-

tions by tracing edges from the root node to a terminal

node according to the value of each input variable.

In a practical system, the BDD-based simulator gener-

ates the code. For example, the code shown in Figure 3.2

is generated from Figure 3.1(c). Then, it is compiled, and

executed. Some simulators generate native codes direct-

ly. Note that the simulators trace n edges for evaluating

an n-variable logic function. In the cycle-based simulator

using 2p-valued decision diagrams, only n=p edges need

to be traced[2]. However, these methods can treat only

two values: 0 and 1. To treat u, we have to split u into

both 0 and 1, as in De�nition 2.2. We can formalize this

by introducing the Alignment operation.

De�nition 3.3 Figure 2.1 shows the ternary operation

Alignment. Let a; b 2 T .

a� b =
n
a if a = b.

u otherwise.

Theorem 3.1

F(u; x2; . . . ; xn) = F(0; x2; . . . ; xn) �F(1; x2; . . . ; xn):

This means that we have to trace both low and high

edges at the node where the input variable is equal to u. In



int f (int x1, x2, x3)f

if(x1) goto v3;

else goto v2;

v2: if(x2) return(1);

else return(0);

v3: if(x3) return(1);

else return(0);

g

Figure 3.2: Example of the code generated from the BDD.

the worst case, this method requires O(2sn) time, where

s is the number of u's in the input vector. A software

implementation on a uniprocessor will require exponential

time with s. Kleene TDD-based simulation requires only

time O(n). However, the Kleene TDD requires O(3n=n)

nodes, while the BDD requires O(2n=n) nodes.

In the next part, we will propose a hardware realization

of RT functions. The propagation time of the network is

O(n), and the amount of hardware is O(2n=n). We also

show a speedup method by pipelining.

B. Hardware Realization of RT Functions

When we trace the edges of BDDs, if an input variable

corresponding to a node label is 0(1), then we go to the

low(high) edge. If an input variable corresponding to the

node label is u, then we need to evaluate both the low and

the high edges, and need to perform alignment operation.

Table 3.1 shows an RTmodule implementing the opera-

tion in Figure 3.3(b). This module corresponds to a node

of BDD (Figure 3.3(a)). Note that in Table 3.1, (1; 0),

(0;1), and (1; 1) represent 0, 1, and u, respectively. Fig-

ure 3.4(a) is the AND-OR double-rail logic network for

Figure 3.3(b).

Algorithm 3.1 A hardware realization of RT function:

Given a BDD for a function f .

1. Replace each node of the BDD(Figure 3.3(a)) with

an RT module (Figure 3.4(a)). Interconnect the RT

modules by wires. For example, derive networks in

Figure 3.5(a) and (b) from BDDs in Figure 3.1(a)

and (b), respectively.

2. Assign (fL; fH) = (1;0) to the terminal node 0 , and

(fL; fH) = (0; 1) to the terminal node 1 .

3. Assign input variable Xi, (XiL; XiH) = (1; 0);

(0;1); and (1; 1) to 0, 1, and u, respectively.

4. Assign the output (YL; YH) of RT function,

(YL; YH) = (1; 0); (0; 1); and (1; 1) to 0, 1, and u,

respectively.

De�nition 3.4 Let N (BDD : f) be the number of non-

terminal nodes in the BDD for f .

Theorem 3.2 An RT function derived from n-input two-

valued logic function f can be implemented by using

N(BDD; f) copies of RT modules.

(a) A node of BDD. (b) RT module.
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Figure 3.3: RT module.

Table 3.1: Truth table for an RT module.

XiL XiH f0L f0H f1L f1H YL YH
1 0 1 0 - - 1 0
1 0 0 1 - - 0 1
1 0 1 1 - - 1 1
0 1 - - 1 0 1 0
0 1 - - 0 1 0 1
0 1 - - 1 1 1 1
1 1 1 0 1 0 1 0
1 1 0 1 0 1 0 1
1 1 otherwise 1 1

otherwise - -
- : don't care

Theorem 3.3 Let �(MSOP; f) be the number of prod-

ucts in MSOP(minimum sum-of-products expression) for

f . � (MSOP; YL) + � (MSOP; YH) = 2n:

Theorem 3.4 By assigning ( �xi; xi) to the variable

(XiL; XiH) in Figure 3.5(a)(b), we have YL = �f and

YH = f .

When RT functions are implemented by using sum-of-

product expressions. Theorem 3.3 shows that the total

number of products is 2n. However, RT functions can be

implemented with O(2n=n) cells of LUT (look-up-table)

type FPGAs.

Xilinx FPGAs[10] include three major con�gurable el-

ements: con�gurable logic blocks (CLBs), input/output

blocks(IOBs), and interconnections. An XC4000 CLB

contains two four-input lookup tables, a three-input

lookup table, and two D-type 
ip-
ops. Since outputs of

an RT module, YL and YH , can be expressed in four-input

logic functions, a CLB can implement an RT module. In

this case, placing and routing are necessary but logic syn-

thesis is trivial, since the network is directly mapped to

the BDD.

C. Speedup by Pipelining

We often need simulators that evaluate the outputs not

for a single stimulus but for a group of stimuli. By the pro-

posed method, we can achieve a speedup with pipelined

RT modules as shown in Figure 3.4(b). The pipelined

RT module consists of one RT module and two D-FFs.

In the pipelining network, the number of levels from the

root node to terminal nodes must be same. Thus, we may

construct the networks from a QROBDD. Figure 3.5(c) il-

lustrates the realization of RT function with pipelined RT

modules from Figure 3.1(b). A pipelined RT module can

be also implemented by one CLB.
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      with pipelined RT modules.

(a) Tree realization for RT function.
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Figure 3.5: Realization of RT function.

IV. Experimental Results

We presented benchmark functions by shared ROB-

DDs. The ordering of the inputs variables for BDDs are

obtained by heuristic algorithms[11]. We assumed XIL-

INX FPGAs, and mapped RT functions to them by using

Foundation Series 1.4 (XILINX tool). Table 4.1 compares

the number of non-terminal nodes in the shared ROBDD,

the number of CLBs, and simulation time[nsec/vector].

Table 4.1: Experimental results
function in out nodes CLBs time

misj1 35 14 41 48 28

rckl1 32 7 190 178 95

b41 33 23 205 149 45

x6dn1 39 5 219 328 84

jbp2 36 57 413 347 57

ti2 47 72 665 556 67

apex13 45 45 1275 1057 147

apex73 49 37 262 252 73

exep3 30 63 601 383 69

accpla4 50 69 1587 1290 169

mish4 95 43 103 130 22

signet5 39 8 1440 1295 216

c4325 36 7 1848 1777 340
1XC4010E-1, 2XC4036XL-1, 3XC4052XL-1,
4XC4062XL-09, 5XC40125XV-1

Simulation time was obtained by a static timing analyz-

er and a timing simulator (XILINX tool). XC40125XV,

which is the biggest FPGA in this experiments, has

4624(68� 68) CLBs. Since the number of CLBs for each

benchmark function is less than 4624, each function is

mapped to single FPGA. We acheieved a speed up of

10 over a software simulator that cannot treat unknown

inputs[2], and of 100 over a software simulator that can

treat unknown inputs[4]. The use of the pipelining tech-

nique will improve the performance.

V. Conclusion

This paper showed a method to evaluate logic func-

tions in the presence of unknown inputs. To produce

correct values, we computed regular ternary(RT) func-

tions derived from given switching functions. We pro-

posed a realization of RT functions by using double-rail

logic. This implementation requires O(2n=n) logic cells,

and O(n) time. We showed FPGA realizations are about

100 times faster than software simulation.
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