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Abstract—This paper presents an efficient method to check
the equivalence of two Boolean functions under permu-
tation of the variables. The problem is also known as
Boolean matching. As a basis of the Boolean matching,
we use the notion P-representative. If two functions have
the same P-representative then they match. We develop
a breadth-first search technique to quickly compute the
P-representative. On an ordinary workstation, on the av-
erage, our method requires several microseconds to test
the Boolean matching for functions with up to eight vari-
ables. This approach is promising for Boolean match-
ing of multiplexor-based field-programmable gate arrays
(FPGAs) and for library matching with many large cells.
Index Terms—Boolean matching, technology mapping,
variable permutation, P-equivalence.

I. INTRODUCTION

Boolean matching is a technique to detect the equiva-
lence of two Boolean functions under permutation of
the variables. One of the main application of Boolean
matching is in cell-library binding [6]. An exhaustive
method for Boolean matching is computationally infeasi-
ble even for functions with several variables. Thus, effi-
cient Boolean matching algorithms for cell-library bind-
ing have been developed [1, 2, 7, 12, 13, 16, 17]. Boolean
matching is also useful for logic verification where the
correspondence of the inputs of the two circuits are un-
known [10, 14, 18, 19]. Boolean matching is also effec-
tively used in other areas of logic synthesis, such as in
the design of AND-OR-EXOR three-level networks [4, 5].

In this paper, we present an efficient Boolean match-
ing algorithm for cell-library binding. As a basis of
the Boolean matching we use P-representative, which
is unique among the functions of a P-equivalence class.
The set of functions that are invariant under permuta-
tion of the variables form a P-equivalence class [8, 9, 15]. In
a P-equivalence class the function that has the smallest
binary representation is the P-representative of that class.
Every P-equivalence class has a unique P-representative.
Thus, if the P-representatives for the two functions are
the same then one can be transformed into another by
changing permutation of the variables.

To match against a library, our method computes the
P-representatives for all the library cells and stores them
in a hash table during a setup phase. Then computes the
P-representatives for the functions to be matched and
checks the hash table for the same P-representatives dur-
ing matching phase. During setup phase for multiplexor-
based field-programmable gate arrays (FPGAs), it gener-
ates a library with all the cells that an FPGA module can
implement by bridging the inputs and setting the inputs
to constants.

Important features of our method are as follows:
� First of all, P-representative is a powerful notion

because it is unique for any P-equivalence classes.
Burch and Long introduced a semi-canonical form
for matching under permutation of the vari-
ables [1]. However, semi-canonical form is
nonunique. As a basis of the Boolean match-
ing many algorithms use signatures, which are
mainly computed from some properties of the func-
tions. Although signatures are extensively used
in Boolean matching [10, 12, 14, 16, 17], they are
unable to uniquely identify many P-equivalence
classes. Thus, an exhaustive search is necessary
to obtain a conclusive result [16, 17]. However,
P-representative based method always gives con-
clusive result without any exhaustive search.

� The computational complexity of our method is in-
dependent of the number of cells in the library.
It can efficiently handle libraries with extremely
large number of cells. The number of cells is con-
strained only by the available memory resources.
This feature is very important in table look-up based
synthesis [8], where matching against a library with
more than one million cells may necessary [4, 5].
Next, an increase in the number and in the size of
the cells in a library improves the quality of the
mapped circuits [11, 17]. However, Boolean match-
ing for large libraries is computationally expensive.
On the other hand, our method efficiently deal with
large libraries.

� Our method is fast and flexible. Experimental re-
sult shows that it is about 40 times faster than the
method in [17]. It can be used with filters [3, 10, 13]
to further reduce the matching time.



� Cells with sufficiently large number of inputs can be
handled by our method. The present implementa-
tion can treat cells with up to eight inputs. Its prac-
tical upper limit is nine-input cells.

� For up to seven-variable functions the method re-
quires only about 500 kilobytes memory. For func-
tions with up to eight variables the memory require-
ment is about 10 megabytes.

� P-representative is very simple and compact.
� Computation of any functional properties is unnec-

essary in our method. Thus, it makes our method
independent of any cell architecture and simplifies
the programming task. Many Boolean matching al-
gorithms heavily depends on functional properties
to reduce the computation time [10, 12, 16, 18].

The remainder of the paper is organized as follows:
Section II introduces terminology. Section III develops
the technique to compute the P-representative, which is
the basis of our Boolean matching algorithm. Section IV
reports the experimental results. Section V presents con-
clusions.

II. DEFINITIONS AND TERMINOLOGIES

Definition 2.1 The minterm expansion of an n-variable func-
tion is f (x1,x2, : : : ,xn) = m0 � x̄1x̄2 � � � x̄n _m1 � x̄1x̄2 � � �xn _

� � � _ m2n
�1 � x1x2 � � �xn, where m0,m1, : : : ,m2n

�1 2 f0,1g.
The 2n bit binary number m0m1 � � �m2n

�1 is the binary
representation of f . To denote a binary number, a subscripted
2 is used after it.

Example 2.1 Consider the three-variable function
f (x1,x2,x3) = x̄1x̄2x̄3 _ x1. The binary representation of
f is 100011112.

Logic functions can be grouped into classes by using
simple transformations.

Definition 2.2 Two functions f and g are P-equivalent if g
can be obtained from f by permutation of the variables [8, 9,
15]. f P

� g denotes that f and g are P-equivalent. P-equivalent
functions form a P-equivalence class of functions.

Example 2.2 Consider the three functions: f1(x1,x2,x3)=
x̄2x̄3_ x1x2x3, f2(x1,x2,x3)= x̄1x̄3_ x1x2x3, and f3(x1,x2,x3)
= x̄1x̄2 _ x1x2x3: Since f2(x2,x1,x3) = x̄2x̄3 _ x1x2x3 =

f1(x1,x2,x3), we have f1
P
� f2, and since f3(x1,x3,x2) =

x̄1x̄3 _ x1x2x3 = f2(x1,x2,x3), we have f2
P
� f3. There-

fore, the functions f1, f2, and f3 belong to the same
P-equivalence class.

Definition 2.3 The function that has the smallest binary rep-
resentation among the functions of a P-equivalence class is the
P-representative of that class.

Example 2.3 All the functions of the P-equivalence
class for x̄2x̄3 _ x1x2x3 are f1(x1,x2,x3) = x̄2x̄3 _ x1x2x3,
f2(x1,x2,x3) = x̄1x̄3 _ x1x2x3, and f3(x1,x2,x3) = x̄1x̄2 _

x1x2x3. In binary representation: x̄2x̄3 _ x1x2x3 =

100010012, x̄1x̄3 _ x1x2x3 = 101000012, and x̄1x̄2 _

x1 x2 x3 f (x1,x2,x3)
0 0 0 m0
0 0 1 m1
0 1 0 m2
0 1 1 m3
1 0 0 m4
1 0 1 m5
1 1 0 m6
1 1 1 m7

(a) Truth-table for f (x1,x2,x3).

x3 x2 x1 f (x3,x2,x1)
0 0 0 m0
0 0 1 m4
0 1 0 m2
0 1 1 m6
1 0 0 m1
1 0 1 m5
1 1 0 m3
1 1 1 m7

(b) Truth-table for f (x3,x2,x1).

Fig. 1. Two different permutations of the variables
for three-variable function.

x1x2x3 = 110000012. Since 100010012 < 101000012 <

110000012, the P-representative of this class is x̄2x̄3 _
x1x2x3.

For an n-variable function, there are at most n!
P-equivalents. Among them, our objective is to find the
P-equivalent that has the smallest binary representation
as fast as possible.

III. COMPUTING P-REPRESENTATIVE

In this section, we show a method to compute
P-representative, mainly, by using three-variable func-
tion. The extension to the functions with more variables
is straightforward.

3.1. A Naive Method

The truth-table for a three-variable function f (x1,x2,x3) is
shown in Fig. 1(a), where m0,m1, : : : ,m7 2 f0,1g. We want
to prepare the truth-table for f (x3,x2,x1) in Fig. 1(b). We
do this by copying the minterms in Fig. 1(a) to Fig. 1(b),
such that f (a,b,c) in Fig. 1(a) and f (c,b,a) in Fig. 1(b) be-
come the same, where a,b,c 2 f0,1g. The permutation of
the variables for the functions in Fig. 1(a) and Fig. 1(b) are
(x1,x2,x3) and (x3,x2,x1), respectively. Similarly, we can
generate functions with other permutations of the vari-
ables, and take the function that has the smallest binary
representation as the P-representative.

A close observation to the minterms in Fig. 1 re-
veals that many of the minterms of f (x1,x2,x3) moved
to new positions in f (x3,x2,x1). For example, the fifth
minterm, m4, of f (x1,x2,x3) becomes the second minterm
of f (x3,x2,x1). Note that each time we want to change
the permutation of the variables of an n-variable func-
tion, we must compute the new positions for all the
2n minterms. An n-variable function have at most n!
P-equivalents. Thus, to compute the P-representative
for an n-variable function we must compute n!2n new
positions for the minterms. As a result, the method re-
quires excessive amount of computation time even for
functions with several variables.

3.2. Using Precomputed New Minterm Positions

The variables of f (x1,x2,x3) can be permuted in six
ways: (x1,x2,x3), (x1,x3,x2), (x2,x1,x3), (x2,x3,x1), (x3,x1,x2),
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Fig. 2. All possible P-equivalents of a three-variable
function f (x1,x2,x3).

and (x3,x2,x1). Fig. 2 shows a three-variable function
f (x1,x2,x3) and its all possible P-equivalents. We can say
that Fig. 2 shows the new minterm positions which can
be used to generate P-equivalents. Thus, by using the
precomputed new minterm positions of Fig. 2 we can
easily generate all the P-equivalents of any given three-
variable function. This method is much faster than the
naive method of Section 3.1, because computation of the
new positions for the minterms is unnecessary.

3.3. Using Breadth-First Search

For an n-variable function, the above method first
generates n! functions and then chooses the func-
tion that has the smallest binary representation as the
P-representative. Since we are interested only in the
function that has the smallest binary representation,
we use breadth-first search technique for early detec-
tion of the variable permutation that cannot lead to the
P-representative. We discard the variable permutation
from the consideration as soon as we detect that it can-
not lead to the P-representative. Note that breadth-first
search technique is difficult to apply if Fig. 2 is unavail-
able.

3.4. A More Efficient Method

The above method uses breadth-first search on the new
minterm positions in Fig. 2. The method is fast; however,
we can further speed-up the computation.

For all the functions in Fig. 2 the first minterms are
the same. Thus, in breadth-first search any compari-
son is unnecessary for these minterms. Next we con-
sider the second minterms for all the functions in Fig. 2.
The usual way is to generate all the second minterms,
and then retain only the variable permutations that
have the smallest value for the second minterms and
discard other variable permutations. However, if we
partition all the variable permutations in Fig. 2 into
three sets, f(x1,x2,x3), (x2,x1,x3)g, f(x1,x3,x2), (x3,x1,x2)g,
f(x2,x3,x1), (x3,x2,x1)g, then instead of generating all the
second minterms we need to generate only three sec-
ond minterms, because for each of these sets the second
minterms are the same. We retain only the variable

permutations that have the smallest value for the sec-
ond minterms and discard other variable permutations.
Then the search continues with the third minterms in
Fig. 2. Thus, we can reduce the computation time for the
second minterms by a factor of 2 (= 3!=3). By using this
technique for the n-variable functions, we can reduce the
computation time for the second minterms by a factor of
n!=n. For functions with more than three variables this
technique is very effective to reduce the computation
time, because we can recursively partition the variable
permutations. In general, for n-variable functions, we
can partition the variable permutations into n sets at
first, then each of these sets can be again partitioned into
n� 1 sets; we can recursively partition each of these sets
until the cardinality of the sets become one. As a result,
we can drastically reduce the computation time for many
other minterms.

We incorporate this idea to find P-representative as the
traversal of a breadth-first search tree, which also uses the
new minterm positions in Fig. 2. During setup phase of
the Boolean matching we build this tree, which is the
main data structure of our algorithm. Each node of the
breadth-first search tree has multiple children, and the
number of children of a node depends on the level of
the node and on the number of variables. For n-variable
functions, the tree has n levels. Let the root node of the
tree is at level 1. Thus, the leaf nodes are at level n. The
number of children of a node at level k is n� k+ 1, where
1 � k < n. Thus, the total number of nodes in the tree
is 1+ n+ n(n� 1)+ n(n� 1)(n� 2)+ � � �+ n(n� 1)(n�
2) � � �4 � 3 � 2:

3.5. Some Properties of New Minterm Positions

The new minterm positions in Fig. 2 shows that the first
minterms are the same for all the functions. This is also
true for the last minterms. Fig. 2 also shows that, for
n = 3 if the i-th minterm is mk, then the (2n � i+ 1)-th
minterm be m2n

�k�1, where 1 � i � 2n�1. These prop-
erties are useful to reduce the computation time and to
save memory resources.

IV. EXPERIMENTAL RESULTS

We implemented the proposed method of Boolean
matching for functions with up to eight variables on an
HP C160 workstation. It consists of about 3000 lines of
C code and about five megabytes of dynamically linked
data for the new minterm positions. The program re-
quires about 10 megabytes memory, most of which is
used for the matching of functions with eight variables.
If the program is used for the functions with up to seven
variables, it needs about 500 kilobytes memory. Dur-
ing setup phase the program constructs the breadth-first
search trees; it takes about 50 milliseconds.

To demonstrate the effectiveness of our matching tech-
nique, we conducted an experiment by using 2,000,000
pseudo-random functions with three to eight variables



TABLE I
AVERAGE TIME FOR BOOLEAN MATCHING

Number of Time
variables (microseconds)

3 2.28
4 4.96
5 7.09
6 9.30
7 13.56
8 21.07

and tried to match them against a library with 20,000
randomly generated cells. The pseudo-random func-
tions for each variable are generated such that about
five percent of them can find a match in the library.
We computed the P-representatives for all the library
cells and stored them in a hash table during the setup
phase. Then the P-representatives for all the pseudo-
random functions are computed and compared with the
P-representatives for the library cells. Table I summa-
rizes the average Boolean matching time in microsec-
onds. Note that, it is the time to match a function against
the entire library cells.

Schlichtmann, Brglez, and Schneider [17] reported
that, for three-, four-, five-, six-, seven-, and eight-variable
functions the Boolean matching time is approximately
2.0, 4.0, 6.0, 8.0, 12.0, and 18.0 milliseconds, respectively,
on a DECStation 5000/200. An HP C160 workstation is
about 20 times faster than a DECStation 5000/200. Thus,
taking the speed differences of the two machines into
account, our method is about 40 times faster than the
method in [17].

V. CONCLUDING REMARKS

In this paper, we used the notion P-representative, which
is unique for any P-equivalence classes, and presented a
breadth-first search algorithm for its quick computation.
We used P-representatives to efficiently check the equiv-
alence of two Boolean functions under permutation of
the variables. The concept P-representative is extended
to the N-, NP-, and NPN-equivalence classes [8, 9, 15];
and a breadth-first search approach is also devised to
compute their respective representatives. The prelimi-
nary results are promising. Our Boolean matching tech-
nique can handle very large libraries. In addition, our
method is fast and flexible. It can be used with filters [3,
10, 13, 16] to further reduce the computation time. Our
future work is to develop a cell-library binding system
by using the proposed matching technique.
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