A Heuristic Algorithm to Design AND-OR-EXOR
Three-Level Networks

Debatosh Debnath and Tsutomu Sasao
Department of Computer Science and Electronics
Kyushu Institute of Technology
lizuka 820, Japan

Abstract—An AND-OR-EXOR network, where the output
EXOR gate has only two inputs, is one of the simplest
three-level architecture. This network realizes an EXOR of
two sum-of-products expressions (EX-SOP). In this paper,
we show an algorithm to simplify EX-SOPs for multiple-
output functions. Our objective is to minimize the num-
ber of distinct products in the sum-of-products expressions
of EX-SOPs. The algorithm uses a divide-and-conquer strat-
egy. It recursively applies the Shannon decomposition on a
function with more than five variables. The algorithm ob-
tains EX-SOPs for the five-variable functions by using an
exact minimization program, then combines those EX-SOPs
to generate EX-SOPs for the functions with more variables.
We present experimental results for a set of benchmark func-
tions, and show that EX-SOPs require many fewer products
and literals than sum-of-products expressions. This is evi-
dence that AND-OR-EXOR is a powerful architecture to real-
ize many practical logic functions.

Index Terms—Three-level network, AND-EXOR, logic mini-
mization, decomposition, programmable logic device.

I. INTRODUCTION

Many logic design systems use AND and OR gates as
their basic elements. Such systems are suitable for con-
trol circuits and often results in optimal designs. How-
ever, they produce poorly optimized networks for arith-
metic and telecommunication circuits [20, 21,27, 29]. For
these circuits, two-level AND-EXOR networks require
fewer gates and interconnections than two-level AND-
OR networks [19-21,23,27]. This suggests that arith-
metic and telecommunication circuits are well-suited for
EXOR (exclusive-OR) based design. However, two-level
AND-EXOR networks require EXOR gates with unlim-
ited fan-in. In most technologies, EXOR gates with
many inputs are slow and expensive, since they are of-
ten implemented as a cascade or tree of two-input EXOR
gates [32].

In this paper, we consider an AND-OR-EXOR three-
level network, where a single two-input EXOR gate is
used at each output. Each output of the network realizes
an EXOR of two sum-of-products expressions (EX-SOP).
Our objective is to reduce the total number of distinct
products in the sum-of-products expressions (SOPs) of
EX-SOPs. Simplification of an EX-SOP for a function
f(X) is equivalent to finding a decomposition that has

the form f(X) = g(X) @ h(X), such that the number of
distinct products in the SOPs for g(X) and h(X) are min-
imal. Figure 1 shows an example of an AND-OR-EXOR
three-level network. Note that the AND-OR-EXOR net-
work in this paper is not an ordinary three-level net-
work. It is a special type of three-level network, where
the output EXOR gate has only two inputs. In a general
three-level network, all the gates have unlimited fan-in.
For example, gates in AND-OR-EXOR and OR-AND-OR
three-level networks in [21] and [24], respectively, have
no fan-in constraints.

An AND-OR-EXOR three-level network is suitable for
implementing arithmetic functions. For example, Texas
Instruments’ SN181 arithmetic circuit and SN283 four-bit
adder have two-input EXOR gates in the outputs [28];
Monolithic Memories’ ZHAL20X8A eight-bit counter real-
izes EX-SOPs [14]. Programmable logic arrays (PLAS)
with two-input EXOR gates at the outputs efficiently
realize high-speed adders [31]. An AND-OR-EXOR is
one of the simplest three-level architecture, since it con-
tains only a single two-input EXOR gate. However,
its logic capability is quite high. Because of this, vari-
ous programmable logic devices (PLDs) with two-input
EXOR gates in the outputs were developed. Espe-
cially, RICOH, Lattice and AMD (MMI) produced se-
ries of such PLDs [14,16,17]. An AND-OR-EXOR three-
level network is also suitable for efficient implementa-
tion of many random functions. For example, simpli-
fied EX-SOPs for six-variable pseudo-random functions
require 25 percent fewer products and 40 percent fewer
literals than simplified SOPs [6]. For an arbitrary func-
tion of six variables, minimum SOPs require up to 32
products [11], while minimum EX-SOPs require at most
15 products [6].

It has been shown in [24] that three-level networks are
sufficient to realize most of the logic functions with opti-
mal number of gates. However, no significant reduction
in the number of gates can be obtained by increasing the
number of levels into four or more [24]. Therefore, three-
level networks are especially desirable, because they re-
quire considerably fewer gates than two-level AND-OR
networks for many functions. EX-SOPs produce not only
a network with fewer gates, but also a decomposed net-
work. A decomposed network is suitable for implemen-
tation in PLDs. In many cases, we cannot implement a

Fig. 1. Example of a minimum AND-OR-EXOR
three-level network.

network in PLDs without decomposition [16]. Since the
networks have only three levels, they are fast and their
propagation delays are easy to estimate.

Design methods for AND-OR-EXOR three-level net-
works were considered in the past [10, 26]. A cut-and-try
method was reported in [16] and a table look-up based
heuristic algorithm to simplify EX-SOPs was shown
in [4]. Several heuristic algorithms to simplify EX-SOPs
were presented in [22], which also showed the bench-
mark results for EX-SOPs for the first time. Another
heuristic algorithm to simplify EX-SOPs was reported
in [9]. To the best of our knowledge, except [9] and [22],
no other published benchmark results for EX-SOPs are
available. Exact minimization algorithms for EX-SOPs
with up to five variables were shown in [5,7]. Recently,
we developed algorithms to obtain optimal EX-SOPs for
single-output six-variable functions [6]. Upper bounds
on the number of products in minimum EX-SOPs were
reported in [5-8]. Decompositions that have the form
f(X1,X2) = 9(X1) @ h(X;) have been studied in [13,25].
AND-OR-AND three-level networks, where the output
AND gate have only two inputs were considered in [12].
Architecture of the PLDs with two-input logic elements
at the outputs were illustrated in [12,16,22]. Design
methods for EXOR-AND-OR networks, where EXOR
gates are used at the input parts to reduce the complexity
of the AND-OR networks, were presented in [30].

In this paper, we present an algorithm to simplify
EX-SOPs. The algorithm uses a divide-and-conquer
strategy: An EX-SOP for f is derived from the EX-SOPs
for f|x—o and f|x—1, where x is a variable on which f
depends. The fewer the products in the EX-SOPs for
flx—o and f|x—1, the fewer the products we can expect
in the EX-SOP for f. The algorithm recursively applies
the Shannon decomposition on a function with more
than five variables. It generates minimum EX-SOPs
for the five-variable functions by using a table look-up
approach [5]. We then obtain simplified EX-SOPs for
the six-variable functions by combining EX-SOPs for
the five-variable functions. In the similar way, we ob-
tain EX-SOPs for the n-variable functions by combin-
ing EX-SOPs for the (n — 1)-variable functions. By us-
ing these techniques, we simplified EX-SOPs for a set of
benchmark functions. We found that EX-SOPs require
many fewer products and literals than SOPs for the ma-
jority of these functions.

The remainder of the paper is organized as follows:
Section Il introduces terminology. Section Il presents the
key concept to simplify EX-SOPs. Section IV develops an
algorithm to simplify EX-SOPs for multiple-output func-
tions. Section V reports the experimental results. Sec-
tion VI presents conclusions.

Il. DEFINITIONS AND TERMINOLOGIES

In this paper, we distinguish functions and their expres-
sions. We use lower case letters, such as f, g, and h, to
represent functions, and upper case letters, such as F, G,
and H, to represent expressions of function.

Definition 2.1 A sum-of-products expression (SOP) is the
OR of product terms. An exclusive-OR (EXOR) sum-of-
products expression (ESOP) is the EXOR of product terms.
An EX-SOP is the EXOR of two SOPs.

In the rest of the paper, unless otherwise specified, an
EX-SOP represents an EX-SOP with product sharing.

Example 2.1 Consider the logic function f(X1,X2,X3,X4,Xs)
= ¥(5,6,9,10,13,14,17,18,20,22,23,24,25,27,29,30). The net-
work in Figure 1 realizes an EX-SOP for f: F = (X4x5 V
X1XoX3 V)21)22)23) S5 ()21)22)23 V X1XoX3 V x4)?5), where X1 X»X3
is the shared product between two SOPs of F.

Definition 2.2 An expression of a function is said to be min-
imum if it has the least product terms.

Definition 2.3 Let 7(F) be the number of distinct products in
an expression F and 7(EX-SOP : f) be the number of distinct
products in a minimum EX-SOP for f.

Example 2.2 In Example 2.1, 7(F) = 5. F is a minimum
EX-SOP, thus 7(EX-SOP : f) =5.

Remark 2.1 For the function f shown in Example 2.1, the
minimum SOP requires 10 products and 38 literals, while the
minimum EX-SOP requires only 5 products and 13 literals.

Definition 2.4 Two functions that are identical under the
permutation of the variables and/or the negation of one or more
variables are NP-equivalent [11, 15]. NP-equivalent functions
form an NP-equivalence class of functions.

I1l. BASIC PROPERTIES

When product sharing is not permitted, an EX-SOP for
an n-variable function can be derived from a pair of
EX-SOPs for (n — 1)-variable functions, without increas-
ing the number of products [5,8]. In this section, we
prove that it is also true when the sharing of products
in an EX-SOP is permitted.

Lemma3.1([7]) If f-g=0,then f-(hyy ®hy)Vg-(hy®
h22) = (fhyy V gh2) @ (fhi2 V ghy).

Theorem 3.1 Let f be an arbitrary function and x be a vari-
able on which f depends. Let g = f|x—o and h = f|x_;. Let G
and H be the EX-SOPs for g and h, respectively. Then, there
is an EX-SOP F for f, such that 7(F) < 7(G) + 7(H).

Proof: By using the Shannon decomposition with re-
spect to x, we have
f = xg Vv xh. (3.1)
Let G = Ggs @ Gy, such that G;s = G, V Gs and Gy = G, V
Gs, and let H = Hgs & Hyg, such that Hys = H, vV Hs and
Hys = Hy V Hs. Here Gs and Hg represent shared prod-
ucts in the EX-SOPs G and H, respectively. Thus, 7(G) =
7(Ga) + 7(Gp) + 7(Gs) and 7(H) = 7(Ha) + 7(Hp) + 7(Hs).
By putting the EX-SOPs for g and h into (3.1), we have an
expression F, for f:
Fa=)Z(Gas @ Gbs) \4 X(Has 2] Hbs)- (3-2)
By using Lemma 3.1 to (3.2), we have two expressions F,
and F; for f:
Fb == ()zGas V XHas) @ ()ZGbS V XHbS)l (3.3)
FC == ()zGas V XHbS) @ ()ZGbS \/ XHas). (3.4)
By putting the expressions for G,s, Has, Gps, and Hys into
(3.3), we have an EX-SOP F; for f:
Fo = ()Z(Ga \Y% Gs) \ X(Ha \Y% Hs))
@ (X(Gp V Gs) V X(Hp V Hy)).
@ ((XGp V xHp) V (XGs V xHs)). (3.5
In (3.5), XGs V xHs represents shared products in the
EX-SOP F; for f. We can represent XG, V XHa, XGyp V XHy,
and XGg V xHs by the SOPs F,,, Ry, and Fg, respectively,
such that 7(Fa) < 7(Ga) + 7(Ha), 7(Fo) < 7(Gp) + 7(Hp),
and 7(Fss) < 7(Gs) + 7(Hs). Thus, we have an EX-SOP F
for f:
F= (Faa \ Fss) @ (be \ Fss)-
Note that,
7(F) < 7(Ga) + 7(Ha) + 7(Gp) + 7(Hy) + 7(Gs) + 7(Hs),
= 7(G) 4+ 7(H).
Hence, we have the theorem. O
Note that G and H in Theorem 3.1 need not to be min-

imized or simplified. From Theorem 3.1, we have the
following:

Corollary 3.1 Let f be an arbitrary function and x be a vari-
able on which f depends. Then

T(EX-SOP : f) < 7(EX-SOP : fg) + 7(EX-SOP : fy),
where fo = f|x—o and f; = f|x_1.

IV. SIMPLIFICATION TECHNIQUES

Theorem 3.1 shows that an EX-SOP for an n-variable
function can be derived from a pair of EX-SOPs for
(n — 1)-variable functions, without increasing the num-
ber of products. Our simplification technique is based
on this concept.

In the proof of Theorem 3.1, we used (3.3) to derive an
EX-SOP for f. In a similar way, we can derive another
EX-SOP for f by using (3.4). Thus, we can produce a pair
of EX-SOPs for f if EX-SOPs for g and h are available,
and choose the EX-SOP with the fewer products as the
final solution. However, this method often fails to obtain
good quality solutions, because it searches only a limited

part of the entire solution space. To improve the quality
of the solutions, we consider many simplified EX-SOPs
for g and h. Let we have k simplified EX-SOPs for each
of g and h. Then by using the Shannon decomposition
with respect to a particular variable, we can generate 2k?
simplified EX-SOPs for f. For an n-variable function, we
can perform the Shannon decomposition in n different
ways. Thus, we can produce 2nk? simplified EX-SOPs
for f.

Based on the discussions of this section, we have devel-
oped a recursive procedure, called SIMPLIFY.EX-SOP(f k).
The procedure returns a set of simplified or minimized
EX-SOPs for the n-variable (n > 5) single-output func-
tion f, such that the number of EX-SOPs in the set is at
most k. Figure 2 shows the pseudocode of the procedure.
In the pseudocode, we use a set of two SOPs to represent
an EX-SOP. For example, {F,F;} at line 27 represents an
EX-SOP F, @ F,, where F; and F, are SOPs. P(f) holds a
set of EX-SOPs for f. If {F,F,} € P(f),then f = F, ® F,.
We use the following definition at lines 22 and 26:

Definition 4.1 Let 7(G1,Gy) be the total number of distinct
products in the SOPs G; and G,.

When f is a function of five variables, the procedure
generates a set of minimum EX-SOPs for f at line 14,
such that the number of EX-SOPs in the set is at most
k. At line 13, | X| denotes the number of elements in the
set X. Note that many functions have only one mini-
mum EX-SOP. We have a minimization algorithm that
produce a minimum EX-SOP with no product sharing
for the five-variable functions [5]. We modified this al-
gorithm to obtain a set of minimum EX-SOPs with no
product sharing.

When f is a function of six or more variables, we
use lines 16-33 of the pseudocode to obtain a set of
simplified EX-SOPs for f. We use recursive calls
to SIMPLIFY.EX-SOP(g,k) and SIMPLIFYEX-SOP(h,k) at
lines 18 and 19, respectively, where g = f|x—o and h =
f|x=1. The pseudocode shows that, when f is a function
of five variables, no recursive calls are made. At lines 27
and 29, SIMPLIFY.SOP(f,, fy) returns a pair of simplified
SOPs for f, and f,, such that the two SOPs can share
products. There are efficient algorithms [1, 18] to obtain
simplified SOPs for multiple-output functions, such that
the SOPs can share products. At line 34, if two or more
EX-SOPs in P(f) are the same, we eliminate all but one.
We choose the best k EX-SOPs at line 34 by specifying
fewer products as the primary criterion and fewer liter-
als as the secondary criterion.

In order to improve the efficiency of our algorithm, we
save all the intermediate functions and their EX-SOPs in
S at line 36 of the pseudocode. It avoids many redundant
computations. If S contains an element corresponding
to f, then without any computation, we can immediately
return P(f) from S at line 11. Reuse of intermediate re-
sults is also employed in other areas of computer-aided
design, such as to build binary decision diagrams [2]. By
finding an element corresponding to f in S, we can avoid
many recursive calls necessary to obtain EX-SOPs for f.
The following observation illustrates the effectiveness of
this strategy.

1 global var /« define global variables s/
2 S : set of (fany,P(fany)); 7+ P(fany) is defined at line 7 +/
3 procedure SIMPLIFY.EX-SOP(f k) {

12 X « {the variables of f};
13 if|X| < 6then

34) P(f) <« {the best k distinct EX-SOPs from P(f)};
35

36 S+ SU{(f,P(f))};
37 return P(f);
38}

/% This procedure returns at most k simplified or minimized EX-SOPs +/

/x for the single-output n-variable (n > 5) function f(xg,X,...,Xp). ®/

4 local var /« define local variables +/
5 x : variable; X : set of variables; g, h: logic functions;
6 F’s, G’s, H’s : SOPs; t: number of products;
7 P(fany) : set of EX-SOPs for fs,y; W : set of (x,P(g),P(h)); 2
8 if this is the first call to this procedure then
9 S+ 0;
10 if S has an element corresponds to f then
11 return P(f);

14 P(f) + {at most k minimum EX-SOPs for f}; 4. From each set of EX-SOPs, retain the
15 else { EX-SOPs with only the fewest products
16 W < ; t < oo; P(f)«0; and delete other EX-SOPs.

17 foreach x € X do { . 5. Randomly choose one EX-SOP from each
18 P(Q) ¢~ SIMPLIFY.EX-SOP((9]g = fl0).K): set of EX-SOPs. Let an EX-SOP for
19 P(h) « S"\QPL'FY‘EX'SO}P((mh: Fhe=a)) fi (1 <i < m) is represented by two
20 W« WU {(x,P(g),P(h))}; h - = .

21 for each {Gy,G,} € P(g) and {Hy,H,} € P(h) do sm_gle-output functions fig, fi_b, such that
29 t ¢ Min(t,7(G1,Gy) + 7(Hy, Hy)); fi = fia @ fip. Form the functions fy,, f1p,
23 } fZavabv ey fmaa fmb-

24 for each (x,P(g),P(h)) € W do { 6. Simplify SOPs for fia,f1p, 20, Top, - - -,
25 for each {G,,G,} € P(g) and {Hy,H,} € P(h) do { fma, fmp, SUCh that they can share prod-
26 if 7(G1,G2) + 7(H1,Hz) = tthen { B ucts. There are efficient algorithms to do
27 {F1,R} + SIMPLIFY.SOP(XG; V XHy,XG;, V xHy); this [1, 18]

28 P(f) « P(f)U{{F.,R}}; - ' .)
29 {F,FR} SIMPLIFLSOP(XG, V xHp, XG, V xHa); " dCS?tEL)nnue inStetphSe 5nu?7r1]€er ° ofWh(;:ztirzgt
30 P(f P(f)U {{F., ; . . e

31 } () < POHUHRR) products in the simplified SOPs for
gg } f1a, f1ps F2a: Fop, - - -, fmas fmp 1S possible.

Algorithm 4.1 (Simplification of EX-SOPs
for m-output (m > 1) functions)

1. For single-output function f, ob-
tain a set of EX-SOPs by using
SIMPLIFY.EX-SOP(f,k) and choose the
EX-SOP with the fewest products as the
final solution.

. For m-output (m > 2) function, generate
m single-output functions fi,fs, ... fim
and do the following steps.

3. For each fi (1 < i < m), gen-

erate a set of EX-SOPs by using
SIMPLIFY.EX-SOP(f; k).

8. The simplified SOPs for fi,,f1p, 24, fop,
<oy Fma, fmp With the fewest number of
distinct products, obtained at step 7, is
the final solution for the m-output func-
tion.

Fig. 2. Pseudocode of the procedure SIMPLIFY.EX-SOP.

Observation 4.1 Let us consider a four-bit adder, namely
adr4. To obtain a simplified EX-SOP for adr4 without using
intermediate results, we must generate EX-SOPs for 12,140
five-variable functions. However, if we save and reuse inter-
mediate results, then we have to generate EX-SOPs for only
509 five-variable functions.

We can further improve the efficiency of our algorithm
by considering NP-equivalence of logic functions. If two
functions f, and f, are NP-equivalent, then we can gen-
erate EX-SOPs for f, from the EX-SOPs for f,, without
doing any logic minimization. To generate EX-SOPs for
f, from the EX-SOPs for f,, we find a Boolean match [3]
between f, and f,. There are good algorithms [3] to
find a Boolean match between two functions. Thus, if S
contains an element corresponding to f,, then without
performing any logic minimization, we can return P(f,)
from S at line 11.

Observation 4.2 If we save intermediate results in S and

Fig. 3. Algorithm 4.1.

reuse EX-SOPs for the NP-equivalent functions from S, then
we have to generate EX-SOPs for only 55 five-variable func-
tions to obtain a simplified EX-SOP for adr4. Observation 4.1
shows that EX-SOPs for 12,140 five-variable functions are
necessary when intermediate results are not saved. Note that,
55 is the 0.45 percent of 12,140. This is a significant reduction
in the number of five-variable functions. We found similar
tendencies for many other logic functions.

Based on the procedure SIMPLIFY.EX-SOP(f,k), we
developed Algorithm 4.1 to simplify EX-SOPs (Figure 3).

V. EXPERIMENTAL RESULTS

We implemented Algorithm 4.1 in C. The program re-
quires about 40 megabytes of memory space. The qual-
ity of the solution and the computation time of Algo-
rithm 4.1 for function f depend on the parameter k in
the procedure SIMPLIFY.EX-SOP(f k). For functions with

TABLE |
NUMBER OF PRODUCTS AND LITERALS TO REALIZE
BENCHMARK FUNCTIONS

Number of products Number of literals

o o o o

s .58 b 2k 8 2B

) £ 0 » w W i 1) W w
5xpl 7 10 63 32 34 054 278 120 108 0.39
9sym 9 1 84 51 65 077 504 374 392 0.77
addm4 9 8 189 91 100 053 1225 521 535 0.44
adr3 6 4 31 15 13 042 116 44 28 0.24
adr4 8 5 75 31 26 035 340 112 78 0.23
clip 9 5 117 67 72 062 631 402 354 0.56
cm82a 5 3 23 13 9 0.39 80 33 17 0.21
f51m 8 8 76 32 35 046 326 112 109 0.33
inc8 8 9 37 15 16 043 100 43 46 0.46
life 9 1 84 49 62 074 672 311 443 0.66
log8 8 8 123 104 100 0.81 730 550 514 0.70
mlp4 8 8 121 62 75 062 736 305 354 0.48
nrm4 8 5 120 69 80 0.67 716 391 428 0.60
rd53 5 3 31 14 17 055 140 39 58 041
rd73 7 3 127 35 54 043 756 134 254 0.34
rd84 8 4 255 59 99 0.39 1774 267 547 0.31
rdm8 8 8 76 32 35 046 325 112 110 0.34
rot8 8 5 57 36 42 074 305 197 204 0.67
sqr8 8 16 180 112 134 0.74 1068 546 606 0.57
squar5 5 8 25 20 20 0.80 95 57 49 043
z4 7 4 59 29 22 037 252 111 107 0.42

6, 7, 8, and 9 variables, we use k = 10, 8, 5, and 3, re-
spectively. We found that a higher value of k drastically
increases the computation time without any significant
improvement in the solution.

We obtained three types of expressions for a set of
benchmark functions. Table | compares the number of
products and literals in these expressions. In this experi-
ment, SOPs were minimized by using Quine-McCluskey
algorithm for multiple-output functions [15]; ESOPs
were simplified by using EXMIN2 [20]; and EX-SOPs
were simplified by using Algorithm 4.1. This table shows
that, for the set of benchmark functions, EX-SOPs require
many fewer products and literals than SOPs. For many
functions, the numbers of products and literals in the
ESOPs and EX-SOPs are nearly the same.

Table Il compares experimental results for Algo-
rithm 4.1 and AOXMIN [9], another heuristic simpli-
fication program for EX-SOPs. For all the benchmark

TABLE I
COMPARISON WITH AOXMIN [9]

Number of products in EX-SOPs
Proposed Proposed method

Data In Out AOXMIN method AOXMIN
5xpl 7 10 42 34 0.81
9sym 9 1 73 65 0.89
cip 9 5 95 72 0.76
rd53 5 3 19 17 0.89
rd73 7 3 83 54 0.65
rdg4 8 4 192 99 0.52

TABLE Il
COMPARISON WITH ANOTHER METHOD [22]

Number of products in EX-SOPs
Proposed Proposed method

Data In Out Ref.[22] method Ref [27]
adr4 8 5 37 26 0.70
inc8 8 9 15 16 1.07
log8 8 8 116 100 0.86
mipd 8 8 109 75 0.69
nrm4 8 5 93 80 0.86
rd84 8 4 135 99 0.73
rdm8 8 8 54 35 0.65
rot8 8 5 49 42 0.86
sqr8 8 16 176 134 0.76

functions shown in this table, Algorithm 4.1 outperforms
AOXMIN. The improvement is up to 48 percent for rd84.
It should be noted that AOXMIN can simplify EX-SOPs
for functions with more inputs and the computation time
of AOXMIN is smaller than that of Algorithm 4.1.

Table Il compares the number of products gener-
ated by Algorithm 4.1 with those generated by another
heuristic simplification program for EX-SOPs [22]. For
the nine benchmark functions shown in this table, on
the average, Algorithm 4.1 produced solutions which re-
quire about 23 percent fewer products than the methods
presented in [22]. The greatest improvement, 35 per-
cent is for rdm8. It should be noted that the techniques
presented in [22] can simplify EX-SOPs with large num-
ber of inputs, but Algorithm 4.1 can simplify EX-SOPs
with only small number of inputs. Also, Algorithm 4.1
requires more computation time and memory than the
methods presented in [22].

V1. CONCLUDING REMARKS

In this paper, we developed a heuristic algorithm to de-
sign AND-OR-EXOR three-level network for multiple-
output functions, where EXOR gates at the outputs of
the network have only two inputs. The network realizes
EX-SOPs. Our present data structure for the algorithm
can handle functions with up to nine variables. We are
modifying the data structure. The modified implemen-
tation will be able to handle functions with more vari-
ables. An AND-OR-EXOR network can be efficiently
implemented in many commercial PLDs, or AND-OR
part of the AND-OR-EXOR network can be used as an
initial network for multi-level design by using fan-in
limited gates. For the majority of the functions shown
in Table I, EX-SOPs require many fewer products than
SOPs. However, there are functions for which EX-SOPs
require as many products as SOPs; for those functions we
should use AND-OR two-level networks. To implement
an EX-SOP, we need a two-input EXOR gate in addition
to AND and OR gates. A two-input EXOR gate is several
times more expensive than a two-input OR gate. Let us
consider the function squar5 shown in Table I. Its AND-
OR-EXOR network requires eight more EXOR gates and
five fewer AND gates than AND-OR network. Thus,
AND-OR-EXOR network is unattractive for squar5. On

the other hand, AND-OR-EXOR based design is attrac-
tive for adr4. An AND-OR-EXOR network for adr4 re-
quires five more EXOR gates and 49 fewer AND gates
than AND-OR network. For AND-OR-EXOR and AND-
OR networks of adr4, the ratio of the fan-in of the AND
gates is 0.23. Our experimental results in Table | show
that AND-OR-EXOR network is very attractive for the
efficient realization of many practical logic functions.

ACKNOWLEDGEMENT

This work was supported in part by a Grant-in-Aid
for the Scientific Research of the Ministry of Education,
Science, Culture and Sports of Japan. We would like
to thank Prof. Jon. T. Butler for carefully reviewing the
manuscript.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis, Kluwer Academic Publishers, 1984.

[2] R. E. Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” IEEE Trans. Comput., Vol. C-35, No. 8,
pp. 677-691, Aug. 1986.

[3] G.De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

[4] D. Debnath and T. Sasao, “An optimization of AND-OR-
EXOR three-level expressions by table look-up,” IEICE
Technical Report, Vol. 95, No. 307, pp. 9-16, Oct. 1995.

[5] D. Debnath and T. Sasao, “An optimization of AND-OR-
EXOR three-level networks,” Proc. Asia and South Pacific
Design Automation Conference, pp. 545-550, Jan. 1997.

[6] D. Debnath and T. Sasao, “Exclusive-OR of two sum-of-
products expressions: Simplification and an upper bound
on the number of products,” Proc. 3rd International Work-
shop on Applications of the Reed-Muller Expansion in Circuit
Design, Oxford, U.K., pp. 45-60, Sept. 1997.

[7] D. Debnath and T. Sasao, “Minimization of AND-OR-
EXOR three-level networks with AND gate sharing,”
IEICE Trans. Information and Systems, Vol. E80-D, No. 10,
pp. 1001-1008, Oct. 1997.

[8] E. V. Dubrova, D. M. Miller, and J. C. Muzio, “Upper
bounds on the number of products in AND-OR-XOR ex-
pansion of logic functions,” Electronics Letters, Vol. 31,
No. 7, pp. 541-542, Mar. 1995.

[9] E. V. Dubrova, D. M. Miller, and J. C. Muzio, “AOXMIN:
A three-level heuristic AND-OR-XOR minimizer for
Boolean functions,” Proc. 3rd International Workshop on Ap-
plications of the Reed-Muller Expansion in Circuit Design,
Oxford, U.K,, pp. 209-218, Sept. 1997.

[10] H. Fleisher, J. Giraldi, D. B. Martin, R. L. Phoenix, and
M. A. Tavel, “Simulated annealing as a tool for logic opti-
mization in a CAD environment,” Proc. International Con-
ference on Computer-Aided Design, pp. 203-205, Nov. 1985.

[11] M. A. Harrison, Introduction to Switching and Automata The-
ory, McGraw-Hill, 1965.

[12] A. A. Malik, D. Harrison, and R. K. Brayton, “Three-
level decomposition with application to PLDs,” Proc. In-
ternational Conference on Computer Design, pp. 628-633,
Oct. 1991.

[13] Y. Matsunaga, “An attempt to factor logic functions us-
ing exclusive-OR decomposition,” Proc. The Sixth Work-
shop on Synthesis and System Integration of Mixed Technolo-
gies (SASIMI’'96), Fukuoka, Japan, pp. 78-83, Nov. 1996.

[14] Monolithic Memories Inc., PAL/PLE DEVICE: Programmable
Logic Array Handbook, Fifth Edition, 1986.

[15] S. Muroga, Logic Design and Switching Theory, John Wiley
& Sons, 1979.

[16] D. Pellerin and M. Holley, Practical Design Using Pro-
grammable Logic, Prentice Hall, 1991.

[17] RICOH, CMOS Electrically Programmable Logic, Series 20,
No. 85-02, 1985 (in Japanese).

[18] T. Sasao, “Input variable assignment and output phase
optimization of PLA’s”, IEEE Trans. Comput., Vol. C-33,
No. 10, pp. 879-894, Oct. 1984.

[19] T. Sasao and P. Besslich, “On the complexity of MOD-2
sum PLA's,” IEEE Trans. Comput., Vol.C-39, No. 2,
pp. 262-266, Feb. 1990.

[20] T. Sasao, “EXMIN2: A simplification algorithm for
exclusive-OR sum-of-products expressions for multiple-
valued input two-valued output functions,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
Vol. CAD-12, No. 5, pp. 621-632, May 1993.

[21] T. Sasao, “Logic synthesis with EXOR gates,” in T. Sasao,
ed., Logic Synthesis and Optimization, Kluwer Academic
Publishers, 1993.

[22] T. Sasao, “A design method for AND-OR-EXOR three-
level networks,” Proc. International Workshop on Logic Syn-
thesis, Lake Tahoe, California, pp. 8:11-8:20, May 1995.

[23] T. Sasao, “Representations of logic functions using EXOR
operators,” in T. Sasao and M. Fujita, eds., Representations
of Discrete Functions, Kluwer Academic Publishers, 1996.

[24] T. Sasao, “OR-AND-OR three-level networks,” in T. Sasao
and M. Fujita, eds., Representations of Discrete Functions,
Kluwer Academic Publishers, 1996.

[25] T. Sasao and J. T. Butler, “On bi-decompositions of logic
functions,” Proc. International Workshop on Logic Synthesis,
Lake Tahoe, California, May 1997.

[26] K.Shu, H. Yasuura, and S. Yajima, “Optimization of PLDs
with output parity gates,” National Convention, Information
Processing Society of Japan, Mar. 1985 (in Japanese).

[27] N. Song and M. A. Perkowski, “Minimization of ex-
clusive sum-of-products expressions for multiple-valued
input, incompletely specified functions,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
Vol. CAD-15, No. 4, pp. 385-395, April 1996.

[28] Texas Instruments Inc., The TTL Data Book for Design Engi-
neers, 1973.

[29] C.Tsai and M. Marek-Sadowska, “Multilevel logic synthe-
sis for arithmetic functions,” Proc. 33rd Design Automation
Conference, pp. 242-247, June 1996.

[30] D. Varma and E. A. Trachtenberg, “Design automation
tools for efficient implementation of logic functions by de-
composition,” IEEE Trans. Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. CAD-8, No. 8, pp. 901-916,
Aug. 1989.

[31] A. Weinberger, “High-speed programmable logic array
adders,” IBM Journal of Research and Development, Vol. 23,
No. 2, pp. 163-178, Mar. 1979.

[32] N.H.E.Weste and K. Eshraghian, Principles of CMOS VLSI
Design, Addison-Wesley Publishing Company, 1993.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

