
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

An Optimization of AND-OR-EXOR

Three-Level Networks

Debatosh Debnath and Tsutomu Sasao

Department of Computer Science and Electronics

Kyushu Institute of Technology

Iizuka 820, Japan

Abstract| In this paper, we present a design method

for AND-OR-EXOR three-level networks, where a sin-

gle two-input EXOR gate is used. The network real-

izes an exclusive-OR of two sum-of-products expres-

sions (EX-SOP), where the two sum-of-products ex-

pressions (SOP) cannot share products. The prob-

lem is to minimize the total number of product in the

two SOPs. We introduced the �-equivalence of logic

functions to develop minimization algorithms for EX-

SOPs with up to �ve variables. We minimized all the

representative functions of NP-equivalence classes for

up to �ve variables and found that �ve-variable func-

tions require up to 9 products in minimum EX-SOPs.

For n-variable functions, minimum EX-SOPs require

at most 9 � 2n�5 (n � 6) products. This upper bound

is smaller than 2n�1, the upper bound for the conven-

tional sum-of-products expressions.

Index Terms | Three-level network, AND-EXOR,

logic minimization, spectral method, NP-equivalence,

�-equivalence, coordinate representation, complexity.

I. Introduction

Logic networks are usually designed by using AND and

OR gates. However, it has been observed that the ad-

dition of exclusive-OR (EXOR) gates in the design often

produce better networks [5, 11, 12, 15]. For example, on

the average, �ve-variable functions require 7.46 products

in minimum SOPs (sum-of-products expressions), while

6.16 products in minimum ESOPs (exclusive-OR sum-of-

products expressions) [13]. To realize an arbitrary func-

tion of six variables, minimum SOPs require up to 32

products, while minimum ESOPs require up to 15 prod-

ucts [8]. These reveal the advantages of designing logic

networks using EXOR gates. In these designs, EXOR

gates with unlimited fan-in are used. However, in most

technologies, EXOR gates with many inputs are expen-

sive.

In this paper, we present a design method for AND-

OR-EXOR three-level networks. The network realizes

an exclusive-OR of two sum-of-products expressions (EX-

AND-OR

AND-OR

F

G

H

x

x

Fig. 1. AND-OR-EXOR three-level network.

SOP), where only a single two-input EXOR gate is used.

Such a network is shown in Fig. 1. An EX-SOP for a

function f can be written as F = G � H , where G and

H are SOPs. Our objective is to reduce the total number

of products in G and H, where G and H cannot share

products.

AND-OR-EXOR three-level network is suitable for im-

plementing arithmetic functions. For example, the Texas

Instruments SN181 arithmetic circuit has EXOR gates in

the outputs [18]. Programmable logic arrays (PLAs) with

two-input EXOR gates in the outputs e�ciently realize

adders [17]. AND-OR-EXOR is one of the simplest archi-

tecture, since it contains only a single two-input EXOR

gate. However, its logic capability is quite high. Because

of these, various PLAs with two-input EXOR gates in the

outputs were developed. Especially, RICOH, Lattice and

AMD (MMI) produced series of such PLAs.

Design methods for AND-OR-EXOR three-level net-

works were considered in the past [4, 16], but no practical

algorithm was reported. A cut-and-try method was re-

ported in [10] and several heuristic algorithms to simplify

EX-SOPs were presented in [14]. Upper bounds on the

number of products in AND-OR-EXOR expansion was

reported in [3].

The paper is organized as follows: Section II introduces

�rst the terminologies used and develops the concept of

�-equivalence of logic functions. Section III presents the

key idea for the minimization, a technique to reduce the

search space, and an algorithm to minimize EX-SOPs.

Section IV shows how the �-equivalence of logic functions

can be used to reduce the computation time for EX-SOPs

and presents a minimization algorithm for EX-SOPs with

�ve variables. Section V outlines an idea to simplify EX-

SOPs with six or more variables. Section VI shows the

experimental results. The last section presents conclu-

sions and comments.

II. Definitions and Basic Properties

In this section, we introduce �rst several notations and de-

�ne the NP-equivalence classes of functions. We consider

then the modi�ed coordinate representation of functions.

By using this representation, we develop the concept of �-

equivalence of logic functions and illustrate its properties,

which would be useful in the minimization of EX-SOPs

with �ve variables. In this paper, we distinguish functions

and their expressions. We use lower case letters, such as

f , g, h, to represent functions, and upper case letters,

such as F , G, H , to represent expressions of function.

De�nition 2.1: �(F) denotes the number of products in

an expression F . An expression F is said to be minimum

when �(F) is minimum.

De�nition 2.2: �(EX-SOP : f) denotes the total num-

ber of products in a minimum EX-SOP for f . � (SOP : f)

denotes the number of products in a minimum SOP for f .

Let a function f be represented as follows:

f = g � h: (2:1)

Note that g and h correspond to G and H in Fig. 1,

respectively. To compute � (EX-SOP : f), we have to

choose g and h in di�erent ways so that they satisfy (2.1).

Thus, we have �(EX-SOP : f) = min
n
�(SOP : g) +

�(SOP : h)
o
.

De�nition 2.3: �(EX-SOP : F) denotes the number of

products in an EX-SOP F .

Logic functions can be grouped into classes by using

simple transformations.

De�nition 2.4: The set of functions which are identical

under (a) the permutation of the variables and/or (b) the

complementation (negation) of one or more variables are

called NP-equivalent functions [6, 7, 9]. f
NP

�g denotes: f

and g are NP-equivalent, and f
NP

�/ g denotes: f and g are

not NP-equivalent.

For the NP-equivalent functions we have the following:

Property 2.1: If f
NP

�g, then � (SOP : f) = �(SOP : g)

and �(EX-SOP : f) = �(EX-SOP : g).

1The proof of the theorems can be found from the authors.

2.1. Modi�ed Coordinate Representation and

�-Equivalence Classes

In the following, we �rst show a new representation

of logic functions, called modi�ed coordinate representa-

tion, and introduce a novel equivalence relation, called �-

equivalence of logic functions. We present then properties

of modi�ed coordinate representation and �-equivalence

classes.

De�nition 2.5: w(f) denotes the number of true

minterms of the function f .

De�nition 2.6: [6] The coordinate representation of f ,

COR(f) of a �ve-variable function consists of 32 integers:

COR(f) = (c0; c1; c2; c3; c4; c5; c12; c13; c14; c15; c23; c24;

c25; c34; c35; c45; c123; c124; c125; c134; c135; c145; c234; c235;

c245; c345; c1234; c1235; c1245; c1345; c2345; c12345):

And c's are calculated as follows:

c0 = 2n�1 � w(f),

ci = 2n�1 � w(f � xi); i 2 L;
cij = 2n�1 � w(f � xi � xj); i; j 2 L;
cijk = 2n�1 � w(f � xi � xj � xk); i; j; k 2 L;

cijk` = 2n�1 � w(f � xi � xj � xk � x`); i; j; k; ` 2 L;
c12345 = 2n�1 � w(f � x1 � x2 � x3 � x4 � x5);

where n = 5 and L = f1; 2; 3; 4; 5g. The elements of

COR(f) which are separated by `;' (semicolon) form a

group.

De�nition 2.7: The modi�ed coordinate representation

of f , �(f) of a �ve-variable function consists of 32 inte-

gers: �(f) = (d0; d1; d2; d3; d4; d5; d12; d13; d14; d15; d23;

d24; d25; d34; d35; d45; d123; d124; d125; d134; d135; d145; d234;

d235; d245; d345; d1234; d1235; d1245; d1345; d2345; d12345):

And is calculated from COR(f) as follows: (a) d0 = c0;

(b) di (i 2 f1; 2; 3; 4; 5g) are obtained from ci by delet-

ing the sign and then rearranging the elements of the

group in ascending order; dij, dijk and dijk` (i; j; k; ` 2

f1; 2; 3; 4; 5g) are obtained in similar ways; (c) d12345 is

obtained by deleting the sign of c12345.

Theorem 2.1: �(f) is invariant under (a) the permuta-

tion of the variables and/or (b) the complementation of

one or more variables.

De�nition 2.8: Two functions f and g are �-

equivalent, denoted by f
�
�g, if and only if, they have the

same modi�ed coordinate representation.

From the de�nitions of the NP-equivalent and �-

equivalent functions, and by Theorem 2.1, we have the

following:

Property 2.2: If f
NP

�g, then f
�
�g.

Note that the converse of Property 2.2 is not always true.

Observation 2.1: Among the �ve-variable functions,

there exist functions f and g such that f
�
�g but f

NP

�/ g.

III. Minimization of EX-SOPs

In this section, we develop an algorithm to minimize EX-

SOPs, where the two SOPs of the EX-SOP cannot share

products.

3.1. Idea for Minimization

The following theorem is the basis of the minimization of

EX-SOPs.

Theorem 3.1: Let f be an n-variable function and Gn
be the set of all the n-variable functions. Then,

�(EX-SOP :f)=min
g2Gn

n
�(SOP :g)+� (SOP :f�g)

o
: (3:1)

3.2. Reduction of Search Space

Theorem 3.1 shows that for the given n-variable function

f , we have to check 22
n
di�erent g's, and choose g that

produce a minimum value for �(SOP : g) + �(SOP :

f � g). This search space is very large, even for n = 5.

The following lemma shows that we can drastically reduce

this search space.

Theorem 3.2: In Theorem 3.1, suppose we need to �nd

an EX-SOP with fewer than t products. If we consider g's

so that � (SOP : g) are in increasing order, then we have

only to consider those g's, such that

�(SOP : g) � dt=2� 1e;

where dke denotes the least integer greater than or equal

to k.

3.3. Minimization Algorithm: Straightforward

Based on Theorem 3.1, the following is a straightforward

algorithm to minimize EX-SOPs:

Algorithm 3.1: (EX-SOP minimization: Straightfor-

ward)

1. Let f be the n-variable function to be represented as

an EX-SOP, and Gn be the set of all the n-variable

functions. Gn is arranged in ascending order of

�(SOP : g), where g 2 Gn.

2. best shows the minimum number of products in EX-

SOPs ever found. sol shows a pair of n-variable

functions.

best �(SOP : f); sol (f; 0);

3. For each g 2 Gn (sequentially from the beginning of

Gn) such that � (SOP : g) � dbest=2� 1e do

temp �(SOP : g) + �(SOP : f � g);

if temp < best then

best temp; sol (g; f � g);

endif

repeat

4. Return best and sol.

For up to four-variable functions, Algorithm 3.1 produces

solutions very quickly. However, for �ve-variable func-

tions, it is rather time consuming. The computation tech-

niques for the �ve-variable functions are considered in the

next section.

IV. Strategy for Five-Variable

EX-SOP Minimization

In this section, we �rst develop several techniques to

reduce the computation time for �ve-variable functions.

We then present a new algorithm to minimize EX-SOPs

with �ve variables. The most time consuming part of

Algorithm 3.1 is the computation of �(SOP : g)+�(SOP :

f�g) in step 3. The techniques we used to obtain � (SOP :

g) and �(SOP : f � g) are di�erent.

4.1. Obtaining �(SOP : g) and Elimination of Redundant

Computation

We can quickly obtain �(SOP : g) in Algorithm 3.1, by

using a table of g 2 Gn and the corresponding �(SOP : g).

According to Theorem 3.2, we can reduce the number of

g's for Theorem 3.1 by considering them (g's) such that

�(SOP : g) is in ascending order. We found that for

�ve-variable functions, maximum value of �(SOP : g)

is four. For �ve-variable, the number of g's such that

�(SOP : g) � 4 is 16,888,780, and it is inconvenient to

work with a table of this size. To reduce the table size, we

use NP-equivalence classes. From Property 2.1, the num-

ber of products in minimum SOPs for the NP-equivalent

functions are equal. Every NP-equivalence class has an

NP-representative function. There are only 6,138 NP-

representative functions whose minimum SOPs require up

to four products. Thus, we use the sorted function table

shown in Fig. 2. The left column of the sorted function

table stores only those NP-representative function grep's,

such that �(SOP : grep) � 4, and the right column stores

the corresponding �(SOP : grep). The data in this table is

arranged in ascending order of �(SOP : grep). We access

the sorted function table sequentially from the beginning

to get an NP-representative function grep and the corre-

sponding �(SOP : grep). We then obtain g's by generat-

ing all the function of the class grep. Since, �(SOP : grep)

and � (SOP : g) are equal, we obtain � (SOP : g) without

much e�ort.

4.2. Computation of �(SOP : f � g): The Time Consum-

ing Part

We have shown in Section 4.1 that �(SOP : g) can be

quickly obtained from the sorted function table. Thus,

the most time consuming part of Algorithm 3.1 is the

6,
13

8
 e

nt
rie

s

 32 bits

τ SOP (:) g rep g rep

Fig. 2. NP-representative

functions with �(SOP : grep) � 4.

 32 bits

1,
22

8,
15

8
 e

nt
rie

s

τ SOP (h :)rephrep

Fig. 3. NP-representative

functions.

 32 integers

 1
49

,4
66

 e
nt

rie
s

tup()hlowt ()h()µ h

Fig. 4. �-representative functions.

computation of � (SOP : f � g). A straightforward com-

putation of �(SOP : f � g) is time consuming. Thus,

instead of doing logic minimization, we use a table of

all the �ve-variable functions h and the corresponding

�(SOP : h). But, the total number of �ve-variable func-

tions is 232 � 4:3 � 109, and it is impractical to store a

table of this size.

4.2.1. Reduction of Table Size: Use of NP-Equivalence

Classes

To reduce the table size, we use a cost table for all the

NP-representative functions of �ve variables. The num-

ber of NP-equivalence classes of �ve-variable functions is

1,228,158. Fig. 3 shows the cost table. The left column

of the cost table stores all the NP-representative func-

tions hrep and the right column stores the corresponding

�(SOP : hrep). We arranged the data in the left column of

the cost table, which helps to quickly locate the position of

an NP-representative function in the table. Note that the

data in the sorted function table is a subset of the data in

the cost table. Also the arrangements of data in the two

tables are di�erent. For a given function hgiven , to obtain

�(SOP : hgiven) from the cost table, �rst we compute

the NP-representative function hrep of hgiven . Since the

number of products is invariant under the NP-equivalence

class, we have �(SOP : hgiven) = � (SOP : hrep). Using

hrep for the cost table look-up, we obtain �(SOP : hgiven).

However, to get the NP-representative function hrep from

a given function hgiven is still rather time consuming.

4.2.2. Quick Estimation of �(SOP : f � g): Use of �-

Equivalence Classes

To speed-up the computation, we use �-equivalence

classes, which we have already introduced in Section 2.1.

�(h), the modi�ed coordinate representation of h, is

quickly calculated from h and have Property 2.2. But,

Observation 2.1 shows that �(h) corresponds to more than

one NP-equivalence classes for some h. All the 1,228,158

NP-equivalence classes of �ve-variable functions can be

partitioned into 149,466 �-equivalence classes. Although

�-equivalence classes cannot uniquely identify the NP-

equivalence classes, we can use them to quickly estimate

the value of � (SOP : f � g) in step 3 of Algorithm 3.1.

Thus, we use the modi�ed cost table, which is shown in

Fig. 4. The left column of the modi�ed cost table stores

the distinct values of �(h) for all the �ve-variable func-

tion h. The middle and the right columns store the cor-

responding values of t`ow (h) =
min
h �
� hj f�(SOP : hj)g and

tup(h) =
max
h �
� hj f�(SOP : hj)g, respectively.

Usually the di�erences between t`ow (h) and tup(h) are

small. Thus, without computing � (SOP : f � g) and us-

ing the modi�ed cost table, very often we can show that

�(SOP : g) + t`ow (f � g) � best, i.e., temp � best in

step 3 of Algorithm 3.1. This implies that using the mod-

i�ed cost table, very often we can avoid the computation

of � (SOP : f � g). If we have � (SOP : g)+ t`ow (f � g) <

best, i.e., a possibility that temp < best in step 3 of Al-

gorithm 3.1, only then we compute �(SOP : f � g). In

many cases t`ow (f � g) and tup(f � g) are equal, and

we get � (SOP : f � g) from the modi�ed cost table.

When t`ow (f � g) and tup(f � g) are unequal, we obtain

�(SOP : f � g) from the cost table by using more time

consuming routine. Since �(h) is an array of 32 integers,

we use hash technique to look-up modi�ed cost table.

4.3. Algorithm for Five-Variable EX-SOP Minimization

Based on the above discussions and Theorem 3.1, an al-

gorithm for the minimization of EX-SOPs with �ve vari-

ables is presented in the following:

Algorithm 4.1: (Minimization of EX-SOPs for �ve-

variable)

0. f , g, h and grep represent functions, and tg, texsop ,

tbound , t`ow , tup and th represent the number of prod-

ucts. Read the cost table, the modi�ed cost table and

the sorted function table. Read the function to be

minimized. Let it be f .

1. texsop denotes the minimum number of products in

EX-SOP ever found. Let texsop 10: tbound repre-

sents the upper bound on the number of products in

the SOP for g. Let tbound 4.

2. From the sorted function table: (a) take the �rst

NP-representative function grep and (b) obtain tg

�(SOP : grep).

3. Generate all the functions of the NP-equivalence class

grep. Take the �rst function of this class. Let the

function be g.

4. h f � g.

5. Calculate �(h). By using �(h), obtain t`ow

t`ow(h) and tup tup(h) from the modi�ed cost ta-

ble.

6. If tg + t`ow � texsop (reduction of texsop is impossible

using the current h), then go to step 11.

7. If t`ow = tup (�(SOP : h) is obtained from the mod-

i�ed cost table), then th t`ow and go to step 9.

8. Obtain th �(SOP : h) from the cost table.

9. If tg + th � texsop (reduction of texsop is impossible

using the current h), then go to step 11.

10. (New solution is found.) texsop tg + th. Save g

and h as the latest solution. tbound dtexsop=2e� 1.

If tbound � tg, then go to step 12.

11. Take the next function g in the class grep (computed

in step 3), and go to step 4. If there is no remaining

function in this class, then from the sorted function

table: (a) take the next NP-representative function

grep and (b) obtain tg �(SOP : grep). If tbound <

tg, then go to step 12, otherwise go to step 3.

12. Print the latest solution saved in step 10, and texsop
as the �nal number of products.

The execution time of Algorithm 4.1 mainly depends on

tbound , the upper bound on the number of products in the

SOP for g of Theorem 3.1. In Algorithm 4.1, tbound is

de�ned in step 1 and it is updated in step 10.

V. Simplification of EX-SOPs with

Six or More Variables

A simpli�ed EX-SOP for the n-variable function can be

obtained by using a pair of EX-SOPs for the (n � 1)-

variable functions. The idea for this simpli�cation is

shown in the following.

Theorem 5.1: [3] Let �(EX-SOP : n) denote the max-

imum number of products required to realize an arbitrary

n-variable function by a minimum EX-SOP. Then

�(EX-SOP : n) � 2�(EX-SOP : n� 1):

TABLE I

Numbers of Five-Variable Functions

Requiring t Products

t SOP ESOP EX-SOP

0 1 1 1
1 243 243 243
2 20676 24948 25988
3 818080 1351836 1511996
4 16049780 39365190 47838990
5 154729080 545193342 694830748
6 698983656 2398267764 2678055614
7 1397400512 1299295404 870943300
8 1254064246 11460744 1760384
9 571481516 7824 32
10 160200992
11 34140992
12 6160176
13 827120
14 84800
15 5312
16 114

av 7.46 6.16 6.02

av : average

Based on the idea presented in this section, a heuristic

algorithm to simplify EX-SOPs with six or more vari-

ables has been developed [1]. The algorithm uses a table

of minimum EX-SOPs for the representative functions of

NP-equivalence classes of �ve variables.

VI. Experimental Results

Using our EX-SOP minimization program, we mini-

mized all the 1,228,158 representative functions of NP-

equivalence classes of �ve variables. A �ve-variable func-

tion, on the average, took 9.54 cpu seconds on a DEC

AlphaStation 200. This average is obtained by mini-

mizing 10,000 randomly generated functions with 16 true

minterms. For �ve-variable functions, when the number

of products in the minimum EX-SOP is 6 and 9 (worst

case), we could minimize each function within 3 and 38

cpu seconds, respectively, on the same machine.

Table I shows the numbers of �ve-variable functions re-

quiring t products by di�erent minimum expressions.1 In

this table, data for SOPs and ESOPs are taken from [13].

EX-SOPs were minimized by Algorithm 4.1. For �ve-

variable functions, on the average, minimum EX-SOPs

require 6.02 products while minimum SOPs require 7.46

products. For the �ve-variable functions, on the aver-

age, minimum EX-SOPs require fewer products than min-

imum ESOPs. We found that for four and �ve-variable
1In Table I, av =

�P
t

(t � number of functions requiring t

products)

�
/ total number of functions. Total number of �ve-

variable functions is 232:

functions, the upper bounds on the number of products

in minimum EX-SOPs (when two SOPs cannot share

products) are 5 and 9, respectively. Thus, from Theo-

rem 5.1, minimum EX-SOPs with n variables require at

most 9�2n�5 (n � 6) products. For �ve-variable functions,

there is only one NP-equivalence class whose minimum

EX-SOP requires 9 products. The NP-representative

function of this class is 177e7ee916. In this class, only

32 functions are equivalent.

VII. Conclusions and Comments

In this paper, we presented minimization algorithms for

AND-OR-EXOR three-level networks (EX-SOPs) for up

to �ve variables, where two SOPs of the EX-SOP can-

not share products. We developed the concept of �-

equivalence of logic functions and used it to reduce the

computation time of the minimization program. We

minimized all the 1,228,158 representative functions of

NP-equivalence classes of �ve variables. We have com-

pleted the table of minimum EX-SOPs with up to �ve

variables and showed that minimum EX-SOPs for �ve-

variable functions require up to 9 products. For n-variable

functions, the upper bound on the number of products in

minimum EX-SOPs is at most 9 � 2n�5 (n � 6). This is

tighter than the previously known one: 5�2n�4(n � 4) [3].

This upper bound is smaller than 2n�1; the upper bound

for the minimum SOPs. We found that for �ve-variable

functions, on the average, minimum EX-SOPs require

6.02 products while minimum SOPs require 7.46 products.

In our minimization algorithms, we did not consider the

sharing of products between two SOPs of an EX-SOP. If

we consider sharing of products, we can realize EX-SOPs

with fewer products for many functions. We consider this

problem in a separate paper [2], where the tables of min-

imum EX-SOPs with up to �ve variables are used. The

table of minimum EX-SOPs with �ve variables is also used

in the heuristic simpli�cation program for EX-SOPs with

six or more inputs [1].

Acknowledgements

This work was supported in part by a Grant in Aid for the

Scienti�c Research of the Ministry of Education, Science,

Culture and Sports of Japan. The authors are thankful

to Prof. N. Koda, who provided the table of minimized

SOPs for the representative functions.

References

[1] D. Debnath and T. Sasao, \An optimization of AND-OR-

EXOR three-level expressions by table look-up," IEICE

Technical Report, vol. 95, No. 307, pp. 9{16, Oct. 1995.

[2] D. Debnath and T. Sasao, \Minimization of AND-OR-

EXOR three-level networks with AND gate sharing,"
Proc. The Sixth Workshop on Synthesis and System In-

tegration of Mixed Technologies (SASIMI '96), Fukuoka,

Japan, Nov. 1996.

[3] E. V. Dubrova, D. M. Miller and J. C. Muzio, \Upper

bounds on the number of products in AND-OR-XOR ex-

pansion of logic functions," Electronics Letters, vol. 31,

No. 7, pp. 541{542, March 1995.

[4] H. Fleisher, J. Giraldi, D. B. Martin, R. L. Phoenix and

M. A. Tavel, \Simulated annealing as a tool for logic

optimization in a CAD environment," Proc. Int. Conf.

Computer-Aided Design, pp. 203{205, Nov. 1985.

[5] H. Fujiwara, Logic Testing and Design for Testability,
The MIT Press, Cambridge, 1985.

[6] M. A. Harrison, Introduction to Switching and Automata

Theory, McGraw-Hill Book Company, New York, 1965.

[7] S. L. Hurst, D. M. Miller and J. C. Muzio, Spectral Tech-

niques in Digital Logic, Academic Press Inc., 1985.

[8] N. Koda and T. Sasao, \An upper bound on the num-

ber of products in minimum ESOPs," Proc. IFIP WG

10.5 Workshop on Applications of the Reed-Muller Ex-

pansion in Circuit Design, Makuhari, Japan, pp. 94{101,

Aug. 1995.

[9] S. Muroga, Logic Design and Switching Theory, John Wi-

ley & Sons, New York, 1979.

[10] D. Pellerin and M. Holley, Practical Design Using Pro-
grammable Logic, Prentice Hall, 1991, p. 180.

[11] T. Sasao and P. Besslich, \On the complexity of MOD-2

sum PLA's," IEEE Trans. Comput., vol. 39, No. 2,

pp. 262{266, Feb. 1990.

[12] T. Sasao, \EXMIN2: A simpli�cation algorithm for

exclusive-OR sum-of-products expressions for multiple-

valued input two-valued output functions," IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 12, No. 5, pp. 621{632, May 1993.

[13] T. Sasao, \AND-EXOR expressions and their optimiza-

tion," in T. Sasao, Editor, Logic Synthesis and Optimiza-

tion, Kluwer Academic Publishers, Boston, 1993.

[14] T. Sasao, \A design method for AND-OR-EXOR three-
level networks," Proc. Int. Workshop on Logic Synthesis,

Lake Tahoe, May 1995.

[15] T. Sasao, \Representations of logic functions using

EXOR operators," in T. Sasao and M. Fujita, Editors,

Representations of Discrete Functions, Kluwer Academic

Publishers, Boston, 1996.

[16] K. Shu, H. Yasuura and S. Yajima, \Optimization of

PLDs with output parity gates," (in Japanese) National

Convention, Information Processing Society of Japan,

March 1985.

[17] A. Weinberger, \High-speed programmable logic ar-

ray adders," IBM J. Res. & Develop., vol. 23, No. 2,

pp. 163{178, March 1979.

[18] The TTL Data Book for Design Engineers, Texas Instru-

ments Inc., 1973.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

