
An Exact Minimization of AND-EXOR

Expressions Using Reduced Covering Functions

Tsutomu SASAO

Department of Computer Science and Electronics

Kyushu Institute of Technology, Iizuka 820, Japan

August 9, 1993

Abstract

This paper considers a method to derive an EXOR sum-of-products expression (ESOP) having the
minimum number of products for a given logic function. The minimization method uses a reduced
covering function, which is an improvement of the method proposed by Perkowski and Chrzanowska-
Jeske. Binary Decision Diagrams (BDDs) are used to obtain exact solutions. Various techniques to
reduce computation time and memory storage are developed. Experimental results for functions with
up to 9 variables are shown.

I Introduction

EXOR sum-of-products expressions (ESOPs) are obtained by EXORing arbitrary products. ESOPs
have several advantages over sum-of-products expressions (SOPs) [23]. The most important one is
that ESOP realizations are often less expensive than SOP realizations. For example, to represent
arbitrary function of four variables, ESOPs require, on the average, 3.66 products while SOPs require
4.13 products [25]. We conjecture that this is true for an arbitrary n. We have also proved that an
arbitrary function of n variables can be realized with at most 2n�2 products when n � 6, while SOPs
require at most 2n�1 products [25]. In addition, we demonstrated that ESOPs require fewer products
and fewer literals than SOPs to represent arithmetic functions and other functions [24]. An ESOP
requires at most 2 � 3r products to realize an arbitrary n-variable symmetric function, where n = 2r.
For any symmetric function, an ESOP requires no more products than an SOP [23, 20]. Because many
of the arithmetic functions have symmetrical properties, ESOPs are useful for arithmetic circuits. In
most technologies, EXOR gates are more expensive than OR gates. However, even if we assume that
the cost of a 2-input EXOR is twice as expensive as a 2-input NOR, the EXOR based circuits are
more economical than ones based on only ANDs and ORs [24]. Also, in LUT based FPGAs [21], ORs
and EXORs have exactly the same cost and the same propagation delay.

In the ESOP minimization problem, one seeks an ESOP having the minimum number of products.
Many papers have considered this problem [6, 18, 16, 23, 22, 7, 9, 2]. Recently, Perkowski and
Chrzanowska-Jeske[19] formulated the problem by using a Helliwell equation. Their formulation is
to �nd a 3n bit vector with the minimum weight satisfying the Helliwell equation, where n is the
number of the variables in the given logic function. They also presented various methods to solve this
problem. However, the computational complexity of their methods are O(23

n

) because they consider
most of the combinations of the 3n bit vectors. Thus, the order of the complexity is the same as in
exhaustive search. However, their formulation has provided insights into exact ESOP minimization.

In this paper, we present an improved method for ESOP minimization by using reduced covering
function and BDDs.

II Minimization of SOPs and ESOPs

2.1 Minimization of SOPs

Suppose that we want to obtain a minimum SOP representing an n-variable function f . Assume we
are given the set of true minterms (1-cells in Karnaugh map) and the set of all prime implicants (PIs)

1

for f . Let there be � PIs for f . Any SOP of f is a subset of PIs that covers all true minterms. For
some SOP for f , let gj be a logic variable that is 1 i� the j-th PI is in this SOP. Thus, the problem of
�nding a minimal SOP is identical to the problem of �nding an assignment for the gj 's such that the

corresponding SOP represents f and the weight
P

��1

i=0 gj is minimum. We derive such an assignment
by using the Petrick Equation de�ned as follows:

P (g0; g1; � � � ; g��1) =

N�1̂

i=0

Si;

where Si = _gj2Ti gj , N is the number of true minterms in f , and Ti represents the set of PIs
that covers the i-th minterm. Si is 1 i� the i-th true minterm is covered by at least one PI, and
P (g0; g1; � � � ; g��1) is 1 i� every minterm is covered by at least one PI[17].

A solution to the SOP minimization problem is an assignment of 0's and 1's to gi that satis�es P
with the fewest 1's.

Example 2.1 Let us derive the minimum SOPs for the function f shown in Fig. 2.1 by using the
Petrick equation. Note that f has 6 minterms and 6 PIs, which are shown in Figs. 2.2 and 2.3. For

1 1 1

1 1 1

x1

x2

x3

Figure 2.1:

x1

x2

x3

m10m 3m

4m 6m 7m

Figure 2.2: Minterms

5g

0g

2g

3g4g1g

11

111

1 11

111

1

Figure 2.3: PIs

these minterms, we have the following relations:

m0 : S0 = g0 _ g3;

m1 : S1 = g1 _ g3;

m2 : S2 = g1 _ g4;

m3 : S3 = g0 _ g5;

m4 : S4 = g2 _ g5; and

m5 : S5 = g2 _ g4:

All the minterms are covered i� Si = 1 (i = 0; � � � ; 5). This is true i� P (g) = 1, where

P (g) = (g0 _ g3)(g1 _ g3)(g1 _ g4)(g0 _ g5)(g2 _ g5)(g2 _ g4):

Two assignments satisfying P (g) = 1 with minimum weights are g0 = g1 = g2 = 1 and g3 = g4 =
g5 = 1. One can �nd them by expanding P (g) into an SOP form. Thus, the corresponding minimum
SOPs for f are �x1�x2 _ x1�x3 _ x2x3 and �x2�x3 _ x1x2 _ �x1x3.

2.2 ESOP minimization problem

In the case of ESOP minimization, we have to consider all the products instead of just the PIs. Also,
the covering problem is an odd-even type, since 1 � 1 = 0. This problem corresponds to �nding a
minimum cost solution of the Helliwell Equation H(g) = 1, where H(g) is a product-of-EXOR sums
expression de�ned as follows:

H(g0; g1; � � � ; g��1) =

N�1̂

i=0

Si;

where Si =
P

gj2Ti
�gj � f(ai)� 1, N is the total number of the cells in the Karnaugh map (= 2n),

and � is the number of all possible products (= 3n). gj = 1 i� the j-th product is contained in
the ESOP. Si shows the condition that each true minterm is covered by products an odd number of
times, and each false minterm (0-cell in Karnaugh map) is covered by products an even number of
times. H(g0; g1; � � � ; g��1) shows that products cover true minterms an odd number of times and false
minterms an even number of times. Thus, the number of variables in the Helliwell function is 3n.

2

Example 2.2 Let us derive the minimum ESOPs for the function f shown in Fig. 2.4 by using the
Helliwell equation. Note that N = 4 is the number of cells in the map, and � = 9 is the number of
loops in Fig. 2.6. For each cell, we have

m0 : S0 = g0 � g2 � g6 � g8 � 1 � 1;

m1 : S1 = g1 � g2 � g7 � g8 � 0 � 1;

m2 : S2 = g3 � g5 � g6 � g8 � 0 � 1; and

m3 : S3 = g4 � g5 � g7 � g8 � 1 � 1:

True minterms are covered by loops an odd number of times and false minterms are covered by loops

x2

0

0 1

1

x1

Figure 2.4:

x1

m10m

x2 3m2m

Figure 2.5:

0g

3g
4g

1g

5g

2g
6g 7g g8

Figure 2.6: Products

an even number of times i� Si = 1 (i = 0; 1; 2; 3). This is true i� the Helliwell equation is H(g) = 1,
where

H(g) = (g0 � g2 � g6 � g8 � 1� 1) � (g1 � g2 � g7 � g8 � 0� 1) �

(g3 � g5 � g6 � g8 � 0� 1) � (g4 � g5 � g7 � g8 � 1� 1):

Assignments that make H(g) = 1 with minimum weights are g0 = g4 = 1, g2 = g7 = 1 or g5 = g6 = 1.
The corresponding minimum ESOPs are x1x2 � �x1�x2; �x2 � x1 and x2 � �x1, respectively.

[19] presented various methods to �nd a minimum solution for the Helliwell equation, but did not show
any computational results. To evaluate the usefulness of their methods, we implemented a similar
method and con�rmed that \the methods are very time and memory consuming" [19].

III Reduced Covering Function

This section presents a new method for exact ESOP minimization by using reduced covering functions.
This function involves 2r �3n�r variables, and requires fewer variables than the Helliwell function. Let
f be an n-variable function (n � 5), B = f0; 1g, and T = f0; 1; 2g. Let X = (x1; x2; � � � ; xn) be a
vector of binary variables, and X = (X1;X2) be a partition of X. Let (n � r) be the number of
variables in X1, and r be the number of variables in X2, where r = 0; 1; 2; 3, or 4. Then, f can be
represented as

f(X1; X2) =
X
a

�Xa
1 � g(a : X2); (3:1)

where a 2 Tn�r,
�xi ai = 0

X
a
1 = x

a1

1 � x
a2

2 � � � � � x
an�r

n�r
; x

ai

i
= xi ai = 1;

1 ai = 2

3

and g(a : X2) is an r-variable function.
By assigning a constant b 2 Bn�r to X1 in (3.1), we have

f(b;X2) =
X
c�Rb

�g(c : X2); (3:2)

where
P
� denotes the EXOR with respect to c 2 T

n�r satisfying c �R b. The symbol �R denotes
the binary relation f(0; 0); (1; 1); (2; 2); (2; 0); (2; 1)g. For each b, there are 2n�r di�erent c that satisfy
c �R b. Because there are 2n�r di�erent b, we have 2n�r di�erent equations of the form (3.2). Next,
by assigning a constant d 2 Br to X2 in (3.2), we have

f(b;d) =
X
c�Rb

�g(c : d): (3:3)

There are 2n�r di�erent b and 2n�r di�erent d, so we have 2n�r � 2r = 2n di�erent equations of form
(3.3). Note that g(c : d) is either 0 or 1. (3.3) holds for all possible combinations of b and d at the
same time if and only if R(g) = 1, where

R(g) =
^

(b;d)

([
X
c�Rb

g(c : d)] � f(b;d) � 1) (3:4)

and
V

(b;d)
denotes the logical product with respect to all possible b 2 B

n�r and d 2 B
r. R(g) is

called a Reduced Covering Function (RCF).
Let g(c : d) be Boolean variables, where c 2 Tn�r and b 2 Br. Then, the total number of variables

in RCF is 2r � 3n�r. An assignment for g(c;d) that satis�es R(g) = 1 is called a solution of R(g) = 1.
A minimum ESOP for f can be written in the form (3.1). Let g(a : X2) be an r-variable function.

We want to obtain 3n�r such functions. Because g(a : X2) can be written as

g(a : X2) =
X
d2Br

�Xd
2 g(a : d);

g(a : X2) can be obtained from the set of g(c : d) that satisfy the RCF. A minimum ESOP corresponds
to the solution of the RCF with the minimum value of the cost function:X

a

� (g(a : X2)); (3:5)

where
P
a denotes the arithmetic sum with respect to all possible a 2 T

n�r, and �(g) denotes the
number of products in a minimum ESOP for g. Thus, we have the following theorem.

Theorem 3.1 A minimum ESOP of an n-variable function corresponds to an assignment of the RCF
having a minimum cost of (3.5).

Because we have a table for minimum ESOPs for up to 4-variables, the values of �(g(a : X2)) for
r = 0; 1 � � �, and 4 are available.

Cost functions

0) When r = 0. g(a : X2) = g(a) are 0-variable functions (constants), and do not depend on X2.
There are 3n di�erent g(a), and they correspond to the 3n di�erent products of n variables. In
this case, the RCF is the same as the Helliwell function [19]. The cost function is

� (g(a : X2)) = g(a):

1) When r = 1. g(a : X2) are 1-variable functions and can be represented as

g(a : X2) = X
0
2 � g(a : 0) _X1

2 � g(a : 1):

An ESOP uses at most one product to represent g(a : X2), and requires a product only when
g(a : 0) _ g(a : 1) = 1. Thus, the cost function is

�(g(a : X2)) = g(a : 0) _ g(a : 1):

4

2) When r = 2. g(a : X2) = g(u; v) are 2-variable functions. An ESOP uses at most two products
to represent g(a : X2), and the cost function is

�(g(a : X2)) =

8>><
>>:

0 when g(u; v) = 0:

1 when g(u; v) = 1; �u;u; �v; v; �u � �v;
�u � v; u � �v; or u � v

2 otherwise:

3) When r = 3. g(a : X2) are 3-variable functions. An ESOP uses at most three products to
represent g(a : X2). The cost function is complex, but it is possible to represent by logic
functions.

4) When r = 4. g(a : X2) are 4-variable functions. An ESOP uses at most 6 products. The cost
function is complex, but it is possible to represent by logic functions.

Example 3.1 Let us obtain minimum ESOPs for the function in Fig. 2.4 by using RCF. Let X1 = (x)
and X2 = (y) be the partition of X = (x; y). In this case, we obtain the minimum ESOP having the
following form:

f(x; y) = �x � g(0 : y)� x � g(1 : y)� 1 � g(2 : y):

Now, we will �nd three functions such that
P2

i=0 �(g(i : y)) is minimum. Because g(i : y) can be
expanded as

g(i : y) = �y � g(i : 0)� y � g(i : 1);

we have the following expression:

f(x; y) = �x � �y � g(0 : 0)� �x � y � g(0 : 1)� x � �y � g(1 : 0)� x � y � g(1 : 1)� 1 � �y � g(2 : 0)� 1 � y � g(2 : 1):

By assigning (0,0), (0,1), (1,0) and (1,1) into (x,y), we have four equations:

f(0; 0) = g(0 : 0) � g(2 : 0) = 1;

f(0; 1) = g(0 : 1) � g(2 : 1) = 0;

f(1; 0) = g(1 : 0) � g(2 : 0) = 0; and

f(1; 1) = g(1 : 1) � g(2 : 1) = 1:

The RCF is

R(g) = [g(0 : 0)� g(2 : 0)][g(0 : 1)� g(2 : 1) � 1] �

[g(1 : 0) � g(2 : 0)� 1][g(1 : 1)� g(2 : 1)]:

The minimum assignments that make R(g) = 1 true are

g(0 : 0) = g(1 : 1) = 1;

g(1 : 0) = g(1 : 1) = g(2 : 0) = 1; and

g(0 : 0) = g(0 : 1) = g(2 : 1) = 1:

The corresponding minimum ESOPs are x1x2� �x1�x2; x1� �x2 and �x1�x2, respectively. Fig. 3.1 shows
the role of the variables. In the case of RCF, the sets of variables represent logic functions.

x

y

x x

=

g(0:0)

g(0:1)

g(1:0)

g(1:1)

g(2:0)

g(2:0)

1

1

Figure 3.1: The role of variables.

5

IV Optimization Using Binary Decision Diagrams.

A minimum ESOP for a given function corresponds to an assignment for RCF with the minimum cost.
In this part, we show a method to �nd such assignments by using Binary Decision Diagrams (BDDs)
[3, 15]. Let H(g) = 1 be a Boolean equation showing the constraints of an optimization problem,
where g = (g0; g1; � � � ; g��1). For example, H(g) = 1 can be the Petrick equation or the Helliwell
equation. Assignments satisfying H(g) = 1 are called feasible solutions. When H(g) is represented
by a BDD, a path from the root node to a constant 1 node corresponds to a feasible solution. Such
a path is called a 1-path of a BDD. By attaching a cost to the set of edges, we can make the paths
represent the cost of the solution. Thus, we can convert the optimization problem into the shortest
path problem [13]. The BDD for H(g) is usually too large to build, so we need various techniques to
reduce the size of the BDD.

Example 4.1 Fig. 4.1 is the BDD for Helliwell function in Example 2.2. Fig. 4.2 is the BDD for
RCF in Example 3.1. Note that RCF requires fewer nodes than the Helliwell function.

0 1

1
01

10

10

1

0 1 0
0 0

1 1

10 10 10

101001 10101

10 10 1 01 0

1

0
01 0

1 1
0

1
0

0
1

1

0

2

3

4

5

6

7

8

10

Figure 4.1: BDD for Helliwell function

g(0:0)

0 1

1010

1 1 0 0

0

0 1

1 01 0

1

0 1

1

g(0:1)

g(1:0)

g(1:1)

g(2:0)

g(2:1)

Figure 4.2: BDD for RCF

V Number of Variables for RCF.

This part considers the number of variables of a RCF for the optimization of an ESOP with n variables.
Suppose that we use the table of minimum ESOPs with r variables. Then, the number of variables
in RCF is �(n; r) = 2r � 3n�r. Table 5.1 shows the number of variables for RCFs. It shows that as r
increases, �(n; r) decreases. However, the computation time for cost functions and U(t1) will increase
as r increases. Note that the number of the variables in the RCF does not always show the complexity
of the problem.

VI Various Techniques to Reduce Computation Time and

Memory Requirement.

The BDD formulation of the problem is straightforward. However, the BDDs so formed are usually
very large. In general, almost all the computation time is spent in the generation of BDDs, and the
CPU time for �nding the shortest path is relatively small. Thus, the problem is how to generate the
BDD e�ciently.

6.1 Lower bound on the number of products.

Although we have various ways to reduce the computation time and memory requirement for the con-
struction of BDDs, the best way is not to construct a BDD. We have very good heuristic minimization

6

Table 5.1: Number of the variables for RCF
�(n; r)

n r = 0 r = 1 r = 2 r = 3 r = 4

3 27 18 12
4 81 54 36 24
5 243 162 108 72 48

6 729 486 324 216 144
7 2187 1458 972 648 432

8 6561 4374 2916 1944 1296
9 19683 13122 8748 5832 3888

program EXMIN2, which �nds near optimum solutions quickly. Suppose we know that the ESOP for
a function f requires at least t2 products, and EXMIN2 produced an ESOP with t1 products. If
t1 = t2, then the solution obtained by EXMIN2 is a minimum, and we can stop the procedure without
generating the BDD. We have a method to obtain the lower bound on the number of products in
ESOPs.

Theorem 6.1 Let the function f be expanded as f = �xi �fio�xi �fi1 . Then, the ESOP for f contains
at least maxfL1; L2g products, where

L1 =
1

2

n

max
i=1
f�(fi0) + �(fi1) + � (fi2)g; and

L2 = 1 +min
qj

fL1(qj � f)g

fi2 = fi0 � fi1 , qj represents a product containing at least one minterm of f , and �(g) is the number
of the products in a minimum ESOP for g.

To use the above theorem, we have to know the number of the products in the minimum ESOPs for
(n� 1) variable functions. Up to n = 6, we can do this by a table look-up method [12].

6.2 Upper bound on the number of products.

EXMIN2 is a heuristic ESOP simpli�cation algo-
rithm and produces near optimum solutions [26].
Let t1 be the cost of a near optimum solution of

EXMIN2, and let U(t1) be the logic function show-
ing that the cost is less than t1.

U(t1) =

�
0 (

P
�(g(a : X2)) � t1

1 otherwise:

We can generate the BDD for R(g) � U(t1), instead

of for R(g). This will drastically reduce the BDD
size and computation time. R(g) � U(t1) is called a
Modi�ed Reduced Covering Function (MRCF).

Example 6.1 Fig. 6.1 is the BDD for H(g) �U(3),
which is the modi�ed RCF with r = 0. This BDD

has only three 1-paths.

1

0

1

0

2

3

4

5

6

7

8

0

00

0 0

000

0 0

00

0 0

0

1

1

1

1

1

1

0g

2g

4g

5g

7g

6g

Figure 6.1: BDD for H(g) � U(3)

6.3 Methods for multiplication.

To generate the BDD for MRCF, we have to multiply 2n parity functions. For each multiplication of
a parity function, the number of nodes in the BDD tends to be double. Thus, we often encounter the
memory overow errors during the generation of BDDs. To avoid such errors, we carefully choose the
order of the multiplication. Currently, we use the order that increases the least number of variables
in the BDD for each step.

7

6.4 Zero-suppressed BDD.

A MRCF represents a set of vectors that satisfy the RCF. Although the number of variables is O(3n),
the number of non-zero elements in the vectors is O(2n), because t1 � 2n and the weight is less than
t1. Thus, MRCF represents a set of vectors with small weight. Zero-suppressed BDDs [15] are a
variant of BDDs, and represent such sets very e�ciently. By using zero-suppressed BDDs, we can
reduce the computation time and memory requirement signi�cantly.

VII Minimization Algorithm.

Step 1. Let F be an ESOP for f simpli�ed by EXMIN2.
t1 �(F),
t2 Lower bound obtained by Theorem 6.1.

Step 2. If t1 = t2, then F is the minimum and stop.

Step 3. Construct the BDD for R(g) � U(t1).
If the BDD represents the constant 0 function, then F is the minimum and stop.

Step 4. Find a shortest path.

Step 5. Construct the ESOP corresponding to the path.

VIII Experimental Results

We coded the algorithm in C, and implementing it on an HP9000 Model 720 workstation with 64
Mega-byte main memory. We used two types of BDD packages, one is based on the conventional
BDD [1] and the other is based on zero-suppressed BDD [15]. Neither of them use complemented
edges [14]. In addition, we developed code to generate the BDDs for bounding functions. Upper and
lower bounds on the number of the products in ESOPs are obtained by separate programs [26, 12].

8.1 With Helliwell functions.

Up to n = 3, we could easily build BDDs of Helliwell functions. Thus, the minimization of 3-variable
functions was easy. However, BDDs of Helliwell functions for n = 4 involve 34 = 81 variables and
were very expensive.

8.2 With Modi�ed Reduced Covering Functions.

The BDDs of MRCF for n = 5 were easy to derive, and we could minimize all the 5-variable functions
that we tried. The most complicated 5 variable function required 9 products, and EXMIN2 produced
these solutions. However, up to n = 5, we can derive the minimum ESOPs by table look up: it
requires only 6 seconds on the average [12]. For n = 9, we could minimize the ESOP with at most
4 products. Table 8.1 shows the cpu time and memory requirement using zero-suppressed BDD. For
large problems, conventional BDDs required more cpu time, and more memory than zero-suppressed
BDDs.

IX Conclusion

In this paper, we presented a new method to obtain an exact minimum ESOP for an n variable
function by using modi�ed reduced covering function. We also presented various techniques to reduce
the computation time and memory requirements. By using this approach, we minimized many ESOPs
with n = 5 and some ESOPs with up to n = 9 variables. Because minimum ESOPs for up to n = 5 can
be obtained very quickly by a table look-up method, the proposed method is suitable for the functions
with n = 6 or more. It is possible to extend RCF to treat multiple-output functions. We successfuly
minimized adr2 (two bit adder) and mlp2 (two bit multiplier) within 18 minutes. Although we have
made a drastic improvement over the previous approach [19], it is still memory and time consuming
when the functions require many products.

8

Table 8.1: ESOP minimization using RCF
n t r # of nodes CPU

max �nal (sec)

5 5 2 9069 7 7.0

6 2 28076 14 12.9
7 4 84240 861 68.4

8 4 120032 3732 93.5
9 4 247440 21887 159.5

6 3 3 8772 11 7.2
4 3 17656 12 14.1

5 2 37123 25 23.9
6 2 114080 40 75.0
7 2 369273 354 283.5

7 3 2 28062 11 18.1
4 3 57118 12 68.4

5 3 218033 21 170.3
6 2 581322 34 610.2

8 3 2 53832 5 111.6
4 2 173994 5 705.4

5 2 904411 7 1483.8

9 3 2 159504 5 796.3

9 4 2 564258 14 3645.4

n : number of input variables

t : number of products in the minimum
solution

r : parameter in Theorem 3.1

max : Maximal number of nodes
used during computation.

�nal : Number of nodes in the �nal
BDD for MRCF.

CPU time : HP 9000 Model 720 Workstation
64 MB main memory.

Acknowledgments

This work was supported in part by a Grant in Aid for Scienti�c Research of the Ministry of Education,
Science and Culture of Japan. Mr. M. Matsuura developed the software and did experiments. Prof. N.
Koda provided the program for lower bounds on the number of ESOPs. Prof. Jon T. Butler carefully
read the manuscript. Mr. S. Minato's comment on the Zero-suppressed BDD is also acknowledged.

References

[1] K. S. Brace, R. L. Rudell and R. E. Bryant,\ E�cient implementation of a BDD package," Proc.
27th Design Automation Conference, June 1990, pp. 40-45.

[2] D. Brand and T. Sasao, \Minimization of AND-EXOR expressions using rewriting rules,"IEEE
Transactions on Computers, (to be published).

[3] R. E. Bryant, \Graph-based algorithms for Boolean function manipulation," IEEE Trans. Com-
put. Vol. C-35, No.8, Aug. 1986, pp.677-691.

[4] C. Damm, \How much EXOR improve on OR," IFIP WG 10.5 Workshop on Applications on the
Reed-Muller Expansion in Circuit Design, Sept. 1993.

[5] M. Davio, J-P Deschamps, and A. Thayse, Discrete and Switching Functions, McGraw-Hill In-
ternational, 1978.

[6] S. Even, I. Kohavi and A. Paz, \On minimal modulo-2 sum of products for switching functions,"
IEEE Trans. on Electron Computers, Vol. EC-16, pp.671-674, Oct. 1967.

[7] H. Fleisher, M. Tarvel, and J. Yeager, \A computer algorithm for minimizing Reed-Muller canon-
ical forms," IEEE Trans. on Computers, Vol.C-36, No.2, Feb. 1987.

[8] D. H. Green and I. S. Taylor: \Multiple-valued switching circuit design by means of generalized
Reed-Muller expansions," Digital Processes, vol.2, pp.63-81, 1976.

[9] M. Helliwell and M. Perkowski, \A fast algorithm to minimize multi-output mixed-polarity gen-
eralized Reed-Muller forms," Proc. of the 25th Design Automation Conference, pp.427-432, June
1988.

[10] N. Koda and T. Sasao, \An upper bound on the number of product terms in AND-EXOR
minimum expressions," (in Japanese), Trans. IEICE, Vol. J75-D-I, No.3, pp. 135-142, March
1992.

[11] N. Koda and T. Sasao, \A minimization method for AND-EXOR expressions using lower bound
theorem," (in Japanese), Trans. IEICE, Vol.J76-D-I, No.1, pp. 1-10, Jan. 1993.

9

[12] N. Koda and T. Sasao, \LP equivalence class of logic functions," IFIP10.5 Workshop on Appli-
cation of the Reed-Muller expansion in Circuit Design, Sept. 1993.

[13] B. Lin and F. Somenzi, \Minimization of symbolic relations," Proc. of the IEEE International
Conference on Computer Aided Design, pp.88-91, Nov. 1990.

[14] S. Minato, N. Ishiura, and S. Yajima, \Shared binary decision diagram with attributed edges for
e�cient Boolean function manipulation,"Proc. 27th ACM/IEEE Design Automation Conf., June
1990, pp. 52-57.

[15] S. Minato, \Zero-suppressed BDDs for set manipulation in combinatorial problems," Proc. 30th
Design Automation Conference, June 1993, pp. 272-277.

[16] A. Mukhopadhyay and G. Schmitz, \Minimization of Exclusive OR and logical Equivalence of
switching circuits," IEEE Trans. Comput., C-19, pp. 132-140, 1970.

[17] S. Muroga, Logic Design and Switching Theory, John Wiley & Sons, 1979.
[18] G. Papakonstantinou, \Minimization of modulo-2 sum of products,"IEEE Trans. Comput., C-28,

pp. 163-167, 1979.
[19] M. Perkowski and M. Chrzanowska-Jeske, \An exact algorithm to minimize mixed-radix exclusive

sums of products for incompletely speci�ed Boolean functions," Proc. ISCAS, pp. 1652-1655, June
1990.

[20] U. Rollwage, \The complexity of mod-2 sum PLA's for symmetric functions," IFIP WG 10.5
Workshop on Applications on the Reed-Muller Expansion in Circuit Design, Sept. 1993.

[21] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field Programmable Gate Arrays, Kluwer
Academic Publishers, Boston 1992.

[22] K. K. Saluja and E. H. Ong, "Minimization of Reed-Muller canonic expansion," IEEE Trans.
Comput., C-28, pp. 535-537, 1979.

[23] T. Sasao and P. Besslich, \On the complexity of MOD-2 Sum PLA's,"IEEE Trans. on Comput.
Vol. 39. No. 2, pp. 262-266, Feb. 1990.

[24] T. Sasao, \Logic synthesis with EXOR gates," in (Sasao e.d.) Logic Synthesis and Optimization,
Kluwer Academic Publishers, 1993, pp.259-285.

[25] T. Sasao, \AND-EXOR expressions and their optimization," in (Sasao e.d.) Logic Synthesis and
Optimization, Kluwer Academic Publishers, 1993, pp.287-312.

[26] T. Sasao, \EXMIN2:A simpli�cation algorithm for exclusive-OR-Sum-of-products expressions
for multiple-valued input two-valued output functions," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (to be published).

10

