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SUMMARY

This paper presents properties of Exclusive-OR
Sum-of-Products expressions (ESOPs) and their mini-
mization algorithm. First, lower bounds on the number
of products in minimum ESOPs (MESOPs) are shown.
Then an algorithm to simplify ESOPs is presented. In
most cases, the algorithm proves their minimality for
functions of up to five variables. It utilizes a table of
MESOPs for all the functions of four variables, and:
1) finds a lower bound on the number of products in
the MESOP; 2) obtains an initial solution for the given
function; 3) simplifies the ESOP by an iterative im-
provement method; and 4) stops the iterative improve-
ment when the solution is proved to be minimum. Ex-
perimental results show that this algorithm proves the
minimality of about 98 percent of the five-variable
functions.

Key words: Combinational circuit, Exclusive-OR
sum-of-products, logic minimization, complexity.
1. Introduction
Recently, logic synthesis tools have been used to

design LSI circuits. Such tools often produce better
solutions in a shorter time than manual design, and are
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now indispensible in the practical LSI design. Most
logic synthesis tools utilize sum-of-products expression
(SOP) minimizers extensively in the programs. How-
ever, arithmetic circuits can be realized with many
fewer gates if EXOR gates as well as AND and OR
gates are available. Thus, a logic synthesis tool for the
circuits utilizing EXOR gates will be very useful.

To design multilevel circuits with EXOR gates, an
efficient minimizer for exclusive-OR sum-of-products
expression (ESOP) is necessary. As for SOPs, efficient
minimization algorithms exist. As for exact minimiza-
tion of ESOPs, only exhaustive [1, 10] or virtually ex-
haustive methods [15] are known. As for near mini-
mum ESOPs, several heuristic algorithms have been
developed [2-4].

In this paper, we present methods to find lower
bounds on the number of products in MESOPs for the
functions of n variables by using the MESOPs for the
functions of (n - 1) variables. We show also a
simplification algorithm for ESOPs with five-variables.
This algorithm simplifies ESOPs and proves their mini-
mality for about 98 percent of the five-variable func-
tions. For the functions with five or more variables,
the exhaustive method would be impractical because
the number of the combinations to consider is too
large. Thus, this is the first algorithm to guarantee the
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minimality of the solution, although it is restricted to
the five-variable functions. Also, when this algorithm
is extended for the functions with six or more variables,
we can obtain ESOPs with fewer products, and simplify
ESOPs quickly.

2. Definitions and Basic Properties of
Minimum ESOPs

Definition 1. x and X are literals of a variable x.

Definition2. LetS; € {0, 1} and S; = 0 (i = 1, 2,
won). T = xS52 .. xS j5 5 product term,
where x,{® = x, (1} = x, x(01} = 1 andx% = 0. For
simplicity, x;1%}, x,{1} and {01} are denoted by %0, x}!
and x?, respectively.

Definition 3. A sum-of-product form
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is an Exclusive-or Sum-of-Products expression (ESOP).

Remark 1. Up to now, various classes of AND-
EXOR expressions, such as positive polarity Reed-
Muller expressions, fixed polarity Reed-Muller expres-
sions, Kronecker expressions, pseudo-Kronecker
expressions and generalized Reed-Muller expressions,
have been proposed [5-7, 17). Among these expres-
sions, ESOPs are the most generalized ones. There-
fore, the number of the products in ESOPs can be
minimum.

Definition 4. An ESOP for f is said to be a mini-

mum ESOP (or MESOP) if the number of products is
the minimum.

Definition 5. The number of products in an ESOP
F is denoted by 7(f). The number of products in a
MESOP for f is denoted by 7(f).

Theorem 1. Let a function be represented as f =
x* - g, where g is a function not dependent on the
variable x and x* representsX or x. Then, 7(f) = 7(g).

Proof.
(1) Let G be a MESOP for g. Note that x* - G

represents f. Also, note that r(x* - G) = 7(g).
Therefore, we have 7(f) < (g).
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(2) Let a MESOP for fbe F. InF, ifwe setx to 1
when x* = x and x to 0 when x* = %, then F represents
the function g. Therefore, we have 7(g) < r(f). From
items (1) and (2), we have the theorem.

Q.E.D.

Theorem 2. If a function f can be represented as f
= g @ h, then r(f) < r(g) + r(h).

Proof. Let G and H be MESOPs for functions g
and h, respectively. Because G @ H represents the
function f, we need at most 7(G) + r(H) products to
realize f. Q.E.D.

3. Lower Bounds on the Number of
Products in MESOPs

In this section, some lower bounds on the number
of products in MESOPs for a given function are con-
sidered. These results are useful for the simplification
of ESOPs.

Lemma 1. 7(f) = L1, where L1 = 7(0: 1), 7(0: 1)
= 1'10}’(0) & f(1)), fa) = fa, %y %3, *, x,) and a €

(Proof is in Appendix 1.)

Lemma 2. 7(f) = L2, where L2 = {+(0, 0 : 0, 1}
+7(0,0:1,0) + (1, 1:0,1) + (1, 1 : 1, 0)}/2, (a,

b : ¢, d) = 1(f(a, b) ® f(c, d)), f(a, b) = f(a, b, X3, X4,
“,x,)and g b, ¢, d € {0, 1}.

(Proof is in Appendix 2.)

Lemma 3. 7(f) = L3, where L3 = {r(0,0,0:0, 0,
1) +7(0,0,0:0,1,0) + 7(0,0,0:1,0,0) + =0, 1,
1:0,0,1) +70,1,1:0,1,0) +7(0,1,1: 1,1, 1) +
7(14,0,1:0,0,1) + v(1,0,1:1,0,0) + (1,0,1: 1,
L1)+7(1,1,0:0,1,0) +7(1,1,0:1,0,0) + =(l,
,0:1,1, 1)}/4,7(a b, c:d, e k) = 7(f(a, b, c) B fd4,
e k), fla b, c) =fla b, ¢ x4 x5, *+, x,) and g, b, ¢,
d e he€ {01}

* (Proof is in Appendix 3.)

Theorem 3. 7(f) = A4, where A = max[max{r(f;),
i

s TGN f =% fo @ x; - fio = fl; = 0), f;y =
foi=1),fa=f0®fyandi = 1,2, n.

Proof. Let a MESOP for f be



Fn=% -F, &z - F,® F. o))
From Eq. (1), we have
T(f) = 7(Fa) + 7(F) + 7(Fe) 2)
By setting x; to 0 in Eq. (1), we have
Fo(z;=0)=F,® F. NC)
Because Eq. (3) represents the function f;p, we have
7(fio) < T(F) + 7(F) < 7(f) O
Similarly, by setting x; to 1 in Eq. (1), we have
Fa(zi=1)=FK 8 F G)
Because Eq. (5) represents the function f;;, we have

(fa) < 7(F) + 7(F) < 7(f) (6)

By (3) ® (5), we have f;p ® f;; = F, ® F,. Therefore,
we have

7(fia) < 7(Fa) + 7(F) < 7(f)
. From Egs. (4), (6) and (7), we have
max{7(fw), 7(fur), 7(fi2)} £ 7(f) ®)

This relations holds for all possible i, thus we have the
theorem. Q.E.D.

™

Theorem 4. 7(f) < B, where B = min[B], B; =
4

(o) + () + 1(fp) - max{r(fp), 7(f1)s (D} fio =
fo; =0), fiy = flx; = 1), fip = fp B fyyandi = 1,2,

, 1.

Proof. Because f can be represented as f = f;, ©x;
fo = f1 ®F; +fo =%; *fio ® X fiy, we have 7(f) <
(i) + 1(fy), 7(f) S () + 7(f;p) and 7(f) < () +
7(f;1)- Therefore, we have r(f) < B;. Because these

relations hold for all possible i, we have the theorem.
QED.

Lemma 4. Suppose that f is represented as f = x;
'f;-o @x‘- ‘j}l, Whel’ef;o = f(x,- = 0), fil = f(x,- = 1).
If 7(f) = 7(f;;), then a MESOP for f has a formx; - F

@ F,, where F; and F, are ESOPs not containing the
variable x;.

Proof. Suppose that a MESOP for f is represented
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in the form:
- Fi®@ F.®%i- Fy Q)

where Fg # 0. Then, we have

7(f) = 7(Fa) + 7(F) + 7(Fy) (10)
Because 7(F;) > 0, from Eq. (10) we have
T(f) > 7(Fa) + 7(F) (1)

Let x; be 1 in Eq. (9). Because Eq. (9) represents f;;,
we have

7(fa) £ 7(Fa) + 7(Fe)

From Egs. (11) and (12), we have 7(f;) < 7()).
However, this contradicts the assumption of the lem-
ma. In other words, if we assume that the MESOP has
the form (9), then we have the contradiction.

Q.E.D.

(12)

Lemma 5. Suppose that f is represented as f = X;
*fio @ % - fy, where fig = fix; = 0), f; = fi5; = D).
If 7(f) = 7(f;x)- Then a MESOP for f has a form %; -
F,, ® F,, where F;, and F are ESOPs not containing
the variable x;.

Proof. Similar to Lemma 4. Q.E.D.

Lemma 6. Suppose that f is represented as f = X;
fio ® % - fyy, where fi = fig; = 0), fyy = fb5; = 1)
andf, = fo ®fy. If 7(f) = 7(f;2), then a MESOP for
f has a form x; - F, @ x; + F,, where F, and F, are
ESOPs not containing the variablex;.

Proof. Suppose that a MESOP for f is in the form:

LBz - FoaF (13)
where F, # 0. Then, we have
(f) =7(F) +m(F) +7(F)  (14)
Because 7(F,) > 0, from Eq. (14) we have
T(f) > 7(F) + 7(F) (15)
By setting x; to 0 in Eq. (13), we have
Fek (16)



Equation (16) represents f,. Similarly, by setting x; to
1 in Eq. (13), we have
F,eF, ¢Y))

Equation (17) represents fiI: By Egs. (16) @ (17), we
have

Rek (18)
Because Eq. (18) represents f;,, we have
7(fi2) < 7(Fp) + 7(F) (19)

From Egs. (15) and (19), we have 7(f;;) < 7(f). How-
ever, this contradicts the assumption of the lemma.
Therefore, we have the lemma. Q.E.D.

Lemma 7. For a given function f, let A and B be
the values defined in Theorems 3 and 4. Then, 7(f) =
A+ A=B.

Proof for =». From Theorem 3; 4 can be repre-
sented as either 7(f;,), 7(f) or 7(f,)-

1) When 7(f;;) = A. From Lemma 4, a MESOP for
f has a form:

z;- Fy® F. (20)
Because f can be represented as f = x; * f;; @ fo, Fy
represents a function f;, and F, represents a function
fio- Also note that both F, and f, are MESOPs for f;,
and f, respectively. If not, Eq. (20) is not a MESOP.
Therefore, 7(F;) = (f;;) and 7(F,) = 7(f;y). Thus we
have 7(f) = 7(F;) + =(F,) + 7(fp) = 7(fp)-
definition of B, we have t(f;) + 1(f;p)) 2 B. Therefore,
() 2B . On the other hand, by Theorem 4, we have
T(f) < B. So 1(f) = B. Hence, A = B.

2) When (f;;)
5.

= A. Similar to 1 by using Lemma

3) When 7(f;;) = A. Similar to 1 by using Lemma
6. From 1, 2, and 3 we have 4 = B.

Proof for <. When 4 = B. By Theorem 3, we
have 7(f) = A. By Theorem 4, we have (f) < B.
Hence, 7(f) = A. Q.E.D.

Theorem 5. For a given function f, let 4 and B be
the values defined in Theorems 3 and 4. If 4 = B,
thenr(f) =2 4 + 1.

By the
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Proof. By Lemma 7, if 4 # B, then r(f) = A. By
Theorem 3, we have 7(f) = 4. Hence the theorem.
Q.E.D.

By Lemma 7, and Theorem §, we have the follow-
ing:

Collorary 1. For a given function f, let A and B be
the values defined in Theorems3 and 4. Then 7(f) =

L4, where L4 = )4 (A =B)
A+1(A#B).

The next theorem is due to Prof. S. Iwata of Tokai
Univeristy [19].

Theorem 6. 7(f) = L5, where L5 = max[{r(f) +
!

() + T DM2), f = x; [ ®x; - fiys fio -f(x = 0),
fl f(x—l),f;z-—j;o@f,landt-IZ

Proof. Let a MESOP forfbe F=xFg®x; -

F;; @ F;,. Becausefy, = F, @ F;,, we have
7(fio) < 7(Fio) + 7(Fi2) @1)
Because f; = F;; ® F;,, we have
T(fa) S 7(Fu) + 7(F) (22)
Because fj, = Fyy w F;;, we have
T(fiz) S 7(Fio) + 7(Fia) (23)
By Egs. (21) + (22) + (23), we have
t(fio) + t(fu) + 2(fad) o)

S2(e(Fo)+ c(Fa)+ e(F)l=21(f)

Equation (24) holds for all possible i, thus we have the
theorem. Q.E.D.

L1 to L5 derive lower bounds on the number of the
products in MESOPs for a given function. In the fol-
lowing, we compare these lower bounds.

Remark 2. From Lemma 1 and Theorem 3, we
have L4 = L1.

Lemma 8. Let L4 and LS be the values defined in
Collorary 1 and Theorem 6, respectively. Then L5 =
L4.

Proof. LetA and B be the values defined in Theo-



rems 3 and 4, respectively. From Theorem 3, 4 can be
represented as either r(f;g), 7(f;;) or 7(f;,), where i = 1,
2, ooy n.

(a) When A4 = 7(fy5). -

From the definition of L5, we have L5 = {r(f;)) +
7(fy) + 7(f;)}2. Also, from the definition of B, we
have B < 7(f;;) + 7(f;p)-

1) When 4 = B.
From Collorary 1, L4 = A. Therefore, we have

L52{c(fw) + (/i) +e(f)}/2 2(A+B)/2
=A=L4

(25)
2) When A4 < B.
From Collorary 1, L4 = A + 1. Therefore, we

have L5 = {(f) + (f;)) + 7(fi)}2 = (A + B)2 >
A. Because L5 is an integer, we have

L5>A+1=1L4 (26)
From Egs. (25) and (26), we have the lemma.
(b) When A4 = (f,y) or A = (f).
Similar to (a).
From (a) and (b), we have the lemma Q.E.D.

From Remark 2 and Lemma 8, L1 and L4 are un-
pecessary.

Definition 6. A minterm is a logical product con-
taining a literal for each variable. A minterm implying
a function is called a minterm of f. The set of min-
terms of f is denoted by M(f). The number of elements
in M(f) is denoted by [f|.

Definition 7. For a given n-variable function, let v
€ M(f), and E(v) be the set of the products coveringv.
The number of elements in E(v) is 2".

Lemma 9. For a given n-variable function, v €
M(f) and q; € E(v), where i 1, 2, -, 2". Then, (f)
= 1 + min{r(f @ g¢;)}.

]

Proof. Let F be an ESOP for f. F contains at least
one of the products in E(v). Let this product be g;.
Let G be the ESOP which is obtained by deleting the
product g; from F. Then we have F = ¢; ® G. From
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this, we have 7(f) < r(F) = 1 + 7(G). Because G
represents the function q; ® f, we have

(f)<1+7(¢iDf)
Because this relation holds for all possible i, we have
r(f) £ 1+ min{r(g: ® /)

Next, let H be a MESOP for f; H contains at least one
of the products in E(v). Let it be g;. In this case, g; is

selected so that the number of the products in the
MESOP for the function f & gj» which is obtained by
deleting g; from H, is minimum. Therefore, we have

()2 1+min{r(foq)} @)

27)

(28)

From Egs. (28) and (29), we have the lemma. Q.E.D.

Definition 8. Lmax(f) = max{L2, L3, L5}, where
L2, L3 and L5 are the values defined in Lemma 2,
Lemma 3 and Theorem 6, respectively.

Theorem 7. For a given n-variable function f let v;
€ M(f) and g;; € E(v)), where i = 1, 2, -, 2". Then
7(f) = LB, where LB = 1 + max[min{Lmax(q;; ® /)}].

i

Proof. From Lemma 9, we have 7(f) = 1 +
min{r(g; ® f)}. Also from Definition 8 we have

J
(g; ®f) = Lmax(q; © f). Therefore, we have

r(f) 2 1+ min{Lmaz(g; & )} GO

Because Eq. (30) holds for all possible i, we have the
lemma. Q.E.D.

Next, we will compare the maximum values of L2,
L3,LS and LB.

Definition 9. For all the n-variable functions, the
maximum values of L2, L3, L5, and LB are denoted by
L2max(n), L3max(n), LSmax(n) and LBmax(n), respec-
tively.

Definition 10. The maximum number of products
in MESOPs for n-variable functions is denoted by
W(n).

Lemma 10. For a given n-variable function f,
L2max(n) s 2 - W(n - 2), L3max(n) < 3 - W(n - 3),
LSmax(n) < (3/2) - W(n - 1) and LBmax(n) <
max{L2max(n), L3max(n), L5max(n)} + 1.



Table 1. Comparison of the maximum values of

the lower bounds

Nm:rbcr Maximum value of lower bounds
products L2 L3 L5 LB
{ ] 3 s 6
6 6 9 10
6 12 9 sS4 s1s
1 s18 18 su 525

28 s2" 3 | s/ ?  s3/2.2070 | 3722004

Proof. It is trivial by the definitions of L2, L3 and
L5 and Theorem 7. Q.E.D.

Because W(1) = 1, ¥(2) = 2, ¥(3) = 3, ¥(4) = 6,
W¥(5) = 9 and ¥(n) 21-2(n = 6) [12], Table 1 compares
the maximum values of the lower bounds.

4. Algorithm for Simplification

At  present, as for the algorithms to obtain a
MESOP for a given function, only exhaustive or vir-
tually exhaustive methods are known. As for near-
minimum ESOPs, several heuristic algorithms have
been developed. All these algorithms simplify ESOPs
by iterative improvements, and do not guarantee the
minimality of the solutions [2-4]. By using the lower
bound of a MESOP for a given function, an algorithm
which proves the minimality of the simplified ESOPs is
obtained. To obtain lower bounds for n-variable func-
tions, the MESOPs for (n - 1)-variable functions are
necessary. Up to now, all the MESOPs for the func-
tions of four or fewer variables have been obtained
[10]. The algorithm for the simplification of ESOPs
for five-variable functions is as follows.

Simplification algorithm for five-variable functions.

1. Let LB be the lower bound on the number of
products in ESOPs for a given function.

2. Expand the given function into one of the fol-
lowing forms: f = X;  fio @ x; * fi1, [ = %; * fi3 ® [y,
=% [ ® f2 ® fyy, Where f; = f;o @ fy.

3. Obtain the MESOPs for the subfunctions fi, f;

and f;, by using the table of the MESOPs for four-
variable functions.

4. Obtain an ESOP for f by combining two
MESOPs.
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5. Simplify this ESOP by a heuristic minimization
program EXMIN2 [14]. Let 7, be the number of the
products.

6. If LB = r,, then the simplified ESOP is the
minimum. Therefore, stop the algorithm. Otherwise,
go to Step 2 and do Step 3 to Step 6 for another ex-
pansion. If all the expansions are exhausted (15 pos-
sible expansions) and still LB # 7,, then the minimality
is not proved. In this case the ESOP with the fewest
products ever found will be a near minimum solution.

5. Experimental Results and Discussions

For the five-variable functions, we cannot use the
exhaustive method because the number of combina-
tions to consider is too large. The set of n-variable
functions can be partitioned into equivalence classes by
various equivalence relations [8]. The NP equivalence
relation, which is based on the negations and permuta-
tions of the inputs, partitions all the five-variable
functions into about 1.2 x 10® equivalence classes [9).
The LP equivalence relation, which is based on the
permutations of the inputs and the transformations of
the literals, partitions all the five-variable functions into
6936 classes [12]. The number of LP equivalence
classes is much smaller than that of the NP equivalence
classes.

Therefore, in this paper, we use the LP equivalence
relation to partition the five-variable functions. We
simplified the representative functions of the LP equi-
valence classes of the five-variable functions by the
algorithm is section 3, and obtained the number of pro-
ducts in the simplified ESOPs.

Table 2 shows the numbers of LP equivalence clas-
ses and the total number of functions requiring given
number of products in the simplified ESOPs. Also, the
numbers of the functions whose minimalities of the
simplified ESOPs have been guaranteed by using the
algorithm in section 4 are shown. .

Table 3 compares the lower bounds and shows the
number of equivalence classes whose lower bounds are
distinct (i.e., larger than others) among L2, L3, and LS.
From these tables, we can see the following:

1) an arbitrary five-variable function can be realized
by an ESOP with at most nine products;

2) when the number of products in the' MESOPs is
at most 6, the algorithm proved the minimality of the



Table 2. Simplification of five-variable ESOPs

Nb':':‘. Nu:;ber Nu;ll:‘er of equiv:leno: cla'ss.es Proved to be minimum Rate of
. |Number of 1o which are proved to be mini- guaran-
p:_’:d_ v:;z::: e | tal functions mum by each lower bound bi:.ugt‘ N“;‘;b:l' of ‘ee(x)
ucts |  classes ) L2 L3 L5 LB g;i‘;:: functions
0 i 1 1 1 1 1 T T | 100
1 1 243 1 1 1 1 1 243 | 100
2 4 24948 4 4 4 4 4 24948 | 100
3 19 1351836 18 19 19 19 19 1351836 100
4 131 39365190 136 | 96| 137 137 131 39365190 100
5 971 545193342 886 | 339 | 966 971 971 545193342 100
6 3572 | 2398267764 1581 | 221 3204 | 3571 3571 2398252212 99. 99
1 2143 | 1299295404 0 0] 1124 | 2036 2036 1227138012 94. 45
8 86 11460744 0 o as| so 50 5718168 49,89
9 2 1824 0 0 1 1 1 48 0. 61
Total | 6936 | 4294967296 | 2627 [ 680 5492 ) 6791 5791 4217044000 98. 19

Table 3. Lower bounds for five-variable LP
equivalence representative functions

i | 12 ] L3 | L5 | LB
1 |1.00|1.00|1.00]1.00
ol o] o
2 | 2.00]2.00]200]200
ol o] o
3 |3.00]3.00]3.00]3.00
ol ol o
4 |3.993.70 [ 4.00 | 4.00
o] o] o
5 | 4.91]4.95]4.995.00
ol o] 1
§ |5.445.02]5.90]6.00
s2| 41018
7 |5.815.45]6.52]6.95
o| o1063
8 |5.925.92]7.40]7.58
ol ol 3
3 | 6.00|6.00f8.50]8.50
ol o] 2
Average
vale | 5.45|5.04]5.94]6.12
ol | 52| a)aing

Lower part of each column represents the number of
equivalence classes whose lower bounds are different.

simplified ESOPs for almost 100 percent of the
functions;

3) the algorithm prove the minimality of the ESOPs
for about 98 percent of the functions. The remaining
ESOPs could not prove the minimality, but we proved
the minimality of these ESOPs by using another
method [20];
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4) LB is the greatest lower bound among four. For
most functions, LS > L2 > L3 holds, but there are
some exceptions. Also, L2, L3 and L5 all are essential
for the estimation of the lower bounds of functions.

In this algorithm, a heuristic minimization algo-
rithm EXMIN2, which simplifies ESOPs by iterative
improvementsis used. As mentioned before, EXMIN2
does not prove the minimality of the simplified ESOPs.

6. Conclusions -

In this paper, we derived lower bounds on the
number of products in MESOPs for n-variable func-
tions when the numbers of products in MESOPs for (n
- 1)-variable functions are available. We developed a
minimization algorithm for ESOPs of five-variable
functions. The features of this algorithm are: 1) ability
to obtain a lower bound; and 2) ability to stop the
algorithm when the solution is proved to be minimum.
Thus, the solutions are more reliable than those
obtained by the existing heuristic algorithms.

This algorithm simplified five-variable ESOPs and
proved the minimality for about 98 percent of all five-
variable functions. Although various minimization
algorithms for logic expressions have been developed,
no algorithm used the minimized results of all the
functions with fewer variables. When this algorithm is
extended for the functions for six or more variables, we
can obtain the initial ESOPs with fewer products, and
simplify ESOPs in a shorter time. Logic minimization
programs are indispensibletools for the design of VLSI
circuits. The minimization algorithm proposed in this



paper is useful for the design of compact and easily
testable VLSI circuits. The extension of this algorithm
to the multiple-valued input two-valued output
functions [13, 18] is a future work.
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APPENDIX

{Appendix 1)
Proof for Lemma 1

Let F be a MESOP for f and be represented as
follows:

F(0)2° @ F(1)2' & F(2)2® (Al)
where F(a)(a € {0, 1, 2}) are ESOPs which do not
contain the variable x.. By settingx = 0 in (Al),

F(0) ® F(2) = £(0) (A2)

By settingx = 1, in Eq. (A1),
By Egs. (A2) e{ggiﬁl =/ @
F0)® F(1) = f(0)@ f(1)  (A9)

Let 7(a) = 7(F(a)). From Eq. (A4), we have r(0) +
(1) = 7(f(0) @ f(1)). Note than r(f) = 7(0) + (1) +
7(2). Because 7(2) = 0, we have 7(f) = 7(f(0) @ f(1)).

Q.E.D.

(Appendix 2)
Proof for Lemma 2

Let F be a MESOP for f and be represented as
follows:
F(0,0)x°s"®F(0,1)z°y'@F(0.2)x°y*
@F(1,02'y°®F (1, D)z'y'®F 1.2y
@F(2.0)x*y°@F(2,1)z*y'DF (2 2)x*y*  (Bl)

where F(a, b)(a, b € {0, 1, 2}) are ESOPs which do
not contain the variablex or y. By setting (x, y) = (0,

0) in Eq. (BY),
FO.0@F0.DOF2.0®F(2.2)=/0,0) (82)

By setting (x, y) = (1, 1) in Eq. (B1),

FOL.DOF1,2@F2D®F((2,2)=/(1.1) (B3)
By setting (x, y) = (0, 1) in Eq. (B1),
F(0, D®F0,2DF2, 1)DF(2.2)=/(0,1) (B4)

By setting (x, y) = (1, 0) in Eq. (B1),
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F(LODI(, D2, 0DI(2,2)=/(1,0)  (BS)

From Egs. (B2) and (B4),

FO.0DF0, DF(2.00Dr(2,1)
=7(0,0)®/(0,1)
From Egs. (B2) and (BS),
170, 00@F(0,2)DF(1,0)DF(1.2)
=/(0,0)®/(1,0)
From Egs. (B3) and (B4),
170, D0, 2XDF( L 1)XDI(1,2)
=/(1,1)®Ds(0.1)
From Egs. (B3) and (B5),
F(l.0)®F(1:1)®F(2.0)@F(2,1)
=/(1.1)D/(1.0)

Let'r(a, b) = 7(F(a, b)). From Egs. (B6) to (B9),
we have 7(0, 0) + 7(0, 1) + 7(2,0) + (2, 1) = (0,0
:0, 1), 7(0, 0: 0, 1), 7(0, 0) + =(1,0) + (1, 2) = 7(0,
0:1,0),70,1) +7(0,2) +7(1, 1) + 7(1,2) = (1, 1
:0,1) and 7(1, 0) + (1, 1) + 7(2,0) + 7(2, 1) = (1,
1:1, 0). By adding the four inequations in the
foregoing, we have 2{r(0, 0) + (0, 1) + (0, 2) + (1,
0) + 7(1, 1) + 7(1,2) + 7(2,0) + 7(2,1) = 7(0,0: 0,
1) +70,0:1,0) +7(1,1:0,1) +7(1,1:1,0).
Note that r(f) = (0, 0) + 7(0, 1) + (0, 2) + =(1, 0)
+ (1, 1) + 7(1, 2) + 7(2,0) + 7(2, 1) + 7(2, 2).
Because 7(2, 2) = 0, we have 2r(f) 2 #(0,0:0, 1) +
7(0,0:1,0) + 7(1,1:0, 1) + (1, 1: 1, 0). Hence
the lemma. Q.ED.

(B6)
(87)
(BY)

(B9)

(Appendix 3)
Proof for Lemma 3

Let F be a MESOP for f and be represented as
follows:

F(0.0.0)2°/°2’@F(0,0,1)x°° 2@ F(0,0,2)x°y°2
@F0,1,0)2y' 2@ F(0,1.1)x%' 2"
@F(0,1,2)x°y' 2D F(0,2,0)x°y*2°
@F0,2,1)x%*2'@F(0,2,2)x°y*2*
@F(1,0,0).c'y°2"DF(1,0,1)x'y°2
@F(1.0,2)x'y°2®F(1,1.0)x'y'2°
@F(1,1.1)z'y' 2" ®F(1,1,2)r'y' 22
@F(1,2,0)x'y? 2@ F(1,2,1)x'y?2"

@F(1,2.2)x' y?2’®DF(2.0,0)x%y°2°



@F(2.0. 1)1 2 @F(2,0,2)x’y"2’
DF(2.1,0) %y 2’DF(2,1,1)z%y' 2
@F(2.1,2)x%y' 2DF(2,2,0)x%y*2°
@F(2,2. 1) 2 DF(2.2,2)z%y* 2
where F(a, b, c)(a, b, ¢ € {0; 1, 2}) are ESOPs which
do not contain variablex, y z. By setting (x,y, z) = (0,
0, 0) in Eq. (C1),
F(0.,0,0)®F(0,0,2)DF(0,2,00DF(0,2,2)
@F(2,0,00DF(2,0.2)DF(2,2,00DF(2,2,2)
=£(0.0.0) €2

By setting (x, y, z) = (0, 1, 1) in Eq. (C1),
F(0.1,1)DF(0.1,2)DF(0,2.1)YDF(0.2,2)
@®re.1,1)PF2,1,2DF(2,2,1)D(2,2,2)
=£(0,1,1) (@3)
By setting (x, y, z) = (1, 0, 1) in Eq. (C1),

F(1,0.1)®F(1,0,2)DF(1,2,1)DF(1,2,2)
@F(2.0,.1YPF(2,0,2DF(2,2,1)DF(2,2,2)
=£(1,0.1) (C4)

By setting (x, y, ) = (1, 1, 0) in Eq. (C1),
F(1,1,00®F(1.1,2)DF(1,2,00DF(1,2,2)
®F(2.1,00DF(2,1,2)DF(2,2.00DF(2.2,2)
=£(1.1,0) (C3)
By setting (x, y, z) = (0, 0, 1) in Eq. (Cl1),
F(0,0,1)®F(0,0,2)DF(0,2,1)PF(0,2,2)
DF(2.0,1)PF(2,0,2)DF(2,2,1YDF(2,2,2)
=£(0,0.1) (Co)
By setting (x, y, 2) = (0, 1, 0) in Eq. (C1),
F(0,1,00®F(0,1,2)DF(0,2,0)DF(0.2,2)
@F(2,1.0DF(2,1,2)DF(2,2,00DF(2,2.,2)
=£(0,1.0) (1)
By setting (x, y, 2) = (1, 0, 0) in Eq. (C1),
F(1,0,00®F(1.,0,2)®F(1,2,00DF(1,2,2)
@F(2,0.00DF(2,0,2)DF(2,2,00DF(2,2,2)
=f(1,0.0) . (C8)
By setting (v, y, z) = (1, 1, 1) in Eq. (C1),
FOLD®F(1.1,2OF1.2.1)DF(1,2,2)
GOFE DI, 1.2)XP1R.2,1)DI(2,2,2)
=/(1.1.1) (C9

(C1)

By (C2) & (C6),
F(0,0,00DF(0.0,)DF(0,2,00DF(0,2.1)
@F(2,0.00DF(2,0,.1)DF(2.2,00DF(2,2,1)
=/(0,0.00®s(0.0,1) - (C10)

By Egs. (C2) & (C7),
F(0,0,00@7r(0,0,2)®F(0,1,00DF(0.1,2)
@F(2.0,000F(2.0,.2DF(2.1,00DF(2,1,2)
=/(0,0.00@®s(0,1,0) (C11)

By Egs. (C2) & (C8),

F(0,0,00F(0,0,2)DF(0,2.00DF(0,2,2)
@F1,0,00F(1,0,2)D°(1,2,00Dr(1,2,2)
=/(0,0,0)®/(1,0,0) (C12)

By Egs. (C3) & (C6),
1(0,0,1XDF(0.0.2)D 10,1, 1)DF(0,1,2)

®F(2,0.1)®F(2.0,2)®F(2,1,1)®F(2,1,2)
=£(0,1,1)®7(0.,0,1) (C13)

By Egs. (C3) @ (C7),
F(0,1,00®F(0,1,1)DF(0,2,00DF(0.2,1)
®F(2.1,0DF (2.1, DOF(2,2,00DF(2,2,1)
=7£(0.1,1)®(0,1,0) (C19)
By Egs. (C3) @ (C9),

0.1, DPF0.1,2)DF(0,2,1)PF0,2.2)
@F(1,1,1@F(1,1,2DF(1,2, DDF(1,2,2)
=£(0.1.1)®(1,1,1) (C15)

" By Egs. (C4) ® (C6),

F(0,0.1)®#(0,0,2)DF(0,2,1)DF(0,2,2)
@F(1,0,1)DF(1,0.2BF1,2,.1)YDF(1,2,2)
=/(1.0.1)D/(0,0.1) (C16)

By Egs. (C4) @ (C8),

F(1,0,00DF(1,0, 1)®F(1,2,00DF(1,2,1)
DF(2,0,00DF(2.0,1)DF(2,2,00DF(2,2,1)
=/(1,0,1)D/(1,0.0) (C17)

By iaqs. (C4) ® (C9),

F(1,0.)®F(1.0.20DF(1.1,)®F(1,1,2)
@F (2.0, 1)DF(2.0,2F(2,1,1)®F(2,1,2)
=/(1,0,1)®f(1,1,1) (C18)



By Egs. (C5) @ (C7), +47(2,0,2)+47(2,1,0)+42(2,1,1)+47(2,1,2)

F(0.1.00@F(0.1.2)DF0.2.00F(0.2,2) +47(2,2,0)+41(2,2,1)2
@F(1,1,0PF(1,1,2PF(1,2,0DF(1,2,2) ((0,0,0:0,0,1)+(0,0,0:0,1,0)
=/(1,1,008/(0,1,0) (C19) * +r(0,0,0:1,0,0)+(0,1,1:0,0,1)

+7(0,1,1:0,1,00+7(0,1,1:1,1,1)
By Egs. (C5) & (C8), +2(1,0,1:0,0,1)+7(1.0,1:1.,0.0)

F(1,0,00®F(1,0,2)DF(1,1,00F(1,1,2) +7(1,0,1:1,1,1)+2(1;1,0:0,1,0)
B1(2,0,00D1°2,0,2)D1°(2,1,00D17(2,1,2) +(1,1,0:1,0,0)0+2(1,1,0:1,1,1)}
=/(1,1,00®/(1,0,0) (C20) _

Note that 7(f) = 7(0, 0, 0) + (0, 0, 1) + 7(0, 0, 2) +
By Egs. (C5) & (C9), (0, 1, 0) + (0, 1, 1) + 7(0, 1, 2) + 7(0, 2, 1) + =(0,
2,2) + 7(1,0,0) +7(1, 0, 1) + 7(1, 0, 2) + (1, 1, 0)

F(1.1.00®F(1,1,D®F(1,2,00@F(1,2,1) +r L 1) + 71, 1,2) + (1, 2,0) + (1,2, 1) +
@F(2.1,00®F(2,1,1)DF(2,2,00DF(2,2,1) 7(1,2,2) + 7(2,0,0) + 7(2,0, 1) + 7(2,0,2) + 7(2,
=/(1.1.0@®£(1.1.1) (C21) 1,0) + 72,1, 1) +7(2,1,2), + 7(2,2,0) + 7(2,2, 1)

+ 1(2, 2, 2).

Let 7(a, b, ¢) = 7(F(a, b, c)) and 7(a, b,c :d, e, h) =
7(f(a, b, c) @ f(d, e, h)). Because 7(a, b, ¢) = 0, we have
4-7(f)=((0,0,0:0,0,1)+(0,0,0:0,1,0)

From Egs. (C10) to (C21), we have
gEASIOIED) +7(0,0,0:1,0,0)+7(0,1,1:0,0,1)

37(0,0,0)+37(0,0,1)+47(0,0,2)+37(0,1,0) +7(0,1,1:0,1,00+7(0,1,1:1,1,1)
+37(0,1,1)+47(0,1,2)+47(0,2,0)+47(0,2,1) +17(1,0,1:0,0,1)+2(1,0,1:1,0.0)
+47(0,2,2)+37(1,0,0)+37(1,0,1)+4(1,0,2) +7(1,0,1:1,1,1)+¢(1,1,0: 0,1,0)
+37(1,1,0)+37(1,1,1)+42(1,1,2) +47(1,2,0) +7(1,1,0:1,0,00+(1,1,0:1,1,1)}
C44r(1,2, 1) +47(1,2,2)+472(2,0,0)+47(2,0,1) Hence the lemma. ' Q.E.D.
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