
A Heuristic Decomposition of Index Generation Functions with Many Variables

Tsutomu Sasao, Kyu Matsuura, and Yukihiro Iguchi

Department of Computer Science, Meiji University,
Kawasaki, 214-8571, Japan

Abstract— This paper shows a heuristic method to decompose
index generation functions with many variables. Three different
measures are used to select the bound variables. Experimental
results shows that this method finds fairly good decompositions in
a short time. Comparison with Monte Carlo method is presented.

I. Introduction

Index generation functions [9] are used for access control
lists, routers, and virus scanning for the internet, etc.. They
represent functions of Content Addressable Memories (CAMs)
used for pattern matching applicatoins.

Functional decomposition [1, 3] is a technique to decom-
pose a circuit into two parts with a lower cost than the original
circuit. Various techniques to find functional decompositions
have been presented [2, 6, 7]. They are routinely used in logic
synthesis. Index generation functions often have effective de-
compositions.

An index generation function can be efficiently implemented
by an LUT or an IGU (Index Generation Unit), which are pro-
grammable [9]. An IGU implementation of an index genera-
tion function dissipates much lower power and are less expen-
sive than a CAM implementation [10]. Suppose that LSIs for
IGUs with n inputs and weight k are available. For a func-
tion with larger k, we can partition the set of vectors into sev-
eral groups, and implement each group by an independent LSI.
The outputs of the LSIs can be combined by an OR gate to pro-
duce the final output [11]. This is a parallel decomposition.
For a function with larger n, we can partition the set of input
variables into two sets X1 and X2, and implement the function
by a serial decomposition as shown in Fig. 1.1. The rest of
the paper is organized as follows: Section II defines the basic

G

Hx1

x2

f

Fig. 1.1. Realization of a logic function by decomposition.

0 0 1 1 x1

0 1 0 1 x2

0 0 0 0 0 1
0 1 1 1 0 0
1 0 0 1 0 0
1 1 0 0 0 0
x3 x4

Fig. 2.1. Decomposition chart of an logic function.

words. Section III introduces the properties of index genera-
tion functions. Section IV shows a heuristic method to find
a good decomposition. Section V shows the experimental re-
sults. Section VI concludes the paper.

II. Definitions

In this part, we introduce basic concepts.

Definition 2.1 [1] Let f (X) be a function, and (X1, X2) be a
partition of the input variables, where X1 = (x1, x2, . . . , xs)
and X2 = (xs+1, xs+2, . . . , xn). The decomposition chart for
f is a two-dimensional matrix with 2s columns and 2n−s rows,
where each column and row is labeled by a unique binary as-
signment of values to the variables. Each assignment maps
under f to {0, 1, . . . , k}. The function represented by a column
is a column function and is dependent on X2. Variables in X1

are bound variables, while variables in X2 are free variables.
In the decomposition chart, the column multiplicity, denoted
by μ(f : X1), is the number of different column functions. The
set of bound variables is the bound set.

Example 2.1 Fig. 2.1 shows a decomposition chart of a 4-
variable switching function. X1 = (x1, x2) denotes the bound
variables, and X2 = (x3, x4) denotes the free variables. Since
all the column patterns are different and there are four of them,
the column multiplicity is μ(f : X1) = 4.

Theorem 2.1 [3] For a given function f , let X1 be the bound
variables, let X2 be the free variables, and let μ(f : X1) be
the column multiplicity of the decomposition chart. Then, the

SASIMI 2016 ProceedingsR1-6

- 23 -

TABLE 3.1
Index Generation Function

x1 x2 x3 x4 x5 f
0 0 0 0 0 1
0 1 0 1 0 2
0 1 1 1 0 3
1 1 1 0 0 4
1 0 0 1 1 5
1 0 1 1 1 6
1 1 1 0 1 7

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x2
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x3
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x4

0 1 0 0 0 0 2 0 3 0 0 0 0 0 0 4 0
1 0 0 0 0 0 0 0 0 0 5 0 6 0 0 7 0

x5

Fig. 3.1. Decomposition chart for f .

function f can be represented as f (X1, X2) = g(h(X1), X2), and
is realized with the network shown in Fig. 1.1. The number of
signal lines connecting blocks H and G is r = �log2 μ(f : X1)�,
where H and G realize h and g, respectively.

The logic functions for H and G can be realized by memo-
ries, and the complexities for G and H can be measured by the
number of bits in the memories.

Definition 2.2 The signal lines connecting H and G are called
rails. When the number of rails r is smaller than the number
of input variables in X1, then function has a support-reducing
decomposition [5].

When the function has a support-reducing decomposition, the
total amount of memory can often be reduced by realizing the
logic in Fig. 1.1 [9].

III. Index Generation Functions and Their Properties

Definition 3.1 Consider a set of k different binary vectors of n
bits. These vectors are registered vectors. For each registered
vector, assign a unique integer from 1 to k. A registered vec-
tor table shows, for each registered vector, its index. An index
generation function f produces the corresponding index if the
input matches a registered vector, and produces 0 otherwise. k
is the weight of the index generation function. An index gener-
ation function represents a mapping: f : Bn → {0, 1, 2, . . . , k},
where B = {0, 1}.
Typically, k is much smaller than 2n, the total number of input
combinations.

Example 3.1 Consider the registered vector table shown in
Table 3.1. It shows a 5-variable index generation function f (X)

TABLE 3.2
Truth table for h.

x1 x2 x3 x4 y1 y2 y3

0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 1 0 1
1 0 1 0 0 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 1 0 1 0 0
1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 y1
0 0 1 1 0 0 1 1 y2
0 1 0 1 0 1 0 1 y3

0 0 1 2 3 4 0 0 0
1 0 0 0 0 7 5 6 0

x5

Fig. 3.2. Decomposition chart for g.

with weight 7. Consider the decomposition chart for f shown
in Fig. 3.1. X1 = (x1, x2, x3, x4) denotes the bound variables,
and X2 = (x5) denotes the free variable. Note that the column
multiplicity of this decomposition chart is 7.

Lemma 3.1 Let μ(f : X1) be the column multiplicity of a de-
composition chart of an index generation function f (x1, X2).
Let k be the weight of f , and s be the number of variables in
X1. Then,

μ(f : X1) ≤ min{2s, k + 1}.

Lemma 3.2 Let f be an index generation function with weight
k. Then, there exists a functional decomposition f (X1, X2) =
g(h(X1), X2), where g and h are index generation functions, the
weight of g is k, and the weight of h is at most k.

Example 3.2 Consider the decomposition chart in Fig. 3.1.
Let the function f (X) be decomposed as f (X1, X2) =

g(h(X1), X2), where X1 = (x1, x2, x3, x4), and X2 = (x5). Table
3.2 shows the function h. It can be considered as a 4-variable
index generation function with weight 6. The decomposition
chart for the function g is shown in Fig. 3.2. As shown in this
example, the functions obtained by decomposing the index gen-
eration function f are also index generation functions, and the
weights of f and g are both 7.

- 24 -

Property 3.1 Assume that an index generation function f with
weight k is implemented by the circuit in Fig. 1.1. When the
number of the bound variables is s =

⌈
n+q

2

⌉
, the amount of

memory is minimized, in many cases, where q = �log2(k + 1)�.
(Explanation) Consider the decomposition f (X1, X2) =

g(h(X1), X2). Assume that the column multiplicity μ satisfies
the relation 2q−1 < μ ≤ 2q, then, the LUT for H requires q · 2s

bits. The LUT for G requires q · 2q+(n−s) bits. Thus, the total
size is q · (2s + 2q+n−s). This value takes its minimum when
s = q + n − s. From this, we have s =

⌈
n+q

2

⌉
. �

Theorem 3.1 Consider an n variable index generation func-
tion f with weight k. When k ≤ 2n−4 − 1, f has a support-
reducing decomposition, and its amount of memory is a half of
the single-LUT realization.

In index generation functions, in most applications, the con-
ditions of k ≤ 2n−4 − 4 is satisfied. Thus, we can assume that
index generation functions have support reducing decomposi-
tions. This is a salient property that cannot be found in
ordinary logic functions.

IV. HeuristicMethod to Select Bound Variables

In a functional decomposition, we can often select any s
variables for the bound variables. In this case, the problem is
to select a bound set having a small column multiplicity. There
are
(

n
s

)
ways to select bound sets. In many cases, to find an op-

timum bound set by the exhaustive method is infeasible. In this
section, we show a heuristic method to find a good bound set
using three different measures: column multiplicity, imbalance
measure, and ambiguity measure.

Example 4.1 Consider the index generation function shown in
Table 4.1. Assume that s = 3, i.e., the number of bound vari-
ables is three. When (x1, x2, x3) is the bound set, the column
multiplicity is five. On the other hand, when (y1, y2, y3) is the
set, the column multiplicity is eight. Thus, (x1, x2, x3) produce
a smaller column multiplicity than (y1, y2, y3).

To reduce the column multiplicity, variables with less infor-
mation [4] should be selected for bound variables. Fig. 4.1
shows the decision tree for the function when (x1, x2, . . . , x7) is
used for the bound set. On the other hand, Fig. 4.2 shows the
decision tree for the same function when (y1, y2, y3) is used for
the bound set. To distinguish 7 vectors, the tree in Fig. 4.1 re-
quires 6 variables, while the tree in Fig. 4.2 requires only three
variables. In other words, a variable in {x1, x2, . . . , x7} has less
information than one in {y1, y2, y3}.

To select a good bound set, a measure showing the degree of
imbalance for the tree is introduced.

Definition 4.1 In the registered vector table for a function f ,
let ν(xi, 0) be the number of vectors with xi = 0, and let ν(xi, 1)
be the number of vectors with xi = 1. The imbalance measure
of the function f with respect to the variable xi is

ω(f : xi) = ν(xi, 0)2 + ν(xi, 1)2.

TABLE 4.1
Registered Vector Table

Vector Index
x1 x2 x3 x4 x5 x6 x7 y1 y2 y3

1 0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0 1 0 2
0 0 1 0 0 0 0 1 1 0 3
0 0 0 1 0 0 0 0 0 1 4
0 0 0 0 1 0 0 1 0 1 5
0 0 0 0 0 1 0 0 1 1 6
0 0 0 0 0 0 1 1 1 1 7

�

�

�

�

�

�

�	

�

�

�

�

�

�

�

Fig. 4.1. Unbalanced Decision Tree.

In the variable xi, when the numbers of occurrences of 0’s
and 1’s are the same, ω(f : xi) takes its minimum. The larger
the difference of the occurrences of 0’s and 1’s, the larger the
imbalance measure. Let k be the number of registered vectors.
Then, ν(xi, 0) + ν(xi, 1) = k.

Example 4.2 In Table 4.1, since ν(xi, 0) = 6 and ν(xi, 1) = 1
for i = 1, 2, . . . , 7, we have

ω(f : xi) = ν(xi, 0)2 + ν(xi, 1)2 = 62 + 12 = 37.

However, since ν(y j, 0) = 3 and ν(y j, 1) = 4 for j = 1, 2, 3, we
have

ω(f : y j) = ν(y j, 0)2 + ν(y j, 1)2 = 32 + 42 = 25.

The imbalance measure for f with respect to xi ,(i =
1, 2, . . . , 7) is larger than that for y j, (j = 1, 2, 3). Thus, xi

is more suitable for bound variables than y j.

� � � � � � �	

y3

y2

y1

Fig. 4.2. Balanced Decision Tree.

- 25 -

The imbalance measure is useful for finding a single bound
variable, but not so effective for a set of variables. Thus, we
introduce another measure.

Definition 4.2 Let f (x1, x2, . . . , xn) be an index generation
function with weight | f |. Let X1 be a proper subset of
{x1, x2, . . . , xn}. Assume that X1 be an ordered set. Then, X1

is a partial vector of {x1, x2, . . . , xn}. Suppose that the values
of X1 are fixed at �a. Let N(f , X1, �a) be the number of regis-
tered vectors of f that take non-zero values, when the values
of X1 are set to �a = (a1, a2, . . . , as), ai ∈ {0, 1}. The ambiguity
measure of f with respect to X1 is

AMB(f : X1) = −| f | +
∑

�a∈Bs

N(f , X1, �a)2.

Example 4.3 Consider the index generation function f in
Table 3.1. Assume that the values of (x1, x2, x3) are
changed as (0, 0, 0),(0, 0, 1),(0, 1, 0), (0, 1, 1),(1, 0, 0),(1, 0, 1),
(1, 1, 0),(1, 1, 1), in this order. Then, the values of f change as
follows:

[1], [0], [2], [3], [5], [6], [0], [4, 7].

In this case, the AMB measure with respect to (x1, x2, x3) is

AMB(f : x1, x2, x3)

= −7 + (12 + 02 + 12 + 12 + 12 + 12 + 02 + 22) = 2.

When (x1, x2, x3) = (1, 1, 1), the value of f is ambiguous, since
f can be either 4 or 7.

Next, let the variable set be (x1, x2, x4). Similarly, the values
of f change as follows:

[1], [0], [0], [2, 3], [0], [5, 6], [4, 7], [0].

In this case, the AMB measure with respect to (x1, x2, x4) is

AMB(f : x1, x2, x4)

= −7 + (12 + 02 + 02 + 22 + 02 + 22 + 22 + 02) = 6.

When (x1, x2, x4) = (0, 1, 1), (1, 0, 1) and (1, 1, 0), the values of
f are ambiguous.

Finally, let the variable set be (x3, x4, x5). Similarly, the val-
ues of f change as follows:

[1], [0], [2], [5], [4], [7], [3], [6].

In this case, the AMB measure with respect to (x3, x4, x5) is

AMB(f : x3, x4, x5)

= −7 + (12 + 02 + 12 + 12 + 12 + 12 + 12 + 12) = 0.

Note that f can be represented with only (x3, x4, x5).

By using three measures, we have a heuristic algorithm to
select a bound set that produces a small column multiplicity.
The first bound variable is chosen to maximize the imbalance
measure. Then, other bound variables are selected using the
ambiguity measure AMB(f : X1) and the column multiplicity
μ(f : X1).

TABLE 4.2
Original Table.

x1 x2 x3 x4 x5 x6 x7 x8 Index
0 1 1 0 0 0 0 1 1
0 1 0 1 1 1 1 1 2
1 1 1 1 0 1 0 1 3
0 0 0 1 1 1 1 0 4
0 0 1 1 1 1 0 0 5
0 1 1 1 0 0 1 0 6
0 0 1 0 0 0 1 1 7
1 1 1 1 1 1 1 1 8
1 1 1 0 1 1 1 0 9
1 0 1 0 0 0 0 1 10

52 52 68 52 50 52 52 52

Algorithm 4.1 (Heuristic Method to Select a Bound Set)

1. Let T = {x1, x2, . . . , xn} be the set of the input variables.
Let s ≥ 2 be the number of bound variables. Let k be
the number of registered vectors. Let smax = � n+q

2 � be the
maximum number of bound variables, where q = log2(k+
1). Let Limit be the maximum column multiplicity to find.
Usually, Limit is set to k.

2. For each variable xi, count the number of 0’s and 1’s in
the registered vector table, and compute the imbalance
measure.

3. Let y1 be the variable with the largest imbalance measure.
Let X1 ← (y1), T ← T − y1. Let s ← 1.

4. While μ(f : X1) < Limit and s ≤ smax, find the variable
y j in T that maximize the value of AMB(f : X1, y j) and
satisfy the condition μ(f : X1, y j) ≤ Limit. Let X1 ←
(X1, y j), T ← T − y j. Let s ← s + 1

5. X1 is the bound set. Stop.

As will be shown in the experimental results, Algorithm 4.1
produces fairly good solutions in a short time.

Example 4.4 Consider the index generation function shown
in Table 4.2. The maximum number of the bound variables is

⌈n + log2(k + 1)
2

⌉
=
⌈8 + log2 11

2

⌉
= 6.

Find a bound set having the column multiplicity at most
Limit = 8. The last row of Table 4.2 shows the imbalance
measure for each variable. Select a variable with the largest
imbalance measure. In this case, we select x3, since 68 is the
maximum. Thus, X1 = (x3) and s = 1. With this variable,
the set of registered vectors are partitioned into two. Thus, the
column multiplicity is μ(f : X1) = 2.

Next, select the second bound variable. Since AMB(f :
x3, x5) = 38 gives the maximum value, x5 is selected for the
second bound variable. Thus, X1 = (x3, x5) and s = 2. In this
case, the column multiplicity is μ(f : X1) = 3 + 1 = 4. Since
s ≤ 6 and μ ≤ 8, we try to add more bound variable.

- 26 -

TABLE 4.3
Distribution of ColumnMultiplicity.

μ # of bound sets
8 2
9 9

10 27
11 18

Total 56

Then, we select the third bound variable. Since AMB(f :
x3, x5, x6) = 30 gives the maximum value, x6 is selected as the
third bound variable. Thus, X1 = (x3, x5, x6) and s = 3. In this
case, the column multiplicity is μ(f : X1) = 4 + 1 = 5. Since
s ≤ 6 and μ ≤ 8, we try to add more bound variable.

Then, we select the fourth bound variable. Since AMB(f :
x3, x5, x6, x1) = 20 gives the maximum value, x1 is selected as
the fourth bound variable. Thus, X1 = (x3, x5, x6, x1) and s =
4. In this case, the column multiplicity is μ(f : X1) = 6+1 = 7.
Since s ≤ 6 and μ ≤ 8, we try to add more bound variable.

Then, we select the fifth bound variable. Since AMB(f :
x3, x5, x6, x1, x7) = 16 gives the maximum value, x7 is selected
as the fifth bound variable. Thus, X1 = (x3, x5, x6, x1, x7) and
s = 5. In this case, the column multiplicity is μ(f : X1) =
7 + 1 = 8. Since s ≤ 6 and μ ≤ 8, we try to add more bound
variable.

Then, we try to add the sixth bound variable. However, since
no variable y in T satisfies the condition μ(f : X1, y) ≤ 8,
we terminate the procedure. The selected bound set is X1 =

(x3, x5, x6, x1, x7).
For this function, we can obtain exact solutions by an ex-

haustive search. Since the number of bound variables is five,
there are

(
8
5

)
= 56 ways to select bound sets. Table 4.3 shows

the results of the exhaustive search. The first column shows the
multiplicity μ, while the second column shows the number of
bound sets having μ. Only two bound sets produce the min-
imum column multiplicity μ = 8. Algorithm 4.1 obtained a
bound set having the minimum column multiplicity.

V. Experimental Results

We implemented Algorithm 4.1 for a Windows PC using 2.6
GHz Core i5 and 8 Giga byte of memory, on the Windows 7
(64-bit) operating system.

A. IP Address Tables

We collected distinct IP addresses of computers that ac-
cessed our web site over a period of one month. We consid-
ered four lists of different values of k. The original numbers
of variables are 32 for all the functions. Table 5.1 shows the
results. The first column shows the name of the function. The
second column shows the number of the variables: n. The third
column shows the number of registered vectors: k. The mid-
dle three columns shows the results obtained by Algorithm 4.1.

TABLE 5.1
Decomposition of IP Address Table.

Alg 4.1 Monte
Name n k s μ r Min Ave Max

I p1670 32 1670 22 1311 11 1381 1571.8 1671
I p3288 32 3288 22 2689 12 2799 3136.8 3289
I p4591 32 4591 23 3901 12 4048 4444.8 4591
I p7903 32 7903 23 5285 13 5523 6614.1 7902

TABLE 5.2
Decomposition of EnglishWord Lists

Alg 4.1 Monte
Name n k s μ r Min Ave Max

Dic1730 40 1730 26 1058 11 1161 1562.3 1701
Dic3366 40 3366 26 1497 11 1778 2779.7 3271
Dic4705 40 4705 27 2947 12 4077 4152.5 4586

The fourth column shows the number of the bound variables: s.
The fifth column shows the column multiplicity: μ. The sixth
column shows the number of rails : r. The last three columns
show the column multiplicities obtained by the Monte Carlo
method [12] using 10000 random bound sets 1. Min, Ave, and
Max show the minimum, the average, and the maximum of
the column multiplicities, respectively. As shown in Table 5.1,
Algorithm 4.1 obtained better solutions than the Monte Carlo
method. Note that for each function, the number of rails r is
smaller than the number of bound variables s. Thus, the func-
tions have efficient support-reducing decompositions.

B. Lists of English Words

To compress English text, we can use a list of frequently
used words. We made three lists of English words: Dic1730,
Dic3366, and Dic4705. The maximum number of characters in
the word lists is 13, but we only consider the first 8 characters.
For English words consisting of fewer than 8 characters, we
append blanks to make the length of words 8. We represent
each alphabetic character by 5 bits. So, in the lists, all the
words are represented by 40 bits. The numbers of words in the
lists are 1730, 3366, and 4705, respectively. Within each word
list, each English word has a unique index, an integer from 1 to
k, where k = 1730 or 3360 or 4705. Table 5.2 shows the results
of decomposition. For Dic1730 and Dic3366, r < �log2(k+1)�,
i.e., the column multiplicities were greatly reduced.

Again, these functions have efficient support-reducing de-
compositions.

C. Lists of English Words Having the Same Word Length

Five additional lists of English words were derived in a sim-
ilar way. However, in this case, each list consist of words with

1To the best of the authors knowledge, the serial decomposition of index
generation functions was first considered in [12]. Thus, [12] only shows results
for index generation functions.

- 27 -

TABLE 5.3
Decomposition of EnglishWord Lists

Alg 4.1 Monte
Name n k s μ r Min Ave Max
Char4 20 768 15 378 9 450 635.1 729
Char5 25 820 18 644 10 625 760.4 808
Char6 30 809 20 739 10 677 782.3 805
Char7 35 701 23 619 10 644 691.7 703
Char8 40 548 25 496 9 517 543.5 549

the same length. Thus, the different list have different num-
ber of characters (variables). Also, no blank character(s) are
contained in the lists.

Table 5.3 shows the results. For example, Char4 shows
the list of English words consisting of exactly four characters.
Thus, it has n = 5 × 4 = 20 input variables. When s = 16,
the number of ways to select bound variables is

(
20
15

)
= 15504,

which is small enough to do an exhaustive search to find the
optimum decomposition. The exact minimum is μ = 378, and
Algorithm 4.1 obtained this solution. For Char5 and Char6,
the Monte Carlo method obtained better solutions than Algo-
rithm 4.1. However, the solutions obtained by Algorithm 4.1
still produce circuits with the minimum rails. Again, these
functions have efficient support-reducing decompositions.

D. Random Functions

We generated nine random index generation functions that
have the same value of (n, k), as the previous experiments. Ta-
ble 5.4 shows the results.

Unlike non-random functions, column multiplicities of ran-
dom functions were hard to reduce, and μ 	 k + 1. In fact, for
all the random functions, r = �log2(k + 1)�. Thus, Property 3.1
holds for random functions. The differences of Min and Max
values are smaller than the corresponding non-random func-
tions having the same values of (n, k). Again, in the case of
random functions, we obtained support-reducing decomposi-
tions.

TABLE 5.4
Decomposition of Random Index Generation Functions

Alg 4.1 Monte
Name n k s μ r Min Ave Max

32i1670k 32 1670 22 1669 11 1667 1670.7 1670
32i3288k 32 3288 22 3284 12 3283 3287.8 3289
32i4591k 32 4591 23 4587 13 4584 4590.8 4592
32i7903k 32 7903 23 7889 13 7890 7899.9 7904
20i0768k 20 768 15 752 10 745 759.3 768
25i0820k 25 820 18 817 10 813 819.6 821
30i0809k 30 809 20 808 10 806 809.7 810
35i0701k 35 701 23 699 10 700 702.0 742
40i0548k 40 548 25 548 10 548 549.0 549

E. Computation Time

The most time-consuming function was IP7903, which took
283 ms and 28.0 second by Algorithm 4.1 and the Monte Carlo
method, respectively.

VI. Conclusion and Comments

In this paper, we present a heuristic method to find a decom-
position of index generation functions. Three different mea-
sures are introduced to find a set of bound variables. Com-
parison with the Monte Carlo method shows that our heuristic
produces good solutions in a short time. Also, we showed that
index generation functions have support-reducing decomposi-
tions.

This algorithm is also useful for multiple-output n-variable
logic functions where k, the number of input combinations that
produce non-zero outputs, satisfies the condition k
 2n.

Acknowledgments

This research is partly supported by the Japan Society for
the Promotion of Science (JSPS) Grant in Aid for Scientific
Research.

References

[1] R. L. Ashenhurst, “The decomposition of switching functions,”
Inter. Symp. on the Theory of Switching, pp. 74-116, April 1957.

[2] V. Bertacco and M. Damiani, “The disjunctive decomposition of
logic functions,”ICCAD-97, pp. 78-82, Nov. 1997.

[3] H. A. Curtis, A New Approach to the Design of Switching Cir-
cuits, D. Van Nostrand Co., Princeton, NJ, 1962.

[4] S. Ganapathy and V. Rajaraman, “Information theory applied to
the conversion of decision table to computer programs,” Commu-
nications of the ACM,Vol. 16 Issue 9, Sept. 1973, pp. 532-539.

[5] V. Kravets and K. Sakallah, “Constructive library-aware synthe-
sis using symmetries,”Proc. DATE-2000, pp. 208-213.

[6] Y. Matsunaga, “An exact and efficient algorithm for disjunctive
decomposition,”SASIMI’98, pp. 44-50, Oct. 1998.

[7] T. Sasao, “FPGA design by generalized functional decomposi-
tion,”In Logic Synthesis and Optimization, Sasao ed., Kluwer
Academic Publisher, pp. 233-258, 1993.

[8] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[9] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

[10] T. Sasao, “Index generation functions: Tutorial,”Journal of
Multiple-Valued Logic and Soft Computing, Vol. 23, No. 3-4,
pp. 235-263, 2014.

[11] T. Sasao, “A realization of index generation functions using mul-
tiple IGUs,” Inter. Symp. on Multiple-Valued Logic, (ISMVL-
2016), Sapporo, Japan, May 17-19, 2016. pp. 113-116.

[12] T. Sasao and J. T. Butler, “Decomposition of index generation
functions using a Monte Carlo method,” Inter. Symp. on Logic
and Synthesis, (IWLS-2016), Austin, TX, U.S.A, June 10-11,
2016.

- 28 -

