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Abstract

Significant research has been done on bent functions, yet
researchers in switching theory have paid little attention
to this important topic. The goal of this paper to provide
a concise exposition. Bent functions are the most nonlin-
ear functions among n-variable switching functions, and
are useful in cryptographic applications. This paper dis-
cusses three other kinds of cyptographic properties, strict
avalanche criterion, propation criterion, and correlation
immunity. We discuss known properties, as well as open
questions. It assumes the reader is familiar with switching
circuit theory. Familiarity with Reed-Muller expansions is
helpful, but not essential.

1 Introduction

One approach to encoding a plaintext message into
cyphertext is to use one 7 bit key for each 7 bit ASCII char-
acter and to apply the bitwise exclusive OR to each letter.
In this way, each letter of the plaintext message is converted
to a different letter in the cyphertext. Decryption is sim-
ple. Just apply the same key to the cyphertext. Since the
second application of the key “annihilates” the first appli-
cation, we are left with the plaintext letter. The problem
with this is that the distribution of probabilities of the let-
ters in the plaintext also occurs in the cyphertext. This can
be exploited by someone listening to the cyphertext. For
example, the most frequent letters in the cyphertext may be
assumed to be “e” or “t” and the least frequent letters may
be assumed to be “z” or “q”.

To avoid decryption by an outsider, one seeks a key
stream that is random. However, high-speed highly parallel
computers can be used to exploit variations from random-
ness in the key stream. For example, in a “linear” attack, a
key stream is tried that is generated from a linear Boolean
function. If the actual key stream used in encryption is close

to linear, there will be errors, but such an attack may be ul-
timately successful. Against such attacks, one seeks a func-
tion that is as far from linear as possible. These are the bent
functions.

In the next section, we introduce bent functions and dis-
cuss their properties. In the third section, we discuss sym-
metric bent functions. Then, in the next three sections,
we discuss three classes of functions that have other cryp-
tographic properties. These are the strict avalanche crite-
rion, the propagation criterion, and the correlation immu-
nity. Then, we provide concluding remarks.

2 Properties of Bent Functions

The term bent function describes functions that are the
“most nonlinear” of the n-variable functions. It was intro-
duced in 1976 by Rothaus [16]. Presumably, “bent” was
chosen since it is an antonym of “linear”. Rothaus’ semi-
nal work [16] was actually completed ten years earlier, but
remained under restricted circulation until 1976. Rothaus
died in 2003, six days before he was scheduled to retire
from the Department Mathematics at Cornell University.
Recently, his work was chosen for inclusion in Knuth’s
long-anticipated “The Art of Computer Programming, Vol-
ume 4” [9].

Definition 2.1 A linear function is the constant 0 function
or the Exclusive OR of one or more variables.

Example 2.1 There are eight 3-variable linear functions,
0, x1, x2, x3, x1⊕x2, x1⊕x3, x2⊕x3, and x1⊕x2⊕x3.
Only one of the eight functions actually depends on all three
variables. However, because it simplifies the counting of
functions, we will view all eight functions as functions of 3
variables. (End of Example)



Definition 2.2 An affine function is a linear function or
the complement of a linear function∗.

Example 2.2 There are 16 different 3-variable affine func-
tions, 0, x1, x2, x3, x1⊕x2, x1⊕x3, x2⊕x3, x1⊕x2⊕x3, 1,
x1⊕1, x2⊕1, x3⊕1, x1 ⊕ x2⊕1, x1 ⊕ x3⊕1, x2 ⊕ x3⊕1,
x1 ⊕ x2 ⊕ x3 ⊕ 1. (End of Example)

Affine functions are one extreme type of switching function.
We are interested in the extent to which a switching function
departs from affine functions.

Definition 2.3 The nonlinearity NLf of a function f
is the minimum number of truth table entries that must be
changed in order to convert f to an affine function.

The nonlinearity of a function f is the minimum Ham-
ming distance between the truth tables of f and an affine
function†.

Example 2.3 Among 3-variable functions, the function
f = x1x2x3, which is not affine, has nonlinearity 1, since
converting the single 1 in its truth table to a 0 creates the
constant 0 function, which is affine. (End of Example)

Definition 2.4 Let f be a Boolean function on n-variables,
where n is even. f is a bent function if its nonlinearity
is as large as possible (namely 2n−1 − 2

n
2−1) ‡.

Bent functions have the property that they are a max-
imum distance from all affine functions. For example,
f = x1x2⊕x3x4 is a known bent function on 4 variables; it
is a distance 6 from 16 of the 32 affine functions on 4 vari-
ables and a distance 10 from the other 16 affine functions.
That is, at least six entries of the truth table of f must be
changed to convert it into an affine function. Further, there
are 16 affine functions that can be achieved by changing six
entries in the truth table of f . Since there are no 4-variable
functions whose minimal distance to an affine function is 7
or larger, it follows that f = x1x2 ⊕ x3x4 is bent.

Bent functions are important because of a cryptanaly-
sis technique in which nonlinear functions used in the en-
cryption process are approximated by linear functions. That
∗In papers on switching theory, the term “linear” is often used to de-

scribe an affine function.
†We note an inconsistency in the terminology. The term “nonaffinity”

would be a more consistent alternative to “nonlinearity”. However, we
have not observed any author who has used “nonaffinity”.
‡Rothaus [16] originally defined bent functions to be switching func-

tions whose Walsh transform contains only the values±2n/2, which is an
integer only when n is even. He later showed that bent functions achieved
the largest nonlinearity, and bent functions are often defined in terms of
this characteristic. No switching function with odd n satifies Rothaus’
definition. The term “semi-bent” is often applied to switching functions
whose Walsh transform contains only the values {0,±2(n+1)/2}, when
n is odd. For example, the majority function on 3-variables, with a reduced
truth table of (0, 0, 1, 1), has a Walsh transform of (0, 4, 4, 0, 4, 0, 0,−4).
It is a semi-bent function.

is, when the encryption is linear, decryption is straightfor-
ward. When the encryption is “slightly nonlinear”, then a
linear approximation can be used, with an understanding
that decryption is erroneous but potentially correctable. In-
deed, Matsui [12, 13] proposes a linear attack of the Data
Encryption Standard (DES). Bent functions are valued be-
cause they are the most difficult to approximate by linear
functions.

Table 1 shows all 2-variable functions and their nonlin-
earity values. The leftmost column shows the four assign-
ments of values to two variables, and the next 16 columns
show the truth tables of the 16 different 2-variable func-
tions. The last row shows the nonlinearity NL value. There
are 2× 22 = 8 functions that are affine, and have a nonlin-
earity value of 0. For all of the remaining functions, only
one change in a truth table value creates an affine function.
For example, f14 = x1x2 ⊕ 1 has three 1’s, and changing
any one of them to 0 creates an affine function. Therefore,
for 2-variables, there exist eight bent functions.

Fig. 1 shows the distribution of nonlinearity values for all
65,536 functions on 4-variables. For example, Fig. 1 shows
that 32, 512, 3840, and 17920 4-variable functions have
a nonlinearity of 0, 1, 2, and 3, respectively. We expect
32 functions to have a nonlinearity of 0 because that is the
number of affine 4-variable functions. The number of func-
tions with nonlinearity 1 is 512. As it turns out, 512 is an
upper bound on the number of functions with that nonlinear-
ity. That is, for each 4-variable function with nonlinearity 0,
there can be no more than 16 functions that are a Hamming
distance 1 from it, for a total of 32× 16 = 512 functions. It
must be that, among the functions with nonlinearity 1, none
are a Hamming distance 1 away from two or more affine
functions.

A similar statement is true of 4-variable functions with
nonlinearity 2 and 3. If all such functions are unique, then
there are

(
16
2

)
32 = 3, 840 and

(
16
3

)
32 = 17, 920 functions

respectively. As can be seen from Fig. 1, there are 3,840 and
17,920 functions with nonlinearity 2 and 3, respectively.

It follows that all functions with nonlinearities 0, 1, 2,
and 3 are a minimum distance from exactly one affine func-
tion. For functions with nonlinearity 4 or more, the same
statement is not true; for such functions there is more than
one affine function for which the minimum distance exists.

Fig. 1 shows that most 4-variable functions have a non-
linearity value near the middle, around 3, 4, and 5. By com-
parison, functions with extreme nonlinearity values, 0 and
6, are rare. Indeed, the fraction of all n-variable affine func-
tions approaches 0 as n increases. Specifically, the fraction
of functions that are affine, 2n+1/22n

, rapidly approaches 0
as n →∞. The extreme values are important. The 32 func-
tions with nonlinearity 0 are the affine functions. There are
896 functions with nonlinearity 6; these are the bent func-
tions. The exact number of bent functions is known only



Table 1. All 2-variable functions and their nonlinearity, NL.
x1x2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

NLf 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0
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Figure 1. Distribution of All 4-Variables to
Nonlinearity

for small values of n. That is, an exact number of bent
functions is known only for n ≤ 8 [1, 10, 14]. The num-
ber of n-variable bent functions, for general n, is an open
question that has resulted in a number of studies on bounds
[1, 16]. Table 2 shows the number of bent functions for
2 ≤ n ≤ 8. Note that, while the number of bent functions
increases rapidly with increasing n, the proportion of func-
tions that are bent decreases rapidly.

Table 2. The number of n-variable bent func-
tions for 2 ≤ n ≤ 8.

n # of Bent Fraction That
Functions Are Bent

2 8 = 23 2−1

4 896 = 29.8 2−6.2

6 5,425,430,528 ≈ 232.3 2−31.7

8 ≈ 2106.3 2−149.7

Definition 2.5 The weight |f | of a function f is the num-
ber of 1’s in the truth table of f .

Fig. 2 shows the distribution of 4-variable functions to
the weight of the function and its nonlinearity. Specifically,
a function contributes 1 to the count of functions that have
a specified weight and a specified nonlinearity, NLf . The
vertical axis shows the log of the number of functions (to
allow the display of both small and large values). There are
seven graphs, one for each value of NLf = 0, 1, 2, 3, 4, 5,
and 6. For example, the top graph shows the distribution of
affine functions with respect to weight. In this case, there
is one function with weight 0 (the constant 0 function), 30
functions with weight 8, and one function with weight 16
(the constant 1 function). Interestingly, the distribution of
896 bent functions, as shown in the last graph, is simple.
Specifically, 448 have weight 6 and 448 have weight 10. In
general,

Theorem 2.1 The weight of an n-variable bent function is
2n−1 ± 2

n
2−1.

Note that the bar chart in Fig. 2 is symmetric with respect
to the center line of weight 8. This is because f and its
complement f̄ = f ⊕ 1 are both bent.

We observed in Fig. 1 that all functions with nonlinearity
1 were a Hamming distance 1 from a unique function with
nonlinearity 0. This can be seen in Fig. 2. For example,
for the trivial affine function whose truth table is all 0’s,
there are 16 functions with NLf = 1 that with weight 1.
Similarly, for the trivial affine function whose truth table
is all 1’s, there are 16 functions with NLf = 1 that have
weight 15. For each of the 30 affine functions with weight
8, there are 16 functions that are a distance 1 away. This is
shown by two bars each of height 30 × 16/2 = 240, one
with weight 7 and the other with weight 9.

Definition 2.6 Switching function f is NPN equivalent
to h iff f can be obtained from h by a complementation of
variables (N), a permutation of variables (P), and a com-
plementation of the function (N).

The following four results from Cusick and Stanica [2]
relate bent functions to the NPN equivalence classes.
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log of the number of functions is plotted
along the vertical axis).

Lemma 2.1 f is a bent function iff 1⊕f is a bent function.

Lemma 2.2 f(x1, x2, . . . , xi, . . . , xn) is a bent function iff
f(x1, x2, . . . , x̄i, . . . , xn) is a bent function.

Lemma 2.3 f(x1, x2, . . . , xi, . . . , xj , . . . , xn) is a bent
function iff f(x1, x2, . . . , xj , . . . , xi, . . . , xn) is a bent
function.

From Lemmas 2.1, 2.2, and 2.3, we have

Theorem 2.2 f is a bent function iff any function in the
same NPN equivalence class as f is a bent function.

Theorem 2.2 states that either all functions in an NPN
equivalence class are bent or all are not bent. It follows
that one way to enumerate bent functions is to enumerate
all bent NPN equivalence classes.

Another equivalence class exists.

Definition 2.7 Switching function f is A equivalent to
h iff h = f ⊕ g, where g is an affine function. f and h are
said to belong to the same A-class.

Lemma 2.4 f is a bent function iff f ⊕ gaffine is a bent
function, where gaffine is an affine function.

Lemma 2.4 states that functions in the same A-class are
either all bent or all not bent.

Example 2.4 From Fig. 2, there are 896 bent functions on
four variables. These are divided into equivalence classes
with respect to the affine functions. Since there are 32 affine

functions, there are 896/32 = 28 equivalence classes. Note
that, unlike NPN equivalence classes, these equivalence
classes have the same number of elements, 2n+1, as the
number of affine functions. (End of Example)

Note that Lemma 2.4 can be used to prove Lemma 2.1.
That is, if f is a bent function, from Lemma 2.4, then so is
f ⊕ 1 = f . This proves Lemma 2.1.

Definition 2.8 The PPRM (positive polarity Reed
−Muller form) of a function f is

f = a0 ⊕ a1x1 ⊕ a2x2 ⊕ . . .⊕ anxn ⊕ a1,2x1x2

⊕a1,3x1x3 ⊕ . . .⊕ an−1,nxn−1xn ⊕ . . .

⊕a1,2,...,anx1x2 . . . xn.

The PPRM of a function f is also called the
algebraic normal form (ANF) of f (e.g. [2]).

Definition 2.9 The degree of a product term in a
PPRM is the number of variables in that term. The
degree of a function f is the number of variables in a
term with maximum degree in its PPRM.

Lemma 2.4 implies that, given the PPRM of any bent func-
tion f , another bent function is realized by simply changing
the coefficients of the constant or linear terms in the PPRM
of f . One can take as the representative of the A-class of a
bent function, the function whose constant and linear terms
are all absent.

In the case of all 4-variable bent functions, it is known
that the highest degree is 2. That is, in 4-variable bent func-
tions there are no terms in the PPRM with degree 3 or 4.
Further, at least one term of degree 2 is needed; otherwise,
the function is affine. However, if a function is bent, per-
muting variables yields a bent function. It follows, for ex-
ample, that, if a bent function has two quadratic terms, say
x1x2 ⊕ x3x4, then there is a bent function with quadratic
terms x1x3⊕x2x4 and another bent function with quadratic
terms x1x4 ⊕ x2x3.

Fig. 3 shows the ways pairs of variables can be arranged
in 4-variable functions. There are 11 ways pairs can occur,
including the case where there are no pairs (shown at the
very top). For each of these ways, there is a graph in Fig. 3.

In all, there are 26 = 64 ways possible choices for A-
classes for 4-variable bent functions. However, from a pre-
vious discussion, we know that there are actually only 28
A-classes. The circles in Fig. 3 show the sets of pairs that
actually occur in 4-variable bent functions. There are four
sets involving 2, 3, 4, and 6 pairs of variables. One of the
sets in Fig. 3 has exactly two pairs of variables such that no
variable appears in more than one pair (i.e. the pairs are dis-
joint). The“3” shown adjacent to the arrangement labeled
“Disjoint quadratic functions” means that there are three
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ables in 4-variable functions (Bent functions
are circled).

functions. These are f = x1x2 ⊕ x3x4, f = x1x3 ⊕ x2x4,
and f = x1x4 ⊕ x2x3. This function has special signifi-
cance.

Definition 2.10 The disjoint quadratic function [23]
is

f = x1x2 ⊕ x3x4 ⊕ . . .⊕ xn−1xn, (1)

where n is an even positive integer.

This is similar to the Achilles’ heel function, which has
been defined using ∨ instead of⊕ [18, 19]. It has often been
offered as an example of how important variable order is in
the realization of a function by a binary decision diagram
(BDD). The disjoint quadratic function was among the first
forms known to be bent [16]. It is interesting that all bent
functions on 4 variables are either symmetric, (consisting of
the exclusive OR of all pairs) or symmetric with two, three,
or four pairs removed. Specifically, let g be the set of sym-
metric bent functions. Then, the set of all 4-variable bent
functions consists of

1. g,
2. g ⊕ xixj ⊕ xjxk,
3. g ⊕ xixj ⊕ xjxk ⊕ xkxl, or
4. g ⊕ xixj ⊕ xjxk ⊕ xkxl ⊕ xlxi,

as well as functions derived from these by exclusive ORing
affine functions. Here, ⊕ serves to remove a term.

The observation that 4-variable bent functions have de-
gree at most 2 can be extended. From Rothaus [16], the
following surprising result is known.

Theorem 2.3 For n > 2, an n-variable bent function has
degree at most n

2 .

For n = 2, the degree of a bent function is 2. This represents
a strong confinement on where a search for bent functions
may be restricted. Rothaus [16] further showed that there
exist bent functions on every degree d, where 2 ≤ d ≤ n

2 .
There is significant interest in homogeneous bent functions
[15, 22, 25].

Definition 2.11 A homogeneous function is a function
whose PPRM consists of product terms all with the same
degree.

Example 2.5 The disjoint quadratic function, f = x1x2 ⊕
x3x4 ⊕ . . .⊕ xn−1xn, is homogeneous. (End of Example)

Xia, Seberry, Pieprzyk, and Charnes [25] showed the fol-
lowing.

Theorem 2.4 When n > 6, no n-variable homogeneous
bent function has degree n

2 .

Therefore, from [16] and [25], for n > 6, degree-n
2 n-

variable bent functions exist, but none are homogeneous.
The 4-variable disjoint quadratic function is an example of
a 4-variable homogeneous bent function (of degree 2). Xia,
Seberry, and Pieprzyk [15] show the existence of homoge-
neous 6-variable bent functions of degree 3. Thus, Theorem
2.4 does not hold for n ≤ 6.

3 Properties of Symmetric Bent Functions

Definition 3.12 A symmetric function is unchanged by
any permutation of its variables.

Regarding symmetric functions, in 1994, Savicky [20]
showed the following.

Lemma 3.5 There are exactly four n-variable symmetric
bent functions on n > 2 variables. All have degree 2.

Next, we consider a symmetric function, S(n,m), that was
used to analyze the complexity of adders.

Definition 3.13 [17], p. 310

S(n,m) =
∑
⊕

i1<i2<...<im

xi1xi2 . . . xim . (2)
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Example 3.6 For n = 4, we have

S(4, 4) = x1x2x3x4,

S(4, 3) = x1x2x3 ⊕ x1x2x4 ⊕ x1x3x4 ⊕ x2x3x4,

S(4, 2) = x1x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4,

S(4, 1) = x1 ⊕ x2 ⊕ x3 ⊕ x4,

S(4, 0) = 1

A 4-variable symmetric bent functions has the form

f = S(4, 2)⊕ c1S(4, 1)⊕ c0S(4, 0),

where c0, c1 ∈ {0, 1}. Since there are four ways to choose
c1 and c0, there are four symmetric functions on 4 variables.

(End of Example)

However, this suggests a general result. That is, Savicky’s
[20] result can be stated more precisely, as follows.

Lemma 3.6 There are exactly four n-variable symmetric
bent functions on n > 2 variables, as follows.

f = S(n, 2)⊕ c1S(n, 1)⊕ c0S(n, 0), (3)

where c0, c1 ∈ {0, 1}. Fig. 4 shows the distribution of
4-variable symmetric functions according to nonlinearity.
There is symmetry about nonlinearity 3. For example, four
symmetric functions have nonlinearity 0 (0,1,x1⊕x2⊕x3⊕
x4, and x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ 1 and 4 have nonlinearity 6
(and are bent).

4 The Strict Avalanche Criterion

Webster and Tavares [24] introduced the following con-
cept.

Definition 4.14 A function f satisfies the
strict avalanche criterion (SAC) iff complement-
ing any single variable complements exactly half of the
function values.

Definition 4.15 The Boolean difference of a function f
with respect to variable xi is df

dxi
= f(|xi = 0) ⊕ f(|xi =

1).

Definition 4.16 An n-variable function f is balanced iff
its weight is 2n−1.

That is, a function is balanced iff its function value has the
same number of 1’s as 0’s.

Lemma 4.7 An n-variable function f satisfies SAC iff
| df
dxi
| = 2n−1 for all xi.

That is, an n-variable function f satisfies SAC iff df
dxi

is
balanced for all xi.

Example 4.7 Consider the 4-variable disjoint quadratic
function f = x1x2 ⊕ x3x4. We have

df

dx1
= x2,

df

dx2
= x1,

df

dx3
= x4, and

df

dx4
= x3. (4)

Since each Boolean difference is simply xi, each is bal-
anced, and the 4-variable disjoint quadratic function sat-
isfies SAC. It is known that every bent function satisfies SAC
[5]. (End of Example)

For some functions, complementing one variable
changes a few output values. For example, for the AND
function, complementing one variable, say x1, changes just
two output values, those for x1x2 . . . xn = 01 . . . 1 and
11 . . . 1 or 1

2n−1 of the output values. For other func-
tions, complementing x1 changes many output values; for
x1 + x2x3 . . . xn, for example, complementing x1 changes
all but two output values or 1 − 1

2n−1 of the output values.
The criterion “avalanche” suggests a small change, such as
complementing one variable, yields a much larger change
in the output. However, when this is applied to a crypto-
graphic application, the need to achieve maximum confu-
sion suggests that there should be a balance between what is
changed and what is not (i.e. one-half of the output values
are changed). This corresponds to the descriptor “strict”.
This descriptor is accurate for another reason; the number of
functions that satisfy the strict avalanche criterion is small.

Forré[4] introduced the following idea.

Definition 4.17 An n-variable function f satisfies
SAC(k) iff, for any assignment of values to any k of the
n variables, the resulting function satisfies SAC.

Note that SAC(0) is the same as SAC.
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Variable Functions to SAC(k)

Example 4.8 The 4-variable disjoint quadratic function
f = x1x2 ⊕ x3x4 satisfies SAC(0), as shown in Example
4.7, but not SAC(1). For example, if x1 = 0, then comple-
menting x2 yields no change in the function values, while
if x1 = 1, then complementing x2 changes eight function
values. (End of Example)

Figure 5 shows a histogram of the number of functions
according to the k for which a function satisfies SAC(k),
for n-variable functions, where 2 ≤ n ≤ 4. The functions
that satisfy SAC (= SAC(0)) are so labeled. A function
is counted towards the largest k for which it is SAC(k).
For example, although sixty-four 3-variable functions sat-
isfy SAC(0), only 48 are shown because 16 also satisfy
SAC(k) for k > 0. Note that the majority of functions do
not satisfy SAC(k) for any k ≥ 0.

5 The Propagation Criterion

A concept closely related to the strong avalanche crite-
rion is the propagation criterion.

Definition 5.18 An n-variable function f satisfies the
propagation criterion (PC(k)) iff complementing any
k or fewer of the n variables complements exactly half of the
function values.

Note that a function satisfies PC(1) iff it satisfies SAC(0).
Indeed, the propagation criterion is a generalization of
SAC(0), just as SAC(k) is a generalization of SAC(0).
Fig. 6 shows the distribution of functions to the propagation
criterion for up to n = 4 variables. In this figure, a function
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Figure 6. Distribution of All 2-,3-, and 4-
Variables to the Propagation Criterion

contributes to only one k, the maximum k for which it satis-
fies PC(k). For example, although 64 3-variable functions
satisfy PC(1), 0 are shown because all satisfy PC(k) for
k > 1. It can be seen that for n = 2 and n = 4, all functions
that satisfy PC(1) also satisfies PC(k) for k > 1.

6 Correlation Immunity

Another characteristic of Boolean functions that is im-
portant in cryptographic applications is correlation immu-
nity. This describes the extent to which the variable values
can be guessed given the function value. An example of
a function that has low correlation immunity is the AND
function on n > 1 variables. For example, if this func-
tion’s output value is 1, then the input variable values are
x1x2 . . . xn = 11 . . . 1 with probability 100%. Because
of this, the AND function is not a good choice for cryp-
tographic applications.

Interest in correlation immunity developed because
Siegenthaler [21] in 1984 showed how an attack can be ef-
fectively applied to encryption systems using functions with
low correlation immunity.

Definition 6.19 An n-variable function f has
correlation immunity k iff, for every fixed set S
of k variables, 1 ≤ k ≤ n, given the value of f , the
probability that S takes on any of its 2k assignments of
values to the k variables is 1

2k . If an n-variable function
has correlation immunity k and is balanced, then it has
resiliency of order k.

We expect that the more variable values we know, the
greater the chance we know the function value. If we know



all values, then we certainly know the function value, since
we can examine its truth table. However, we might ask, if
we know n−1 of the variable values, do we know the func-
tion value? If the function depends on a variable xi, then
there is an assignment of values to the variables besides xi

such that the function changes if xi changes. Thus, the an-
swer is no. Considering the opposite extreme, we might
ask: Does there exist a function such that, for every assign-
ment to every set of n − 1 variables, we will not be able
to determine the function’s value? If this is true, then the
function has correlation immunity n− 1.

An alternative definition of the correlation immunity is
as follows.

Definition 6.20 An n-variable function f has
correlation immunity k iff, for every fixed set S
of k variables, 1 ≤ k ≤ n, and for every assignment of
values to the variables in S, the weights of all subfunctions
are the same.

Now consider several examples.

Definition 6.21 The barbell function fB is
x̄1x̄2 . . . x̄n ⊕ x1x2 . . . xn.

Definition 6.22 A threshold function fT is 1 iff the
weighted sum

∑n
i=1 wixi exceeds or equals T, where xi is

viewed as an integer equal to its logic value and wi and T
are real numbers.

Example 6.9 It follows that the n-variable AND function
has correlation immunity 0 for n ≥ 1. At the other extreme,
the n-variable Exclusive OR function has correlation im-
munity n − 1, for n ≥ 2. This answers the question posed
above. Indeed, there are two functions with correlation im-
munity n− 1, the other being the complement of the exclu-
sive OR function. There only two functions with correla-
tion immunity greater than that of the two parity functions.
These are the constant 0 and 1 functions with correlation
immunity n. Note that a function with an odd number of 1’s
has correlation immunity 0.

The barbell function x̄1x̄2 . . . x̄n ⊕ x1x2 . . . xn has cor-
relation immunity 1 for n ≥ 1.

Any threshold function on n > 1 variables has corre-
lation immunity 0, because the probability the function is
1 is different depending on whether or not the value of a
variable moves the weighted sum closer to the threshold.

(End of Example)

Lemma 6.8 An n-variable function f has correlation im-
munity 1 iff f ⊕ xi is balanced for all 1 ≤ i ≤ n.

Example 6.10 No bent function f has correlation immu-
nity 1 because f ⊕ xi is also bent, and no bent function is
balanced. (End of Example)
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Figure 7. Distribution of All 2-, 3- and 4-
Variable Functions to Correlation Immunity

Fig. 7 shows the distribution of the n-variable func-
tions to their correlation immunity, for 2 ≤ n ≤ 4. For
4-variable functions, there are only two functions with the
maximum correlation immunity 4. These are the constant 0
and 1 functions. This follows from the observation that the
only way to have correlation immunity 4 is for all assign-
ments of values to the variables to be the same. There are
only two functions with the next largest correlation immu-
nity 3. These are the parity functions, x1⊕x2⊕x3⊕x4 and
1⊕x1 ⊕ x2 ⊕ x3 ⊕ x4. There are eight functions with cor-
relation immunity 2. These are x1⊕x2⊕x3, x1⊕x2⊕x4,
x1⊕x3⊕x4, and x2⊕x3⊕x4 and the complements of each
of these functions. It follows that the functions with the
largest three correlation immunity values are affine func-
tions. The other affine functions, those dependent on one or
two variables, have correlation immunity 1.

Lemma 6.9 If the weight of an n-variable function f is not
divisible by 2k, the correlation immunity of f is at most
k − 1.

For k = 1, Lemma 6.9 corresponds to the observation
above that a function with an odd number of 1’s has correla-
tion immunity 0. If follows that at least half of all functions
have correlation immunity 0. For k = n, Lemma 6.9 states
that a function in which the number of 1’s is not divisible by
2n has correlation immunity at most n − 1. There are only
two functions in which the number of 1’s is divisible by 2n.
These are f = 0 and f = 1. As observed above, these are
the only two functions with correlation immunity n.



7 Concluding Remarks

Bent functions have important cryptographic properties.
First, they are very rare. As the number of variables in-
crease, they become a vanishingly small fraction of the to-
tal number of functions. Second, there is no formal method
of constructing all bent functions. In the research presented
here, we have used the sieve technique. In this approach, we
generate functions and then test them for bentness. Indeed,
we have done this on a reconfigurable computer (SRC Com-
pany’s SRC-6), in which a large FPGA (a Xilinx Virtix-2,
6000 series) has been configured to enumerate a prospective
function, test it against all affine functions generating the
distance to each, choose the minimum distance, and tally
the generated function according to its nonlinearity.

While general bent functions are difficult to discover,
certain specific bent functions can be easily described. For
example, the disjoint quadratic function is bent. Further,
there are only four bent functions that are totally symmetric
and these are easily described.

The number of bent functions is an open question. Pre-
neel [14] showed that the number of 6-variable bent func-
tions is 5,425,430,528∼ 232.3. For n = 8, a very long com-
putation [10] whose results were announced on December
31, 2007 showed that the number of A-classes of bent func-
tions is approximately 297.3. Since each A-class has 2n+1

functions, there are approximately 2106.3 bent functions, as
shown in Table 2.

Although there are no bent functions on 9 variables, there
is a surprise regarding the maximum nonlinearity for 9-
variable functions. For odd n, one might expect the upper
bound on nonlinearity to be described by the “bent concate-
nation bound” 2n−1 − 2

n−1
2 , which gives 240 for n = 9.

In 2006, Kavut, Maitra, and Yücel [7] showed the existence
of a 9-variable function with nonlinearity 241. This was re-
cently improved to nonlinearity 242 in 2008 in Kavut and
Yücel [8].

Maitra [11] showed a 13-variable function having non-
linearity 4034 which is 2 greater than the bent concatena-
tion bound, building this function from 16 truth tables of
9-variable bent functions having nonlinearity 242.

Another interesting open question is the highest nonlin-
earity for n-variable functions, where n is odd.

Still another interesting open question is the largest non-
linearity among balanced functions. This has significance
in cryptographic applications because, in practical systems,
balance is a dominant requirement. That is, when a bent
function is used, it is modified to form a balanced function
(which hopefully still has large nonlinearity). The converse
problem is to find, among balanced functions, those with
maximum nonlinearity. This open question was stated ex-
plicitly in Dobbertin and Leander [3]. Unfortunately, the
untimely death of the first author stalled publication of this

important paper, which is presently available online only
[2].

An online database exists that contains Boolean func-
tions according to nonlinearity, bentness, degree, correla-
tion immunity, propagation criterion, etc. [26].
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[8] S. Kavut and M. D. Yücel, “9-variable Boolean func-
tions with nonlinearity 242 in the generalized rotation
class”, Cryptology EPrint Report 2006/181, 28 May,
2006. http://eprint.iacr.org/2006/131.



[9] D. Knuth, The Art of Computer Programming, Vol. 4,
Fascicle 0, “Introduction to combinatorial algorithms
and Boolean functions”, Addison-Wesley Publishing
Company, pp. 95-96 and p. 180, 2008.

[10] P. Langevin, G. Leander, P. Rabizzoni, P. Véron,
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