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Abstract

Pseudo-Kronecker decision diagram (PKDD) is a generalization of binary decision diagram (BDD). A PKDD requires
not more nodes than a BDD to represent the same function. In this paper, we consider a method to represent incompletely
specified functions by using PKDDs. We developed a heuristic method to obtain PKDDs. Many PKDDs for MCNC
benchmark functions with don’t caresare simplified. Experimental results show that the number of nodes of PKDD can be
reduced by 14% by considering don’t cares.

1 Introduction

Binary decision diagrams (BDDs) are extensively used to represent logic functions. Pseudo-Kronecker decision diagrams

(PKDDs) are generalization of binary decision diagrams (BDDs): A PKDD requires not more nodes than a BDD to represent

the same function. PKDDs can be directly converted into multi-level networks [6]. PKDDs can be also used to design LUT

type FPGA [5, 9]. In this paper, we consider a method to represent incompletely specified functions by using PKDDs. We

want to obtain PKDDs having as few nodes as possible. An optimum PKDD that represents a given incompletely specified

function can be found by considering O(2d � n!3n � 32
n�1

) different PKDDs, where n is the number of input variables, and

d is the number of don’t cares. However it is impractical to consider all these possibilities. Thus, we have to resort to a

heuristic method to obtain near optimal PKDDs. To the best of our knowledge, no paper have considered an algorithm to

obtain PKDDs for incompletely specified functions. It is quite interesting to know how much we can reduce size of PKDDs

by considering don’t cares. In this paper, we show experimental results for MCNC benchmark functions with don’t cares,

and compare the number of nodes of PKDDs with and without considering don’t cares.

2 Pseudo-Kronecker Decision Diagram

2.1 Binary Decision Diagram (BDD)

An arbitrary logic function f(x1; x2; : : : ; xn) can be expanded as

f = �x1f0 � x1f1 (2.1)

f = f0 � x1f2 (2.2)

f = �x1f2 � f1 (2.3)
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Figure 2.1: Binary decision tree.

Equations (2.1)–(2.3) show the positive Davio expansion, the negative Davio expansion, and the Shannon expansion, re-

spectively. Given a function f and a variable x1 for these expansions, subfunctions f0, f1, and f2 are unique. By applying

the Shannon expansions to subfunctions f0 and f1, we have

f0 = �x2f00 � x2f01;

f1 = �x2f10 � x2f11:

Similarly, by applying the Shannon expansion to f00, f01, f10, and f11, we have

f00 = �x3f000 � x3f001;

f01 = �x3f010 � x3f011;

f10 = �x3f100 � x3f101;

f11 = �x3f110 � x3f111:

Fig. 2.1 shows the expansion tree, where the symbol S denotes the Shannon expansion. This tree is a binary decision tree

(BDT). The binary decision diagrams(BDDs) are obtained from BDTs using the following rules:

1) Eliminate all the redundant nodes whose two edges point to the same nodes.

2) Merge two nodes if they represent the same function.

In a BDD, when we fix the ordering of the variables, we have a unique BDD.

2.2 Kronecker Decision Diagram (KDD)

When we can use any of the three expansions (2.1)–(2.3) for each variable, we have a Kronecker tree. Fig. 2.2 shows an

example of a Kronecker tree, where the symbol pD denotes the positive Davio expansion, and nD denotes the negative

Davio expansion. In this tree, variable x1 uses the Shannon expansion, variable x2 uses the positive Davio expansion, and

variable x3 uses the negative Davio expansion. This expansion is called a Kronecker expansion, and a simplified Kronecker

trees is called a Kronecker Decision Diagram(KDD). For an n-variable function, at most 3n different KDDs exist.

2



f 001 f 002 f 021 f 022 f 101 f 102 f 121 f 122

S

pD

nD

pD

nD nD nD

f 0 f 1

f 00 f 02 f 10 f 12

x 

x 

x 1

2

3

Figure 2.2: Kronecker decision tree.
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Figure 2.3: Pseudo-Kronecker decision tree.

2.3 Pseudo-Kronecker Decision Diagram (PKDD)

When we can use any of the three expansions (2.1)–(2.3) for each node, then we have a pseudo-Kronecker tree. Fig. 2.3

shows an example of a pseudo-Kronecker tree, where the first variable uses the Shannon expansion, the second variable

uses both the positive and the negative Davio expansions, and the last variable uses all the three expansions. This expansion

is called a pseudo-Kronecker expansion, and the simplified pseudo-Kronecker trees is called a pseudo-Kronecker Decision

Diagram (PKDD). For n-variable functions, at most 32
n

�1 different expansions exist. Fig. 2.4 shows the relation among

PKDDs, KDDs, and BDDs.

2.4 Strategy to Optimize PKDDs for Incompletely Specified Functions

As for the number of different ways to construct PKDDs for an n-variable function, we have

a) n! ways to permute the input variables, and

BDD
KDD
PKDD

Figure 2.4: Relation of BDDs, KDDs, and PKDDs.
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b) 32
n

�1 ways to select the expansions for the nodes.

Thus, it is virtually impossible to consider all the possibilities, and heuristic methods to minimize PKDDs have been

proposed [6, 3]. Furthermore, for an incompletely specified function with d don’t cares, we have to consider 2d different

functions. Finding the assignment that leads to the smallest BDD is known to be NP-complete [11]. Therefore, we utilize

existing heuristic methods [4, 6], and construct PKDD as follows:

1. First, we will find the don’t careassignment that reduces the number of nodes in the BDD (Algorithm 3.1).

2. Second, we will find the variable ordering that reduces the size of DDs, and obtain a small KDD (Algorithm 4.1).

3. Finally, we will find good expansion type for each node to obtain a small PKDD (Algorithm 4.2).

3 Simplification of BDDs for Incompletely Specified Functions

In this section, we will review a method to reduce the number of nodes of BDDs using don’t cares[4].

3.1 Incompletely Specified Function

Incompletely specified functions can be represented as a pair of completely specified functions [f; g], where g denotes the

careset, f � g denotes the ON set, �f � g denotes the OFF set, and �g denotes the don’t careset.

Definition 3.1 h is a cover of [f; g] if f � g � h � f _ �g. Especially, if an arbitrary cover of[f1; g1] is also a cover of

[f2; g2], then[f1; g1] is ani-cover of [f2; g2]. If a commoni-cover exists for two incompletely specified functions, then they

match.

When two incompletely specified functions match, we can replace the representation with a common i-cover function. In

the case of a BDD, if two nodes represent functions having a common i-cover, then these nodes can be replaced by the node

of the i-cover function.

3.2 Don’t Care Assignment

When two incompletely specified functions match, we use three criteria for don’t careassignment.

Let [f1; g1] and [f2; g2] be incompletely specified functions.

1. One-sided DC match (OSDM)

[f1; g1] OSDM [f2; g2] iff g1 = 0.

This shows that all the values of the first function are don’t care.

2. One-sided match (OSM)

[f1; g1] OSM [f2; g2] iff f1 � f2 � �g1 and �g2 � �g1.
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Figure 3.5: Simplification of BDDs using don’t cares.

This shows that two functions can be made equal by assigning don’t caresof the first function.

3. Two-sided match (TSM)

[f1; g1] TSM [f2; g2] iff f1 � f2 � �g1 _ �g2.

This shows that two functions can be made to equal by assigning don’t caresof both functions.

We want to retain as many don’t caresunassigned as possible. When two functions [f1; g1] and [f2; g2] match, we assign

don’t caresas follow:

1. OSDM: [f2; g2]

2. OSM: [f2; g2]

3. TSM: [f1g1 _ f2g2; g1 _ g2]

3.3 Simplification of BDDs using Don’t Cares

When matching two nodes in a BDD, we pay attention to two children of a node. When two children have a common

i-cover, these nodes are replaced by a node of i-cover, and the parent node is deleted.

The next example shows a method to simplify BDDs by using don’t carematching.

Example 3.1 In Fig. 3.5(a), if node A and node B have a commoni-cover, then they are replaced by a node representing

thei-cover function as shown in Fig. 3.5(b). (End of Example)

Algorithm 3.1 From the root node to the leaf nodes, for each node apply the following steps recursively:

1. If g = 1, then return.

2. Check whether if there exists an commoni-cover for two children, in the order of OSDM, OSM, and TSM.

(a) If no commoni-cover exist, then apply this procedure to two children nodes.

(b) If a commoni-cover exists, then replace the nodes with thei-cover node, and apply this procedure to thei-cover

node.
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4 Simplification of PKDD

In a BDD, a non-terminal node has two children that represent subfunctions f0 and f1 in (2.1). On the other hand, in an

EXOR ternary decision diagram (ETDD), a non-terminal node has three children that represent three functions: f0, f1, and

f2 = f0 � f1. Our simplification algorithms for KDDs and PKDDs use ETDDs [8]. First, we show an algorithm that

simplifies KDDs.

Algorithm 4.1 (Simplification of KDDs)

1. Find variable orderings for ETDD and BDD by an algorithm that minimizes number of nodes [1, 10].

2. Construct ETDDs for two variable orderings found in Step 1.

3. Do the following for each case when all variables are expanded byS, pD, andnD expansions.

4. For each variable, change the expansion type in the order ofS, pD, andnD, and select the type that minimizes the

number of nodes.

5. Do Step 3 for all variables from the root to a terminal node.

6. Repeat the above steps while the number of nodes decreases.

7. Choose the one with the fewer nodes between two variable orderings found in Step 1.

The resulting KDD is used as an initial solution of the PKDD.

Algorithm 4.2 (Simplification of PKDDs)

1. Find variable orderings for ETDD and BDD by using the algorithm [1, 10].

2. Construct ETDD for two variable orderings found in Step 1.

3. Use the expansion type of the KDD as the initial solution of the PKDD.

4. For each node, change the expansion type in the order ofS, pD, andnD, and select one with the minimum number

of nodes.

5. Do Step 3 for all variables from the root to a terminal node.

6. Repeat the above steps while the number of nodes decreases.

7. Choose the one with the fewer nodes between two variable orderings found in Step 1.

Next, we show algorithm to simplify PKDDs for incompletely specified functions.

Algorithm 4.3 (Simplification of PKDDs for incompletely specified functions)

1. Assign0 to all the don’t cares. Find a variable ordering by using the algorithm [1, 10].
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2. Reduce the number of nodes of the BDD by using Algorithm 3.1.

3. Reduce the number of nodes of the KDD by using Algorithm 4.1.

4. Reduce the number of nodes of the PKDD by using Algorithm 4.2.

5. Assign1 to all the don’t cares, and repeat Steps 2 to 4.

6. Choose the PKDD with the fewer nodes.

5 Experimental Results

We used MCNC benchmark functions with don’t cares. Our BDD package dose not use negation edges.

5.1 Simplification of BDDs Using Don’t Cares

Table 5.1 shows the result of simplification of BDDs by using Algorithm 3.1. We considered two cases: The column headed

with DC = 0 denotes that all the don’t caresare set to 0, and the column headed with DC = 1 denotes that all the don’t

caresare set to 1 in the incompletely specified functions. In Table 5.1, Total denotes the total number of nodes, and Ratio

denotes the average of reduction ratio for the functions. This table shows that Algorithm 3.1 reduces the total number of

nodes by 15%, and the reduction ratio is about 11%. Ratio for DC = 1 is reduced more than the case of DC = 0, but Total

for DC = 1 is larger. Note that ex1010 and pdc can be reduced into a half.

5.2 Simplification of PKDDs Using Don’t Cares

Table 5.2 compares the sizes of BDDs and PKDDs. The PKDDs are obtained from the result of Table 5.1. In Table 5.2,

Total denotes the total number of nodes, and Ratio denotes the average reduction ratio for DC = 0. The total number of

PKDD nodes is reduced by 16% from the case of DC = 0 in Table 5.1. Ratio is reduced by 14%. The total number of

nodes in the last column of Table 5.2 is reduced by 30% from the BDD of the column DC = 0 in Table 5.1.

For example, in the case of ex1010, the number of BDD nodes is decreased about 49% by using Algorithm 3.1, and

further reduced about 6% by using Algorithm 4.2. The number of PKDD nodes is reduced by 58% from DC = 0 in

Table 5.1.

5.3 Relative Sizes of Various Decision Diagrams

Fig. 5.6 compares of relative sizes of nodes of BDDs and PKDDs with and without don’t careoptimization. The column

footed with BDD denotes the size of BDDs with DC = 0; BDD Match denotes the size of BDDs optimized by using

Algorithm 3.1; PKDD denotes the size of PKDDs with DC = 0; and PKDD Matchdenotes the size of PKDDs optimized

by using Algorithm 4.3. Compared with the original BDD, BDD Matchis decreased by 11%, PKDD is decreased by 23%,

and PKDD Matchis reduced by 34%.
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Table 5.1: Number of nodes of BDDs.

Name In Out DC = 0 Match0 DC = 1 Match1
alu2 10 8 70 68 76 70
apla 10 12 115 91 119 93
b10 15 11 290 288 290 288
b11 8 31 99 98 99 98
b3 32 20 409 408 409 408
b4 33 23 219 218 225 224
b7 8 31 99 98 99 98
bca 26 46 894 892 897 895
bcb 26 39 756 751 756 751
bcc 26 45 801 793 780 771
bcd 26 38 606 606 608 608
bcddiv 4 4 19 19 20 19
bench 6 8 85 51 101 52
bench1 9 9 608 365 687 360
bw 5 28 137 122 137 122
dekoder 4 7 27 27 28 25
dk17 10 11 74 69 81 67
dk27 9 9 35 33 42 38
dk48 15 17 81 79 102 72
ex1010 10 10 1421 726 1426 729
exam 10 10 341 161 372 158
exep 30 63 675 675 756 739
exp 8 18 212 187 222 202
exps 8 38 585 583 585 583
fout 6 10 141 114 155 114
inc 7 9 82 75 80 73
l8err 8 8 84 83 84 83
mark1 20 31 119 115 177 105
p1 8 18 208 151 210 147
p3 8 14 134 106 152 106
pdc 16 40 609 337 696 343
sex 9 14 62 61 62 61
spla 16 46 628 608 636 616
t2 17 16 145 125 147 125
t4 12 8 44 44 52 44
wim 4 7 26 26 27 24
Total 10940 9253 11395 9311
Ratio 1.00 0.89 1.00 0.84
DC = 0: Optimized BDD nodes with all don’t caresare assigned

0.
Match0: Applied Algorithm 3.1 to BDDs with DC = 0.
DC = 1: Optimized BDD nodes with all don’t caresare assigned

1.
Match1: Applied Algorithm 3.1 to BDDs with DC = 1.

6 Conclusion

In this paper, we proposed a method to represent incompletely specified functions by using PKDDs. PKDDs require fewer

nodes than corresponding BDDs, and they can be converted into multi-level logic networks directly. Experimental results

show that the number of nodes in PKDDs can be reduced by 14% by considering don’t cares.
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Table 5.2: Number of nodes of PKDDs.

Name In Out BDD PKDD
DC = 0 DC = 1 Algorithm 4.3

alu2 10 8 70 60 64 48
apla 10 12 115 96 96 68
b10 15 11 290 249 246 244
b11 8 31 99 56 54 54
b3 32 20 409 308 308 308
b4 33 23 219 157 196 157
b7 8 31 99 56 54 54
bca 26 46 894 797 791 784
bcb 26 39 756 751 664 658
bcc 26 45 801 704 684 670
bcd 26 38 606 536 530 531
bcddiv 4 4 19 12 12 10
bench 6 8 85 61 68 39
bench1 9 9 608 513 540 335
bw 5 28 137 90 90 83
dekoder 4 7 27 17 19 15
dk17 10 11 74 65 63 49
dk27 9 9 35 22 30 22
dk48 15 17 81 60 74 52
ex1010 10 10 1421 1268 1274 684
exam 10 10 341 272 289 116
exep 30 63 675 543 671 581
exp 8 18 212 156 179 152
exps 8 38 585 495 493 489
fout 6 10 141 111 117 92
inc 7 9 82 62 58 55
l8err 8 8 84 72 69 69
mark1 20 31 119 60 124 60
p1 8 18 208 174 179 114
p3 8 14 134 111 127 77
pdc 16 40 609 400 557 248
sex 9 14 62 41 41 41
spla 16 46 628 578 525 531
t2 17 16 145 119 120 105
t4 12 8 44 33 41 29
wim 4 7 26 16 18 14
Total 10940 9121 9465 7631
Ratio 1.00 0.86
DC = 0: Optimized PKDD nodes with all don’t caresare as-

signed 0.
DC = 1: Optimized PKDD nodes with all don’t caresare as-

signed 1.
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