
Exact Minimization of FPRMs for Incompletely
Specified Functions

Debatosh Debnath and Tsutomu Sasao
Department of Computer Science and Electronics

Kyushu Institute of Technology
Iizuka 820-8502, Japany

Abstract

This paper presents an exact minimization algorithm for fixed polarity Reed-Muller

expressions (FPRMs) for incompletely specified functions. For an n-variable function with

� unspecified minterms there are 2n+� distinct FPRMs. A minimum FPRM is one with the

fewest products. The minimization algorithm is based on the multi-terminal binary deci-

sion diagrams. Experimental results for a set of functions are shown. The algorithm can

be extended to obtain exact minimum Kronecker expressions for incompletely specified

functions.

Index Terms: AND-EXOR, Reed-Muller expression, Kronecker expression, exact mini-

mization, incompletely specified function.

1 Introduction

Fixed polarity Reed-Muller expression (FPRM) is one of the canonical AND-EXOR

expressions [15]. FPRMs are a generalization of positive polarity Reed-Muller expressions

(PPRMs). A PPRM, which is unique for a completely specified function, is an AND-EXOR

expression with only uncomplemented literals. PPRMs are also known as Zhegalkin poly-

nomials after the Russian logician Ivan I. Zhegalkin who first published this canonical

form [27]. Each variable in an FPRM can appear either in complemented or uncomple-

mented form. An n-variable completely specified function has 2n distinct FPRMs. For

incompletely specified function, the number of FPRMs increases exponentially with the in-

crease in the number of unspecified minterms: 2n+� distinct FPRMs exist for an n-variable

function with � unspecified minterms. An expression with the fewest products is a mini-

mum expression.

yE-mail: d.debnath@computer.org, sasao@cse.kyutech.ac.jp

FPRMs are important because they can be used to design easily testable circuits [14], to

detect symmetric variables of switching functions [22], to design multi-level circuits [23],

and in Boolean matching [24]. Moreover, for some classes of practical functions, FPRMs

require fewer products than sum-of-products expressions (SOPs) [15–18].

For completely specified functions, numerous exact and heuristic minimization algo-

rithms for FPRMs exist [7, 10, 14, 17, 21]. However, little research has been done to mini-

mize FPRMs for incompletely specified functions. Tran discussed a graphical procedure,

which is based on a trial-and-error method, to simplify FPRMs for incompletely specified

functions [20]. The method can be applicable to functions with up to six variables. By

using spectral techniques [9], Varma and Trachtenberg developed heuristic algorithms to

simplify PPRMs for incompletely specified functions [25]. Chang and Falkowski reported

methods to simplify FPRMs for incompletely specified functions [3, 4]. Recently, Zilic and

Vranesic presented a heuristic scheme to compute multiple-valued Reed-Muller transform

for incompletely specified functions [28].

McKenzie et al. developed a branch and bound algorithm for the exact minimization

of PPRMs for incompletely specified functions [13]. Green described an exhaustive search

method [8]. Zakrevskij formulated the exact minimization of PPRMs for incompletely

specified functions as a solution of a system of linear logical equations, and presented ex-

perimental results for functions with up to 20 specified minterms [26]. McKenzie et al. [13]

and Zakrevskij [26] also considered heuristic simplification methods.

In this paper we present an algorithm to obtain exact minimum FPRMs for incom-

pletely specified functions. The method is based on the computation of extended truth

vector and weight vector, which are also used for the exact minimization of FPRMs for com-

pletely specified functions [6, 17]. Every component of these vectors is an integer-valued

function represented by multi-terminal binary decision diagram (MTBDD) [5]. Kronecker

expressions [6, 12, 18], introduced by Bioul et al. [1], are a generalization of FPRMs. We

also discuss an extension of the FPRM minimization algorithm to minimize Kronecker

expressions for incompletely specified functions.

The remainder of the paper is organized as follows: Section 2 introduces terminol-

ogy and presents basic properties. Section 3 develops an exact minimization algorithm.

Section 4 reports experimental results. Section 5 presents conclusion and outlines future

work.

2 Definitions and Basic Properties

In this paper, the operators ‘+’ and ‘�’ indicate arithmetic and mod-2 addition, respec-

tively.

Definition 2.1 An n-variable switching function f is a mapping f : f0,1gn ! f0,1g; and an

n-variable integer-valued function g is a mapping g : f0,1gn ! f0,1, : : : ,p� 1g, where p � 2.

It should be noted that switching functions are a subset of integer-valued functions.

Definition 2.2 An n-variable integer-valued function f (x1,x2, : : : ,xn) can be written as

∑2n�1
j=0 mjx

b1
1 xb2

2 � � � x
bn
n , where mj 2 f0,1, : : : ,p � 1g (p � 2), b1,b2, : : : ,bn 2 f0,1g such that

b1b2 � � � bn is the n-bit binary number representing j, xbi
i = x̄i when bi = 0, xbi

i = xi when bi = 1,

and i = 1,2, : : : ,n. Then [m0,m1, : : : ,m2n�1] is the truth vector of f .

Example 2.1 The truth vector of the three-variable switching functionx̄1x̄2x̄3 _ x1 is [1,0,0,0,1,1,

1,1], and that of the three-variable integer-valued function 3x1+ 4x2x3+ 2x̄3 is [2,0,2,4,5,3,5,7].

Property 2.1 Let f be a switching function. Then f + f̄ = 1.

Example 2.2 Let the two-variable switching function f be [1,0,0,0]. Then f + f̄ = [1,0,0,0]+

[0,1,1,1] = [1,1,1,1] = 1.

Property 2.2 Let f be an integer-valued function. Then f + f + � � �+ f
| {z }

k operands

= k � f :

Example 2.3 Let the two-variable integer-valued function f be [1,0,3,5]. Then f + f + f = 3 �

[1,0,3,5] = [3,0,9,15].

Definition 2.3 An n-variable switching function f (x1,x2, : : : ,xn) can be written as a fixed polar-

ity Reed-Muller expression (FPRM) ∑�2n�1
j=0 ajx

b1
1 xb2

2 � � � x
bn
n , where aj 2 f0,1g, b1,b2, : : : ,bn 2

f0,1g such that b1b2 � � � bn is the n-bit binary number representing j, xbi
i = 1 when bi = 0,

xbi
i 2 fx̄i,xig such that for each i either x̄i or xi appear throughout the expression when bi = 1,

and i = 1,2, : : : ,n.

In an FPRM, each variable can appear either in complemented or uncomplemented

form, i.e., polarity of each variable can be chosen in two ways. Thus, for an n-variable

completely specified function there are 2n distinct FPRMs.

Definition 2.4 Polarity vector (b1,b2, : : : ,bn) for an FPRM of an n-variable switching function

f (x1,x2, : : : ,xn) is a binary vector with n elements, where bi = 0 indicates variable xi is used in the

uncomplemented form (xi) and bi = 1 indicates variable xi is used in the complemented form (x̄i).

Example 2.4 Let the three-variable switching function f be x1x3 _ x̄2x̄3 and (0,1,1) be a polarity

vector for an FPRM of f . Since x1x3 and x̄2x̄3 are disjoint, we can write f = x1x3 � x̄2x̄3. By

putting x3 = 1� x̄3 in the expression for f , we have f = x1(1� x̄3)� x̄2x̄3 = x1� x1x̄3 � x̄2 x̄3,

which is the FPRM for f with polarity vector (0,1,1).

3 Minimization Techniques

For an n-variable completely specified switching function there are 2n distinct FPRMs, and

the minimization problem is to find a polarity vector that produces an FPRM with min-

imum number of products. On the other hand, for an n-variable incompletely specified

switching function with � unspecified minterms there are 2n+� distinct FPRMs, and the

minimization problem is to find a polarity vector and an assignment of the unspecified

minterms to 0’s and 1’s that produce an FPRM with minimum number of products. Once

the polarity vector and the assignment of the unspecified minterms are determined, gen-

eration of an FPRM is relatively easy [6, 17].

Fig. 1 illustrates a method for the exact minimization of FPRMs for three-variable

switching function. The method is based on the computation of extended truth vector and

weight vector [6, 17]. The extended truth vector [t0,t1, : : : ,t26] is computed from the truth

vector [m0,m1, : : : ,m7] of a given switching function, and the weight vector [w0,w1, : : : ,w7]

is computed from the extended truth vector. In general, for an n-variable completely spec-

ified switching function, extended truth vector is a binary vector [t0,t1, : : : ,t3n�1] with 3n

elements, and weight vector is an integer vector [w0,w1, : : : ,w2n�1] with 2n elements. Each

element of the weight vector is associated with a polarity vector, which is shown at the

rightmost side in Fig. 1. In general, for an n-variable switching function f , polarity vector

for wj is a binary vector (b1,b2, : : : ,bn) such that b1b2 � � � bn is the n-bit binary number rep-

resenting j (j = 0,1, : : : ,2n� 1), and wj represents the number of products in the FPRM for

f with polarity vector (b1,b2, : : : ,bn).

For an n-variable switching function with � unspecified minterms d1,d2, : : : ,d�,

extended truth vector is a vector of switching functions ti(d1,d2, : : : ,d�) (i= 0,1, : : : ,3n� 1),

and weight vector is a vector of integer-valued functions wj(d1,d2, : : : ,d�) (j= 0,1, : : : ,2n�

1). For three-variable case, all the ti’s and wj’s can be obtained from Fig. 1. Extension to

the functions with more variables is straightforward. Expressions for several ti’s and w0

for three-variable function [m0,m1, : : : ,m7] are shown in the following:

w0 = t0+ t2+ t6+ t8+ t18+ t20 + t24+ t26, (3.1)

where

t0 = m0,

t2 = m0�m1,

t6 = m0�m2,

t8 = m0�m1�m2�m3,

t18 = m0�m4,

t20 = m0�m1�m4�m5,

t24 = m0�m2�m4�m6,

t26 = m0�m1�m2�m3�m4�m5�m6�m7:

(3.2)

(x1; x2; x3)
(0; 0; 0)
(0; 0; 1)

(0; 1; 0)
(0; 1; 1)

(1; 0; 0)
(1; 0; 1)

(1; 1; 0)
(1; 1; 1)

m0
m1

m2
m3

m4
m5

m6
m7

r0(= m0)
r1(= m1)
r2(= m0�m1)

r3(= m2)
r4(= m3)
r5(= m2�m3)

r6(= m4)
r7(= m5)
r8(= m4�m5)

r9(= m6)
r10(= m7)
r11(= m6�m7)

s0(= r0)
s1(= r1)
s2(= r2)

s3(= r3)
s4(= r4)
s5(= r5)

s6(= r0� r3)
s7(= r1� r4)
s8(= r2� r5)

s9(= r6)
s10(= r7)
s11(= r8)

s12(= r9)
s13(= r10)
s14(= r11)

s15(= r6� r9)
s16(= r7� r10)
s17(= r8� r11)

t0(= s0)
t1(= s1)
t2(= s2)

t3(= s3)
t4(= s4)
t5(= s5)

t6(= s6)
t7(= s7)
t8(= s8)

t9(= s9)
t10(= s10)
t11(= s11)

t12(= s12)
t13(= s13)
t14(= s14)

t15(= s15)
t16(= s16)
t17(= s17)

t18(= s0� s9)
t19(= s1� s10)
t20(= s2� s11)

t21(= s3� s12)
t22(= s4� s13)
t23(= s5� s14)

t24(= s6� s15)
t25(= s7� s16)
t26(= s8� s17)

u0(= t0+ t18)
u1(= t1+ t19)
u2(= t2+ t20)

u3(= t3+ t21)
u4(= t4+ t22)
u5(= t5+ t23)

u6(= t6+ t24)
u7(= t7+ t25)
u8(= t8+ t26)

u9(= t9+ t18)
u10(= t10+ t19)
u11(= t11+ t20)

u12(= t12+ t21)
u13(= t13+ t22)
u14(= t14+ t23)

u15(= t15+ t24)
u16(= t16+ t25)
u17(= t17+ t26)

v0(= u0+ u6)
v1(= u1+ u7)
v2(= u2+ u8)

v3(= u3+ u6)
v4(= u4+ u7)
v5(= u5+ u8)

v6(= u9+ u15)
v7(= u10+ u16)
v8(= u11+ u17)

v9(= u12+ u15)
v10(= u13+ u16)
v11(= u14+ u17)

w0(= v0+ v2)
w1(= v1+ v2)

w2(= v3+ v5)
w3(= v4+ v5)

w4(= v6+ v8)
w5(= v7+ v8)

w6(= v9+ v11)
w7(= v10+ v11)

Figure 1: Computation of extended truth and weight vector for three-variable switching function.

Definition 3.1 Let the minimum value of the �-variable integer-valued function w(d1,d2, : : : ,d�),

denoted by wmin, be min0�i�2��1 mi, where [m0,m1, : : : ,m2��1] represents the truth vector for w.

Let [w0,w1, : : : ,w2n�1] be the weight vector for an n-variable incompletely specified

switching function f (x1,x2, : : : ,xn), and wmin
j be the minimum value for wj(d1,d2, : : : ,d�)

where d1,d2, : : : ,d� represent unspecified minterms of f . Let 0 � k � 2n � 1 and

a1,a2, : : : ,a� 2 f0,1g such that wk(a1,a2, : : : ,a�) = min0� j�2n�1 wmin
j . Let c1c2 � � � cn be the

n-bit binary number representing k. Then, (a1,a2, : : : ,a�) represents an assignment of

(d1,d2, : : : ,d�) and (c1,c2, : : : ,cn) represents a polarity vector that produce a minimum

FPRM for f .

Example 3.1 Consider a three-variable switching function f (x1,x2,x3) whose truth vector [m0,

m1,m2,m3,m4,m5,m6,m7] = [d0,0,d2,d3,1,1,1,0], where d0, d2, and d3 are unspecified minterms.

By putting the value of mi (i = 0,1, : : : ,7) in (3.2), we have

t0 = d0,

t2 = d0,

t6 = d0� d2,

t8 = d0� d2� d3,

t18 = 1� d0,

t20 = d0,

t24 = d0� d2,

t26 = 1� d0 � d2� d3:
(3.3)

By using Property 2.1 to (3.3), we have t18+ t20 = 1 and t8+ t26 = 1. Also, by using Property 2.2

to (3.3), we have t6+ t24 = 2(d0 � d2) and t0+ t2 = 2d0. Thus, from (3.1) and (3.3), we obtain

w0 = 2+ 2d0+ 2(d0 � d2): (3.4)

Equation (3.4) shows that w0 cannot be less than 2 and it is independent of d3. By inspection, we

have w0 = 2, when d0 = d2 = 0; however w0 = 6, when d0 = 1 and d2 = 0. Thus, the minimum

value for w0 is 2. Similarly, we can obtain minimum value for wi, when i = 1,2, : : : ,7.

To manipulate integer-valued function we use multi-terminal binary decision diagram

(MTBDD) [5]. An MTBDD, which is a natural extension of binary decision diagram

(BDD) [2], is a directed acyclic graph with multiple terminal nodes each of which has

an integer value. Arithmetic operations, such as addition and multiplication, between

integer-valued functions can be efficiently performed by using MTBDDs. It should be

noted that switching functions are a subset of integer-valued functions and an MTBDD

for a switching function is a BDD. We use MTBDD data structure to perform Boolean

operations between switching functions.

A straightforward method to build MTBDDs for weight vector requires excessive com-

putation time and memory resources, because they represent all possible FPRMs for the

given incompletely specified function. However, we are only interested in an FPRM with

the fewest products. Suppose we have an FPRM for the given function with tthreshold+ 1

products, then it is sufficient to search for an FPRM with tthreshold or fewer products. If

such an FPRM does not exist then the FPRM with tthreshold+ 1 products is the minimum

FPRM. Thus, to restrict the search space without sacrificing the minimality of the solution,

we use threshold value, tthreshold, during construction of MTBDDs. The threshold value can

be obtained by using any simplification program for FPRMs.

Based on the above discussions, we develop the following algorithm for exact mini-

mization of FPRM for incompletely specified n-variable switching function f :

Algorithm 3.1 (Exact minimization)

1. Get the user supplied threshold value, tthreshold.

2. Prepare extended truth vector [t0,t1, : : : ,t3n�1] for f . (Fig. 1 shows the computation method

for extended truth vector for three-variable functions. Extension to the functions with more

variables is straightforward. Each element of the extended truth vector is a switching func-

tion represented as an MTBDD.)

3. Let [w0,w1, : : : ,w2n�1] be the weight vector for f . For i = 0 to 2n� 1, do the following:

(a) Gather elements from the extended truth vector such that

wi = ∑
t2Ti

t, (3.5)

where Ti � ft0,t1, : : : ,t3n�1g. (Fig. 1 shows how to gather elements corresponding to

wi from the extended truth vector for three-variable function. Extension to the functions

with more variables is straightforward. It is obvious from Fig. 1 that the number of

elements in Ti is 2n.)

(b) Apply Properties 2.1 and 2.2 to (3.5). Thus, we have

wi = a+ ∑
0� j�L�1

bju j,

where a � 0, bj � 1, u j 2 Ti, and L � 2n.

(c) Construct an MTBDD for wi. During construction (i) if any terminal value of an in-

termediate MTBDD is greater than tthreshold, set that terminal value to1; (ii) if an in-

termediate MTBDD represent constant1, stop the construction and assign MTBDD

for wi to1.

(d) Obtain minimum value wmin
i from the MTBDD for wi. (This corresponds to finding a

path to a terminal node of the MTBDD that produces a minimum value for wi.)

1 procedure Construct MTBDD(a,S,Dall) f
2 Dremain, Dthis: set of support variables;
3 Ssave, Sthis: subset of S;
4 csave, cthis: integer (counter);
5 wi a;
6 until S 6= ; do f
7 Dremain Dall� SUPPORT(wi);
8 csave 0;
9 for each dremain 2 Dremain do f

10 Dthis fdremaing [SUPPORT(wi);
11 cthis 0; Sthis ;;
12 for each bju j 2 S do f
13 if SUPPORT(uj) � Dthis then f
14 cthis cthis+ bj;
15 Sthis Sthis [fbju jg;
16 g
17 g
18 if cthis > csave then f
19 csave cthis;
20 Ssave Sthis;
21 g
22 g
23 if Ssave = ; then
24 Ssave an element of S;
25 for each bju j 2 Ssave do
26 wi wi+ bju j; /* MTBDD operation */
27 S S� Ssave;
28 g
29 return wi; /* MTBDD */
30g

Figure 2: Pseudocode Construct MTBDD.

(e) If wmin
i <= tthreshold : (i) save the polarity vector and an assignment of the unspecified

minterms corresponding to wmin
i ; (ii) tthreshold wmin

i � 1.

4. If any polarity vector is saved in step 3(e) then obtain an FPRM by using the most recently

saved polarity vector and assignment of the unspecified minterms, otherwise report “No so-

lution exists with tthreshold or fewer products.”

To build an MTBDD for wi at step 3(c) we must do arithmetic addition of a set of

MTBDDs. The MTBDDs can be arranged in numerous ways to perform addition. The

arrangement influences the computation time and the size of the intermediate MTBDDs

during addition. A naive arrangement requires excessive memory resources and long

computation time. To build MTBDD for wi we use procedure Construct MTBDD(a,S,Dall),

Table 1: Experimental results.

f(n,t,d,s)� PRODy THREz PEAKx TIME{

f(6,15,30,25) 9 10 1732 0.33
f(6,12,40,50) 6 10 11133 1.06
f(7,35,50,5) 21 25 41733 10.57
f(7,20,80,5) 10 15 70379 24.33
f(7,20,90,5) 8 12 134166 31.30
f(8,25,200,50) 12 12 1075438 3043.23
f(8,100,80,10) 51 51 5638312 5208.40
f(8,35,180,10) 15 15 4931098 7521.47
f(8,60,160,5) 21 22 9874309 10811.68

f(8,80,100,50) 41 45 11554627 26617.01
41 11554627 24978.05

f(9,250,50,5) 167 170 2072822 3706.12
f(9,15,480,80) 6 7 8192276 29666.09

f(10,500,40,25) 397 420 4283146 16147.14
397 2227298 5072.87

f(12,2000,30,25) 1874 1880 455409 3685.07
f(14,8000,30,50) 7836 7850 855023 7012.62
�f(n,t,d,s): Function (defined in Appendix).
yPROD: Number of products in minimum FPRM.
zTHRE: Threshold value.
xPEAK: Peak number of live MTBDD nodes.
{TIME: CPU seconds on SUN ULTRA 10.

the pseudocode of which is shown in Fig. 2, where S represents fb0u0,b1u1, : : : ,bL�1uL�1g,

Dall represents fd1,d2, : : : ,d�g, and SUPPORT(wi) represents the set of variables on which

wi depends. The procedure first chose an MTBDD that depends on the fewest variables

and then arranged other MTBDDs to slowly increase the number of variables in the inter-

mediate MTBDDs.

The minimization method presented in this section can be adapted to obtain exact min-

imum Kronecker expressions [1, 6, 15] for incompletely specified switching functions. In

this case we must compute extended weight vector [1, 6] instead of weight vector.

4 Experimental Results

We implemented Algorithm 3.1 in C by using CUDD package [19] and conducted exper-

iments by using a set of switching functions. The detail experimental results are shown

in Table 1. The factors on which the computation time mainly depends are the threshold

value, the number of variables in the function, and the number of unspecified minterms.

The current implementation works favorably for many functions with eight or fewer

variables and with any number of unspecified minterms. However, for functions with

nine or more variables it often requires excessive CPU time and memory resources when

the number of unspecified minterms is more than 30.

5 Conclusions and Comments

Exact minimization of FPRMs for incompletely specified switching functions is a com-

putationally hard problem, because the search space increases exponentially with the in-

crease in the unspecified minterms. Although Algorithm 3.1 requires only one MTBDD at

a time, the present implementation of it uses a fixed variable order for all the MTBDDs.

Currently, we are working to find a better variable order for individual MTBDDs. This

strategy would be useful to solve larger problems with less memory resources.

Acknowledgement

This work was supported in part by a Postdoctoral Fellowship of the Japan Society for the

Promotion of Science and in part by a Grant-in-Aid for the Scientific Research of the Min-

istry of Education, Science, Culture, and Sports of Japan. The authors thank anonymous

referees for giving constructive suggestions.

References

[1] G. Bioul, M. Davio, and J.-P. Deschamps, “Minimization of ring-sum expansions of Boolean

functions,” Philips Res. Repts., Vol. 28, pp. 17–36, 1973.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE Trans. Com-

put., Vol. C-35, No. 8, pp. 677–691, Aug. 1986.

[3] C.-H. Chang and B. J. Falkowski, “Flexible optimization of fixed polarity Reed-Muller ex-

pansions for multiple output completely and incompletely specified Boolean functions,” Proc.

Asia and South Pacific Design Automation Conference, pp. 335–340, Sept. 1995.

[4] C.-H. Chang and B. J. Falkowski, “Adaptive exact optimisation of minimally testable FPRM

expansions,” IEE Proceedings-Computers and Digital Techniques, Vol. 145, No. 6, pp. 385–394,

Nov. 1998.

[5] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, “Spectral transforms for large

Boolean functions with applications to technology mapping,” Proc. Design Automation Confer-

ence, pp. 54–60, June 1993.

[6] M. Davio, J.-P. Deschamps, and A. Thayse, Discrete and Switching Functions, McGraw-Hill In-

ternational, 1978.

[7] R. Drechsler, M. Theobald, and B. Becker, “Fast OFDD-based minimization of fixed polarity

Reed-Muller expressions,” IEEE Trans. Comput., Vol. C-45, No. 11, pp. 1294–1299, Nov. 1996.

[8] D. H. Green, “Reed-Muller expansions of incompletely specified functions,” IEE Proceedings,

Vol. 134, Pt. E, No. 5, pp. 228–236, Sept. 1987.

[9] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in Digital Logic, Academic Press

Inc., 1985.

[10] U. Kebschull and W. Rosenstiel, “Efficient graph-based computation and manipulation of

functional decision diagrams,” Proc. European Conference on Design Automation, pp. 278–282,

Mar. 1993.

[11] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Second Edition, Prentice-

Hall, 1988.

[12] P. K. Lui and J. C. Muzio, “Boolean matrix transforms for the minimization of modulo-2 canon-

ical expressions,” IEEE Trans. Comput., Vol. C-41, No. 3, pp. 342–347, Mar. 1992.

[13] L. McKenzie, A. E. A. Almaini, J. F. Miller, and P. Thomson, “Optimisation of Reed-Muller

logic functions,” International Journal of Electronics, Vol. 75, No. 3, pp. 451–466, Sept. 1993.

[14] A. Sarabi and M. A. Perkowski, “Fast exact and quasi-minimal minimization of highly testable

fixed polarity AND/XOR canonical networks,” Proc. Design Automation Conference, pp. 30–35,

June 1992.

[15] T. Sasao, “AND-EXOR expressions and their optimization,” in T. Sasao, ed., Logic Synthesis

and Optimization, Kluwer Academic Publishers, 1993.

[16] T. Sasao, “Representations of logic functions using EXOR operators,” in T. Sasao and M. Fujita,

eds., Representations of Discrete Functions, Kluwer Academic Publishers, 1996.

[17] T. Sasao and F. Izuhara, “Exact minimization of FPRMs using multi-terminal EXOR TDDs,” in

T. Sasao and M. Fujita, eds., Representations of Discrete Functions, Kluwer Academic Publishers,

1996.

[18] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999.

[19] F. Somenzi, CUDD: CU Decision Diagram Package, Release 2.3.0, University of Colorado at Boul-

der, 1998 (http://vlsi.colorado.edu/~fabio/).

[20] A. Tran, “Graphical method for the conversion of minterms to Reed-Muller coefficients and

the minimization of exclusive-OR switching functions,” IEE Proceedings, Vol. 134, Pt. E, No. 2,

pp. 93–99, Mar. 1987.

[21] C. Tsai and M. Marek-Sadowska, “Minimisation of fixed-polarity AND/XOR canonical

networks,” IEE Proceedings-Computers and Digital Techniques, Vol. 141, No. 6, pp. 369–374,

Nov. 1994.

[22] C. Tsai and M. Marek-Sadowska, “Generalized Reed-Muller forms as a tool to detect symme-

tries,” IEEE Trans. Comput., Vol. 45, No. 1, pp. 33–40, Jan. 1996.

[23] C. Tsai and M. Marek-Sadowska, “Multilevel logic synthesis for arithmetic functions,” Proc.

33rd Design Automation Conference, pp. 242–247, June 1996.

[24] C. Tsai and M. Marek-Sadowska, “Boolean functions classification via fixed polarity

Reed-Muller forms,” IEEE Trans. Comput., Vol. C-46, No. 2, pp. 173–186, Feb. 1997.

[25] D. Varma and E. A. Trachtenberg, “Computation of Reed-Muller expansions of incompletely

specified Boolean functions from reduced representations,” IEE Proceedings-E, Vol. 138, No. 2,

pp. 85–92, Mar. 1991.

[26] A. Zakrevskij, “Minimizing polynomial implementation of weakly specified logic functions

and systems,” Proc. 3rd International Workshop on Applications of the Reed-Muller Expansion in

Circuit Design, pp. 157–166, Sept. 1997.

[27] I. I. Zhegalkin, “The technique of calculation of statements in symbolic logic,” Mathe. Sbornik,

Vol. 34, pp. 9–28, 1927 (in Russian).

[28] Z. Zilic and Z. G. Vranesic, “A multiple-valued Reed-Muller transform for incompletely spec-

ified functions,” IEEE Trans. Comput., Vol. C-44, No. 8, pp. 1012–1020, Aug. 1995.

Appendix

To generate the truth vector of the test instances shown in Table 1 we used the following

C code, the first two lines of which have been adapted from [11, p. 46]:

#define E(m) s = s * 1103515245 + 12345, \
r = (unsigned int) (s >> 16) % w, m > 0

char *f(int n, int t, int d, unsigned long s)
{

int r, w = 1 << n;
char *v = (char *) calloc(w, 1);
while (E(t)) if (!v[r]) v[r] = 1, t--;
while (E(d)) if (!v[r]) v[r] = 2, d--;
return v;

}

The function f(n,t,d,s) returns a pointer v for the truth vector [v[0],v[1], : : : ,v[2n �

1]] — where v[i] (0� i � 2n� 1) represents a true, false, or incompletely specified minterm

if v[i] is 1, 0, or 2, respectively — for an n-variable switching function with t true and d

incompletely specified minterms.

