
Multi-level Logic Synthesis Based on Pseudo-Kronecker

Decision Diagrams and Local Transformation

Tsutomu Sasao, Hiraku Hamachi, Seiji Wada, and Munehiro Matsuura

Department of Computer Science and Electronics

Kyushu Institute of Technology

Iizuka 820, Japan

Abstract| This paper presents a method to derive

multi-level logic networks using ANDs, ORs, EXORs

and inverters. The design method �rst generates a

pseudo-Kronecker decision diagram (PKDDs) from a

given function. Then, it generates multi-level logic

networks consisting of ANDs, ORs, EXORs and in-

verters. Finally, it simpli�es the networks by using

a local transformation method. Experimental results

using MCNC benchmarks are shown.

Key words: multi-level logic synthesis, EXOR, Reed-

Muller expansion, pseudo Kronecker decision dia-

gram, BDD, local transformation.

I. Introduction

Most logic synthesis systems use design methods based

on the AND, OR, and NOT operations. They produce

excellent networks for control networks: In many cases,

the qualitys of the produced networks are comparable to

manually designed ones. However, for arithmetic net-

works, error correcting networks, and networks for tele-

communications, manually designed ones are often much
better than the ones produced by logic synthesis systems.

To design such networks, we have to utilize EXOR gates

in addition to AND, OR, and NOT gates. In this paper,

we present a method to derive multi-level logic networks

using ANDs, ORs, EXORs and inverters.

Various methods exist to generate multi-level networks.

They can be classi�ed in three ways according to the ini-

tial representation of the logic function:

1. Sum-of-products expressions (SOPs). For exam-

ple, [8] uses algebraic factorization followed by local

transformations to derive multi-level networks. MIS

[1] is an enhanced system.

2. Exclusive-or sum-of-products expressions (ESOPs).

For example, [19] uses algebraic factorization to de-

rive multi-level networks, while [16] uses a graph col-

oring method to reduce the number of fan-in's in

EXOR gates.

3. Decision diagrams (DDs). For example, [10] uses

functional decision diagrams (FDDs), and [4] uses bi-

nary decision diagrams (BDDs) to derive multi-level

networks, respectively.

If an ESOP representation of a function is simpler than

the SOP representation, we should use the ESOP as the

initial representation. However, for many functions, both

SOPs and ESOPs are too large to generate. In such cases,
we should use DDs, since they are often smaller than

SOPs and ESOPs.

In a BDD, if each node is replaced by a two-input se-

lector, we have a network for f . In this paper, we use

PKDDs (pseudo Kronecker decision diagrams) to repre-

sent logic functions. PKDDs are generalization of BDDs,

and require fewer nodes than BDDs [18]. We will show a

method to derive multi-level networks consisting of ANDs,

ORs, EXORs and inverters. First, the given function is

represented by a PKDD, then each node of the PKDD

is replaced by a module containing an EXOR gate (Fig.

1.1), and �nally a multi-level logic network for f is real-

ized. The network generated in this way contains many

redundant gates. To remove such gates, we use a local

transformation method [7]. This paper reports the de-

sign results for many benchmark functions. For arith-
metic function, the synthesized networks require many

fewer gates than ones generated by the conventional de-

sign methods.

(a) S

1f

0f

X

(b) pD

2f

0f

X

1f

(c) nD

X

2f

Figure 1.1: Circuits for the Shannon, the positive Davio,
and the negative Davio expansions.

II. Binary Decision Diagrams

An arbitrary logic function f can be represented by

f = �x1f0 � x1f1; (2.1)

f = f0 � x1f2; or (2.2)

f = �x1f2 � f1; (2.3)

where f2 = f0� f1. (2.1) is the Shannon expansion, (2.2)

is the positive Davio expansion, and (2.3) is the negative

Davio expansion. For a given function f and x, the sub-

functions f0, f1 and f2 are unique. If we recursively apply

the Shannon expansions to f0 and f1, then we have

f0 = �x2f00 � x2f01; and

f1 = �x2f10 � x2f11:

In the similar way, if we apply the same expansion to f00
and f10, we have

f00 = �x3f000 � x3f001;

f01 = �x3f010 � x3f011;

f10 = �x3f100 � x3f101; and

f11 = �x3f110 � x3f111:

Fig.2.1 shows the Shannon tree. We can simplify this tree

by using two rules:

1. If two sub-graphs represent the same functions, delete

one, and connect the edge to the remaining sub-

graph.

2. If both edges of a node point to the same sub-graph,

delete that node, and directly connect its edge to the

sub-graph.

S

S

S

f001f000

S

f011f010

S

f101f100

S

f111f110

S

X3

X2

X1

f01
f00

f1f0

f11f10

X2

X3 X3 X3

Figure 2.1: Shannon tree.

A reduced binary decision diagram (BDD) is obtained

in this way. Given a function f and the order of the input

variables, a unique BDD exists. Algorithms to manipulate

BDDs have been developed, which are indispensable in

logic synthesis [3].

III. PKDD

In the expansion tree for f , if any type of the three ex-

pansions is allowed for each node, then we have a decision

tree shown in Fig.3.1. In this tree, the Shannon expan-

sion is used for x1, the positive and the negative Davio

expansions are used for x2, and all the three types of ex-

pansions are used for x3. Such a tree is called a pseudo-

Kronecker tree, and the simpli�ed decision diagrams are

called pseudo-Kronecker decision diagrams (PKDDs). For

a function of n-variables, given an order of the input vari-

ables, there exist at most 32
n

�1 di�erent PKDDs. A

PKDD for f with the minimum number of nodes is called

a minimum PKDD.

S

S

f010f000

pD

f022f020 f112f111

S

f121f120

X3

X2

X1

f02
f00

f1f0

f12f11

X2

X3 X3 X3

pD nD

nD

0 1 0 2 1 2 0 1

Figure 3.1: Pseudo-Kronecker tree.

IV. Optimization of PKDDs

In this part, we show a method to represent given func-

tions by PKDDs using as few nodes as possible. In opti-

mizating PKDD's, choices are made from two parameters:

1. Permutation of the input variables (n! ways).

2. Selection of the expansion method for every node

(32
n

�1 ways).

Note that there are n! 32
n

�1 combinations. Even for small

n, this is very large and it is virtually impossible to con-

sider all these combinations when n is large.

To �nd a simple PKDDs e�ciently, we use special
a data structure called an EXOR ternary decision dia-

gram (ETDD). Fig. 4.1 shows the EXOR ternary deci-

sion tree (ETDT) for a function f(x1; x2; : : : ; xn). Note

that f = �xf0 � xf1, where f0 = f(0; x2; x3; : : : ; xn),

f1 = f(1; x2; x3; : : : ; xn) and f2 = f0 � f1. ETDTs for

f0, f1, and f2 are derived in similar ways.

An ETDD is a simpli�ed version of an ETDT, and can

be generated by using the following rules:

1. Merge sub-graphs representing the same functions.

2. Delete nodes representing f = �xf0 � xf1 if f0 = f1.

Example 4.1 Consider the function:

f = �x2x4 � �x1x2�x3 � �x1x2x4 � x1�x3:

To derive the ETDD for f , we obtain subfunctions:

f0 = �x2x4 � x2�x3 � x2x4;

f1 = �x2x4 � �x3;

f2 = x2�x3 � �x3 � x2x4 = �x2�x3 � x2x4:

Next, we obtain sub-sub functions:

f00 = x4; f10 = x3 � �x4; f20 = �x3;
f01 = �x3 � x4; f11 = �x3; f21 = x4;

f02 = �x3; f12 = x4; f22 = �x3 � x4:

Fig. 4.2 shows the derivation tree for these sub-functions.
Note that some sub-functions are the same. Thus, the
ETDT in Fig. 4.2 is simpli�ed into the ETDD in Fig. 4.3.
In a similar way, we can derive the sub-functions, and
�nally, we obtain the ETDD shown in Fig. 4.4.
From here, we will derive a simple PKDD for the

function to show the idea of the simpli�cation algorithm.
Fig. 4.3 shows that f01 = f10 = f22 is more complex than
other functions. Thus, to represent f0, we use f00 and
f02; to represent f1, we use f11 and f12; and to represent
f2, we use f20 and f21. In order to represent f , we ar-
bitarily use f0 and f1, since the complexities of f0, f1, and
f2 are the same. Therefore, we have the PKDD shown in
Fig. 4.5. (End of example.)

As shown in the previous example, an ETDD contains all

the information necessary to derive a simple PKDD.

In a PKDD, if all the nodes are Shannon nodes, then

it is a BDD. On the other hand, if all the nodes are posi-

tive Davio nodes, then it is a functional decision diagram

(FDD) [10].

We use the following heuristic algorithm to �nd simple

PKDDs.

Algorithm 4.1 (A heuristic optimization of PKDDs)

1. Obtain orderings of the input variables that reduce
the number of nodes in ETDDs, BDDs, and FDDs.
Use simulated annealing to �nd good orderings of the
input variables. For each of the three decision dia-
grams, perform the following steps, and choose the
one with the fewest nodes.

2. Construct an ETDD.

3. As initial conditions for expansions, construct three
types of decision diagrams, where

(a) All nodes represent the Shannon expansions,

(b) All nodes represent the positive Davio expan-
sions, and

(c) All nodes represent the negative Davio expan-
sions.

f

0 1 2

f0 f1 f2

Figure 4.1: EXOR ternary decision tree.

f

0
1

2 0
1

2 0
1

2

x4 x4

f0 f1 f2

x 3 4x xx3x4 x3 x33 4x x 4 3x

Figure 4.2: EXOR ternary decision tree for the function

in Example 4.1.

For each of three types of decision diagrams, perform
step 4, and �nd the one with the fewest nodes.

4. While we can reduce the number of nodes, do the fol-
lowings:
From the root node down to the leaf nodes, change
the method of expansions to each node. Count the
nodes, when the expansions are S, pD, and nD, in
order. Find the expansion that requires the fewest
nodes, and adopt that expansion.

Example 4.2 Fig. 4.6 illustrates the optimization of ex-
pansion methods. At �rst, all the nodes are set to the
Shannon nodes. Then, in the root node the best expan-
sion is found from the three expansions. Suppose that the
positive Davio expansion produces the best results in the
root node. Then, the similar operations are done for each

0
1

2

2
0

1 2
0

1 1

2
0

x4x3

f0 f1 f2

3 4 x4x x

Figure 4.3: Derivation of EXOR ternary decision diagram

in Example 4.1.

f0 f1 f2

0 1

0
1

2

2 0
1 2

0

1 1

2 0

0 1,2 1
2

0 0,2
1

0 1,2 1

0,2

f

Figure 4.4: EXOR ternary decision diagram in Example
4.1.

0 1

0 1

2 0 2 1

1 00 1

0 1

f

S

pD nD

S

S

S

Figure 4.5: PKDD for the function in Example 4.1.

sub-tree. We continue this operation while we can reduce
the number of nodes.
Fig. 4.7 shows the simpli�cation of PKDD for f =

x1 � x2. Fig. 4.7(a) shows the EXOR TDD for f . If we
use the positive Davio expansion in the root node, then we
have Fig. 4.7(b). And, we can simplify the PKDD to ob-
tain Fig. 4.7(c). Note that an ordinary BDD Fig. 4.7(d)
requires three non-terminal nodes, while PKDD requires
only two nodes.

V. Generation of Logic Networks

5.1. Strategy for expansions

In this paper, we assume that EXOR gates are more

expensive than ANDs and ORs. When we expand a func-

tion f = �xf0 _ xf1, we can choose the type of expansion

0 1 2

0
1

2 0
1

2 0
1

2
S S S

pD nDS x1

x2

f

0 1 2

0
1

2 0
1

2 0
1

2

pD

S SpD nDS

x1

x2

f

Figure 4.6: Selection of expansions.

0

1

2

0 1

2

0
1

2

pD nDS
x1

x2

f=

0 1

S S

S

x1 x2

pD

10

S

0

20

1

0 1

S S

S
0 1

0
1

0
1

pD

10

S

0
1

20

2

pD nDS

(a) (b)

(c) (d)

Figure 4.7: Simpli�cation of decision diagrams for x1�x2.

by checking the implication relation of f0 and f1.

f(x) � g(x), (g(x) � f(x)) denotes that f(a) � g(a).

for each assignment of the input variables a. f � g de-

notes f � g and f 6= g.

Theorem 5.1 Let the given function be represented as
f = �xf0 � xf1.

If f0 � f1 then f = f0 _ xf1; (5.1)

if f0 � f1 then f = �xf0 _ f1: (5.2)

Theorem 5.2 Let the given function be represented as

x2 x1

f

x4

x3

x3

f0

f1

f02

f00

11f

f12x4

Figure 5.1: Network for the function in Example 4.1.

f = g � x�h.

If gh = 0 then f = g _ x�h; (5.3)

if g = 0 then f = x�h; and (5.4)

if g � h then f = (x�h) � g; (5.5)

where x� denotes x or �x.

In the case of (5.1), f is positive with respect to x. In the

case of (5.2), f is negative with respect to x. If (5.1) or

(5.2) holds, then we use the Shannon expansion. When we

generate multi-level logic networks, for the Shannon ex-

pansions we use the OR operators instead of the EXORs.

The condition for (5.3) is essentially the same as (5.1) or

(5.2). Also the condition for (5.4) is a special case of (5.3).

In the case of (5.5), an EXOR gate is replaced by an AND

gate and an inverter.

5.2. Generation of logic networks

In a PKDD, if each node is replaced by one of the cir-

cuits in Fig.1.1, we have a network for f . Usually, PKDDs

require fewer nodes than BDDs. So, from PKDDs, we can

expect networks with fewer gates than ones from BDDs.

Example 5.1 Fig. 5.1 shows the network for the PKDD
in Fig. 4.5. Note that if the both children of a node are
constants, then the node can be removed, and a variable
or its complement can be connected.

(End of Example)

VI. Local Transformation

The following rules are used in the local transforma-

tions:

1. Simpli�cation of ANDs and ORs (Fig. 6.1).

Reduction of constants.

Merging cascaded gates.

2. Inverter reduction (Fig. 6.2).

Reduction of cascaded inverters.

de Morgan's transformation.

3. Simpli�cation of EXORs (Fig. 6.3).

Reduction of constants.

Merging cascaded gates.

Extraction of inverters.

4. Simpli�cation of AND-EXOR (OR-EXOR) (Fig.

6.4).

Reduction of same inputs in the cascade.

5. Simpli�cation considering the output function (Fig.

6.5).

Detection of constant outputs.

Sharing outputs.

Sharing inverted outputs.

6. Simpli�cation using implication relation (Fig. 6.6).

7. Simpli�cation considering inputs and outputs (Fig.

6.7).

1 0

(a)Reduction of constants

(b)Merging cascaded gates

Figure 6.1: Simpli�cation of ANDs and ORs.

(a)Reduction of cascaded inverters

(b)de Morgan’s transformations

Figure 6.2: Inverter reduction.

VII. Experimental Results

We developed programs to generate PKDDs from given

functions, and to transform PKDDs into multi-level logic

networks.

0 1

f
f
-

(a)Reduction of constants

(b)Merging cascaded gates

(c)Extraction of inverters

Figure 6.3: Simpli�cation of EXORs.

f
fg

g
f

g
f

f

g
f

Figure 6.4: Simpli�cation of AND-EXORs.

Tables 7.1 and 7.2 compare the numbers of non-

terminal nodes in BDDs and PKDDs for various bench-

mark functions. In these tables, the columns headed

\nodes" denote the number of nodes in the simpli�ed de-

cision diagrams.

These tables also compare the number of gates and

interconnections. By using PKDDs, number of nodes,

gates, and interconnections are reduced by, on the aver-

age, 21 percent.

Orderings of the input variables that minimize the num-

ber of the nodes in BDDs do not always minimize the

number of nodes in PKDDs.

Fig. 7.1 shows the four-bit adder (ADR4) generated by

the design method. It is a cascaded ripple carry adder.

Up to n = 6, the algorithm produced the ripple carry

adders.

For arithmetic networks, the generated networks re-

quire many fewer gates when we start from PKDDs in-
stead of BDDs. For control networks, the generated net-

works require more gates than one generated by conven-

tional two-level methods.

VIII. Conclusion and Comments

In this paper, we presented a method to generate multi-

level logic network by using EXOR gates. This method

f = 0

0

f = 1

1

f f

f

(a)Detection of constant outputs

(b)Sharing outputs

(c)Sharing inverted outputs

f = g

f g

f

g

Figure 6.5: Simpli�cation considering output function.

fg

(a)Simplification of ANDs and ORs

fg=0 fVg=1

(b)Simplification of EXORs

fg

f g

f
g

f
g

f
g

f
g

Uf g

Uf g

Figure 6.6: Simpli�cation using implication relation.

�rst generates a PKDD for a given function, and then

transforms it into a multi-level network, and �nally sim-

fz=0

fVz=1

f
h z

g
h z

g
h

z

f
h z

f
g h z

f
g

h
z

f z

U

f zU

Figure 6.7: Simpli�cation considering inputs and outputs.

Table 7.1: Optimization Results (BDD).

Function In Out nodes Gates Fan-in Levels
NOT AND OR AND OR

5xp1 7 10 68 21 33 30 68 61 10
add6 12 7 78 17 104 59 208 119 24

adr4 8 5 29 11 15 13 30 26 13
alu2 10 8 88 13 74 52 154 112 17
apla 10 12 102 10 81 51 185 103 16

bw 5 28 108 9 94 78 193 161 10
clip 9 5 105 18 97 58 196 129 17

co14 14 1 27 14 37 13 75 26 27
con1 7 2 64 6 12 10 25 21 7

dc2 8 7 64 7 53 35 116 70 13
dist 8 5 152 28 144 98 293 202 17
dk17 10 11 62 10 45 21 105 42 11

duke2 22 29 377 21 280 157 652 323 25
ex5 8 63 288 22 157 140 352 321 12

f51m 8 8 67 23 38 30 76 61 13
in2 19 10 232 17 269 163 565 334 22
in7 26 10 98 16 63 42 140 88 23

inc 7 9 72 16 58 39 127 79 13
misex1 8 7 38 10 29 20 67 40 9

misex3 14 14 585 50 505 319 1127 663 26
mlp4 8 8 141 12 160 111 330 224 17

radd 8 5 39 11 44 26 88 53 16
rd53 5 3 23 9 20 12 40 24 10
rd73 7 3 43 15 35 24 70 50 15

rd84 8 4 59 20 49 32 101 67 17
risc 8 31 67 8 49 21 107 45 8

rot8 8 5 75 15 57 42 121 86 15
sao2 10 4 85 10 77 43 161 100 17
sex 9 14 49 10 30 21 66 46 9

sqr8 8 16 233 33 253 171 518 343 16
sym6 5 2 15 5 11 8 22 18 7

sym9 9 1 33 9 31 20 62 44 14
t481 16 1 32 18 31 15 64 30 29

tial 14 8 692 82 609 377 1244 819 27
ts10 22 16 146 6 96 48 288 96 7
vg2 25 8 194 19 131 102 307 212 23

xor5 5 1 9 8 8 4 16 8 10

Total 4664 637 3891 2509 8390 5254 588

Table 7.2: Optimization Results (PKDD).

Function In Out nodes Gates Fan-in Levels
NOT AND OR EXOR AND OR EXOR

5xp1 7 10 33 12 17 5 14 35 10 30 12
add6 12 7 57 0 41 1 21 86 6 52 11

adr4 8 5 15 0 7 3 7 14 6 14 10
alu2 10 8 70 19 58 27 8 128 57 16 14
apla 10 12 96 10 81 51 0 185 103 0 16

bw 5 28 91 14 86 43 20 185 87 40 8
clip 9 5 79 19 62 39 12 127 87 29 15

co14 14 1 26 14 24 6 7 48 12 14 26
con1 7 2 15 6 13 9 0 27 19 0 7

dc2 8 7 56 8 39 21 5 90 44 11 12
dist 8 5 132 21 105 59 26 213 122 57 15
dk17 10 11 61 11 46 20 0 107 40 0 11

duke2 22 29 343 37 268 112 16 634 227 33 23
ex5 8 63 228 39 166 85 18 372 194 37 15

f51m 8 8 30 10 17 4 13 34 8 28 12
in2 19 10 205 23 253 149 2 536 301 4 23
in7 26 10 84 19 53 17 17 126 35 38 20

inc 7 9 65 12 53 27 11 115 55 23 11
misex1 8 7 34 9 29 18 1 66 36 2 9

misex3 14 14 500 36 437 222 90 953 452 185 26
mlp4 8 8 99 9 86 30 27 176 64 69 13

radd 8 5 26 0 16 1 10 34 4 23 7
rd53 5 3 13 0 8 2 6 16 4 13 7
rd73 7 3 21 0 14 2 12 28 6 25 9

rd84 8 4 29 0 18 2 16 39 6 33 10
risc 8 31 55 9 42 12 0 91 26 0 8

rot8 8 5 64 17 59 31 6 122 62 12 15
sao2 10 4 76 10 64 33 6 135 80 12 17
sex 9 14 44 14 34 11 0 81 23 0 9

sqr8 8 16 171 19 144 63 51 293 126 122 14
sym6 5 2 15 7 12 7 0 24 16 0 8

9sym 9 1 26 10 20 1 17 40 4 36 12
t481 16 1 17 10 9 0 3 22 0 9 6

tial 14 8 413 39 377 231 42 774 545 85 25
ts10 22 16 146 6 96 48 0 288 96 0 7
vg2 25 8 191 24 137 94 0 315 196 0 22

xor5 5 1 5 0 0 0 1 0 0 5 1

Total 3655 511 3003 1490 485 6590 3167 1057 492

F5

F4x3

x7

x7

x4x8

x3

x6

x2

x2 F3

x5

x5

x1

x1

F2

F1

x6

x4
x8

Figure 7.1: 4-bit adder generated by the algorithm.

pli�es the network by local transformation methods.

Because PKDDs require fewer nodes than BDDs, they
are promising for the initial solutions for the arithmetic

networks. When, the given function is represented by a

PKDD with a small number of nodes, this method is quite

e�ective. For some functions, the conventional method

based on AND-OR two-level expression produces simpler

networks.

The presented method tends to produce networks with

more levels than conventional ones, because of the follow-

ings reasons:

1. The present method mainly uses two-input gates as

basic gates, while the conventional methods use gates

with more inputs.

2. The present method assumes that only ANDs, ORs,

EXORs, and inverters are basic elements. The num-

ber of gates and logical levels can be reduced by using

NANDs, NORs, EXNORs etc.

In the practical design system, we have to decide which

method to use. For the control networks, we should use

the conventional method using AND-OR two-level logic.

For the arithmetic networks, we should use the method

presented. The problem is to �nd the best method to

represent the given function.

Acknowledgments

This work was supported in part by a Grant in Aid for

Scienti�c Research of the Ministry of Education, Science

and Culture of Japan.

References

[1] R. K. Brayton, R. L. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wong, \MIS: A multiple-level optimazation system,"
IEEE Trans. CAD, vol. CAD-6, No. 6, pp. 1062-1081, Nov.
1987.

[2] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic,
Field Programmable Gate Arrays, Kluwer Academic Publish-
ers, Boston 1992.

[3] R. E. Bryant, \Graph-based algorithms for Boolean function
manipulation," IEEE Trans. Comput. Vol. C-35, No. 8, Aug.
1986, pp. 677-691.

[4] L. Burgun, N. Dictus, A. Greiner, E. Prado Lopez, and C. Sar-
wary, \Multilevel logic optimization of very high complexity
circuits," Proceedings of EURO-DAC '94, 1994, pp.14-19.

[5] M. Davio, J-P Deschamps, and A. Thayse, Discrete and

Switching Functions, McGraw-Hill International, 1978.

[6] R. Drechsler, A. Sarabi, M. Theobald, B. Becker and M.
A. Perkowski, \E�cient representation and manipulation
of switching functions based on ordered Kronecker Func-
tional Decision Diagrams," Fachbereich Informatik, Univer-
sitat Frankfurt, Interner Bericht 14/93.

[7] K. Enomoto, S. Nakamura, T. Ogihara, and S. Murai,
\LORES-2: A logic reorganization system," IEEE Design and

Test, Oct. 1985, pp.35-42.

[8] D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel,
\Socrates: A system for automatically synthesizing and opti-
mizing combinational logic," Design Automation Conference

1986, pp.79-85, June 1986.

[9] N. Ishiura, H. Sawada, and S. Yajima, \Minimization of binary
decision diagrams based on exchange of variables," ICCAD-

91, pp. 472-475, Nov. 1991.

[10] U. Kebschull, E. Schubert and W. Rosenstiel, \Multilevel logic
synthesis based on functional decision diagrams," EDAC 92,
1992, pp. 43-47.

[11] U. Kebschull, E. Schubert, and W. Rosenstiel, \Multilevel
logic synthesis based on functional decision diagrams," in
Proc. European Conference on Design Automation EDAC '92,
March 1992, pp. 43-47.

[12] S. Minato, N. Ishiura, and S. Yajima, \Shared binary decision
diagram with attributed edges for e�cient Boolean function
manipulation," 27th Design Automation Conference, pp. 52-
57, June, 1990.

[13] L. McKenzie, L. Xu and A. Almaini, \Graphical representa-
tion of generalized Reed-Muller Expansions," IFIP 10.5 Work-

shop on Applications of the Reed-Muller Expansion in Circuit

Design, Hamburg, Sept. 16-17, 1993.

[14] T. Sasao, \Input variable assignment and output phase opti-
mization of PLA's," IEEE Trans. on Comput. vol. C-33, No.
10, pp. 879-894, Oct. 1984.

[15] T. Sasao and P. Besslich, \On the complexity of MOD-2 Sum
PLA's," IEEE Trans. on Comput. Vol.39. No.2, Feb. 1990.

[16] T. Sasao (ed.), Logic Synthesis and Optimization, Kluwer Aca-
demic Publishers, 1993.

[17] T. Sasao, \EXMIN2: A simpli�cation algorithm for exclusive-
OR Sum-of-products expressions for multiple-valued in-
put two-valued output functions," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,
vol.12, No.5, May 1993, pp.621-632.

[18] T. Sasao and J. T. Butler, \A design method for look-up ta-
ble type FPGA by pseudo-Kronecker expansion," Proc. In-

ternational Symposium on Multiple-Valued Logic, May 1994,
pp.97-106.

[19] J. M. Saul, \Towards a mixed exclusive-/inclusive-or factored

form," in IFIP WG 10.5 Workshop on Applications of the

Reed-Muller Expansion in Circuit Design, Sept. 1993, pp. 2-5.

