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Abstract

In this paper, we de�ne the LP equivalence relation, and
introduce an LP characteristic vector, which is invariant
under this relation. We derive the characteristic vec-
tors for functions on �ve or fewer input variables and
show that the characteristic vectors uniquely identify the
equivalence classes. We have obtained the table of mini-
mum AND-EXOR expressions (MESOPs) for the repre-
sentative functions of the LP equivalence class of 5 vari-
ables. Thus, the MESOP of a given 5-variable function
can be found by a table look-up method.

1 Introduction

With the increasing complexity of LSI, logic design
has become the work of a logic synthesis system instead
of a human. Most logic synthesis tools use AND and OR
gates as basic logic elements. However, arithmetic and
error correcting circuits can be realized with many fewer
gates if EXOR gates are available as well as AND and
OR gates. Table 1 compares the number of 4-variable
fucntions requiring t products. This shows that AND-
EXORs require fewer products than AND-ORs. Thus,
the establishment of a design method using EXOR gates
in addition to AND, OR and NOT gates is vitally im-
portant.

Among various AND-EXOR type logical expres-
sions[1,9], ESOP are the most general class and can rep-
resent functions with the fewest products[7]. But, the
minimization of ESOPs is extremely di�cult. Although
minimum solutions can be obtained by an exhaustive
or a virtually exhaustive method for functions with a
small number of variables[4,6], an exact minimization
of ESOPs is di�cult in most cases. Therefore, heuristic
algorithms to obtain near minimum ESOPs have been
developed[3,10].

When an ESOP of an n-variable function is ex-
panded by one or more variables, ESOPs of sub-
functions with n � 1 or fewer variables are obtained.
If we know minimum ESOPs (MESOPs) for these sub-
functions, we can obtain a simple ESOP e�ciently by
substituting these MESOPs into the sub-functions. Be-

Table 1: Numbers of 4-variable functions requiring t

products in AND-ORs and AND-EXORs
t AND-OR AND-EXOR
0 1 1
1 81 81
2 1804 2268
3 13472 21744
4 28904 37530
5 17032 3888
6 3704 24
7 512 0
8 26 0

Average #
of products 4.13 3.66

cause an arbitrary function for n variables can be de-
composed into a sum of 2n�k functions of k variables by
the Shannon expansion, a simple ESOP can be obtained
quickly by using MESOPs of k variables. As for k � 4,
MESOPs of all the functions have been obtained by an
exhaustive method[4]. But, in the case of k � 5, the
number of the functions is too large.

For obtaining MESOPs for n-variable functions, we
can drastically reduce the number of functions to con-
sider by using the LP equivalence class[1,8]. The au-
thors have given the table of LP equivalence represen-
tative functions for �ve variables[5]. In this paper, we
introduce the LP characteristic vector, and prove that
the vector uniquely speci�es the LP equivalence class of
a �ve or fewer variable function. When we use the table
of MESOPs of the LP equivalence representative func-
tions in the minimization or simpli�cation of ESOPs,
we have to identify the equivalence class of a given func-
tion. In the case of n � 4, all the equivalent functions
of a given function can be identi�ed by a table look-up
method. But, in the case of n � 5, the same approach
is unrealistic because the number of the functions is too
large. Also, a naive method based on the de�nition



of the LP equivalence relation is very time consuming
because the number of combinations is proportional to
n! � 6n. But, we can do this with complexity O(n � 3n)
by using the LP characteristic vector. Thus, the mini-
mization for 5-variable ESOPs can be done by the table
look-up method. Also, we show that ESOPs require, on
the average, fewer products than SOPs for 5-variable
functions.

2 De�nitions and Basic Properties of

Minimum ESOPs

De�nition 1 x and �x are literals of a variable x. Let
Si � f0; 1g and Si 6= ; (i = 1; 2; � � � ; n). T =

xS11 xS22 � � �x
Sn

n
is a product term, where x

f0g

i
= �xi,

x
f1g

i
= xi, x

f0;1g

i
= 1 and x;

i
= 0. For simplicity, x

f0g

i
,

x
f1g

i
and x

f0;1g

i
are denoted by x0

i
, x1

i
and x2

i
, respec-

tively.

De�nition 2 Product terms combined with OR oper-
ators form a Sum-Of-Products expression(SOP). Prod-
uct terms combined with EXOR operators form an
Exclusive-or Sum-Of-Products expression(ESOP). An
SOP for f is said to be a minimum SOP (or MSOP) for
f if the number of products is the minimum. An ESOP
for f is said to be a minimum ESOP (or MESOP) if the
number of products is the minimum. The number of
products in an ESOP F is denoted by � (F ). The num-
ber of products in an MESOP for f is denoted by �(f).
The maximum number of the products in MESOPs for
functions of n variables is denoted by  (n).

Example 1 Let

�
f0
f1

�
be a vector representation of

f = �xi � f0 � xi � f1, and let M =

�
1 0
1 1

�
be a binary

matrix. We perform matrix multiplication in the usual
way except that � replaces multiplication and � replaces

addition. That is

�
g0
g1

�
=

�
1 0
1 1

� �
f0
f1

�
, yields�

f0
f0 � f1

�
, which is the vector representation of g =

�xi � g0 � xi � g1 = �xi � f0 � xi(f0 � f1) = 1 � f0 � xi � f1.
The matrix multiplication has, in e�ect, transformed
�xi�f0�xi�f1 into 1�f0�xi�f1. The above transformation
shows that interchanging the literals �xi and 1 in the
ESOP for f gives the ESOP for g. (End of example)

De�nition 3 A regular matrix is one whose determi-

nant is nonzero. For example,M =

�
1 0
1 1

�
is regular.

Lemma 1 [8] Let a function f be expanded as f =

�xi � f0 � xi � f1. Let

�
g0
g1

�
= M

�
f0
f1

�
, where M is

a 2 � 2 regular matrix. Let F be an arbitrary ESOP
for f , and G be the ESOP which is obtained by the
transformation of literals of a variable xi in F by M .
Then, G represents g = �xi � g0 � xi � g1.

Remark 1 Lemma 1 shows that the transformation of
the sub-functions for f by the regular matrix is equiv-
alent to the transformation of the literals in the ESOP
for f by the same regular matrix. The number of 2� 2
regular matrices is 6, and the transformations by these
matrices correspond to the following six literal transfor-
mations: 1)identity, 2)xi $ �xi, 3)xi $ 1, 4)�xi $ 1,
5)�xi ! 1! xi ! �xi and 6)�xi ! xi ! 1! �xi.

Theorem 1 [8] Let a function f be expanded as f =

�xi � f0 � xi � f1. Let

�
g0
g1

�
= M

�
f0
f1

�
, where M is

a 2 � 2 regular matrix. Then, �(f)=�(g), where g =
�xi � g0 � xi � g1.

De�nition 4 The relation � satisfying the following
conditions is called the LP equivalence relation.
1)f � f .
2)If f1 = f(� � � ; xi; � � � ; xj ; � � �) and
f2 = f(� � � ; xj ; � � � ; xi; � � �), then f1 � f2.
3)Let a function f(x1; x2; � � � ; xn) be expanded as f =

�xi �f0�xi �f1 by a variable xi. Let

�
g0
g1

�
=M

�
f0
f1

�
,

where M is a 2� 2 regular matrix. Then g � f , where
g = �xi � g0 � xi � g1.

Example 2 Consider a two-variable function f(x; y) =
x� y. Examples of the literal transformations for f are
as follows: x � y � x� �y (interchange of literals y and
�y), x � �y � 1 � x�y (interchange of literals x and 1).
Table 2 shows the LP equivalence classes of 2-variable
functions. (End of example)

Table 2: LP equivalence classes of 2-variable functions
equivalence
classes functions

1 0
�x�y �xy x�y xy

2 �x x �y y

1

3
x � �y x � y

1 � �x�y 1� �xy 1 � x�y 1� xy

Remark 2 The number of di�erent 2 � 2 regular ma-
trices is 6, and the number of n-variable functions which
are LP equivalent to an n-variable function is at most
n!6n.



Table 3: Numbers of equivalence classes under di�erent equivalence relations
n 1 2 3 4 5 6

Total # of functions 4 16 256 65536 4:3� 109 1:8� 1019

P equivalence classes 4 12 80 3984 37333248 2:5� 1016

NP equivalence classes 3 6 22 402 1228158 4:0� 1014

NPN equivalence classes 2 4 14 222 616126 2:0� 1014

LP equivalence classes 2 3 6 30 6936 � 5:5 � 1011

Example 3 The total number of the three variable
functions f(x; y; z) is 256. These functions can be par-
titioned into 6 LP equivalence classes. The MESOPs
for the representative functions are 0, �x�y�z, �xy � �xz,
�x� �y�z� �xyz, x�y�z� �xyz and �x�y�z�x�yz. MESOPs for
other functions can be obtained by the permutation of
variables and the literal transformations of the MESOP
for the representative functions. (End of example)

Table 3 compares numbers of equivalence classes
under di�erent equivalence relations.

3 MESOPs for the LP Equivalence Rep-

resentative Functions

In this section, we show an e�cient algorithm to
obtain the MESOPs for the representative functions.

De�nition 5 The set of the representative functions
for n variables is denoted by LP (n). The set of the
representative functions, whose number of products in
the MESOP is t, is denoted by LP (n; t). The set
of MESOPs for functions of LP (n; t) is denoted by
M(n; t). M(n; t) can be represented by M(n; t) =
fFm(f)jf 2 LP (n; t)g.

De�nition 6 The function which is represented by an
ESOP F is denoted by r(F ). An MESOP for f is de-
noted by Fm(f). The representative function for f is
denoted by lp(f).

De�nition 7 The set of all the products for n variables
is denoted by PT (n).

Lemma 2 Let F be an MESOP for a function f . Let p
be one of the products in F , and G be the ESOP which
is obtained by deleting p from F . Then G is an MESOP.

Proof: Let �(F ) = t. Suppose that G is not an
MESOP. Then, there exists G0 which represents the
same function as G and �(G0) � t� 2. Let H = G0

� p.
Then, we have � (H) � t� 1. This means that the func-
tion f can be represented by an ESOP whose number
of products is at most t � 1, because H represents the
function f . This contradicts the hypothesis. Hence the
lemma. (Q.E.D.)

Lemma 3 Let F be an MESOP whose number of prod-
ucts is t, and p be a product term. Let G = F � p and
g = r(G). Then, t� 1 � �(g) � t+ 1.

Proof: 1)The upper bound exists because �(F ) = t.
2)Suppose that �(g) � t � 2. Let G0 be the MESOP
for G. By the hypothesis of the lemma, we have
� (G0) � t�2. Next, we consider the ESOP H = G0

�p.
We have

�(H) � t � 1: (1)

Because both H and F represent the same function and
F is the MESOP, we have

�(H) = t: (2)

However, (1) contradicts (2). Therefore, we have �(g) �
t � 1. From 1) and 2), we have the lemma. (Q.E.D.)

Lemma 4 Let H = fF � qjF 2 M(n; t); q 2 PT (n)g
and R = flp(f)jf = r(F ); F 2 Hg. Then LP (n; t+1) �
R.

Proof: Let g 2 LP (n; t + 1) and G be an MESOP
for g. Let p be one of the products in G, and K be the
ESOP which is obtained by deleting the product p from
G. Then we have G = K � p. From Lemma 2, K is
an MESOP. Let K represent the function k, and � be
the procedure to obtain lp(k) from k. Let K 0 be the
ESOP applying the transformation � to the literals of
K, and p0 be the product applying the tranformation �
to the literals of p. Then, we have K 0

2 M(n; t) and
p0 2 PT (n). Let G0 = K 0

� P 0. Obviously, we have
G0
2 H. Let G0 represents the function g0. By apply-

ing the inverse transformation of � to g0, we obtain the
representative function g. Therefore, we have g 2 R.
Hence the lemma. (Q.E.D.)

3.1 Algorithm to obtain M(n,t)

In this part, we show an algorithm to obtain the
MESOPs of the LP equivalence representative functions
by using the properties of the MESOPs described in the
previous section.

Algorithm 1 (Computation of M(n,t))
Suppose that LP (n) and M(n; 1) are given.



1)t 1.
2)Generate the set of ESOPs by EXORing one product
and an each MESOP of M(n; t).
3)Obtain the set of LP equivalence representative func-
tions of the functions which are represented by each
ESOP of 2).
4)Delete the members of the set fLP (n; s)js � tg from
the set of 3).
5)The set of the representative functions which is ob-
tained by the step 4) is LP (n; t + 1). We obtain
M(n; t + 1) by using ESOPs from which the represen-
tative functions are obtained.
6)If the MESOPs of all the representative functions are
obtained, the algorithm stops.
7)t t+ 1. Go to 2).

Remark 3 1)M(n; t) denotes the set of products of n
variables. The number of the di�erent products is 3n.
2)From Lemma 4, in order to obtain M(n; t + 1), it is
su�cient to consider the set of ESOPs that are obtained
by EXORing all the one product with each member of
M(n; t).
4)From Lemma 3, it is quite probable that the part
of ESOPs which are obtained by the step 2) are not
MESOPs. Therefore, we delete these ESOPs.

An upper bound on the number of combinations
to consider for obtaining M(n; t) by Algorithm 1 is
m = Un3

n (n), where Un = jLP (n)j. Because Un �

22
n

=(n!6n) and  (n) � 2n�2 (n � 6)[5], we have

m � 22
n

�2=n! (n � 6). Because Un = 6936 and
 (5) � 9 for n = 5, we have m � 1:5 � 107. On the
other hand, when the exhaustive method is applied, the
number of combinations to consider is

s =

 (n)X
k=1

3nCk:

When n = 5, we have s � 7� 1015. Thus, Algorithm 1
is more e�cient than exhaustive search.

4 LP Characteristic Vector and its Ap-

plications

There are about 4:3 � 109 di�erent functions of
�ve variables. These functions can be classi�ed into
6936 classes using the LP equivalence relation, and we
have obtained an MESOP for each equivalence class.
In this section, we introduce the LP characteristic vec-
tor, which is unique to each LP equivalence class for
n � 5. Therefore, the LP characteristic vector of a
given function identi�es the LP equivalence class. Thus,
the MESOP of a given function can be found by a table
look-up method.

4.1 Properties of LP characteristic vector

Theorem 2 (Expansion theorem) An arbitrary n-
variable function f(x1; x2; � � � ; xn) can be expanded as

f = f0 � xi � f2; (3)

f = �xi � f2 � f1; or (4)

f = �xi � f0 � xi � f1: (5)

where f0 = f(xi = 0), f1 = f(xi = 1) and f2 = f0 � f1.

Proof: (5) is the Shannon expansion. By setting
�x = 1 � xi in (5), we have f = (1 � xi)f0 � xif1 =
f0�xi(f0�f1) = f0�xif2. Also, by setting xi = 1� �xi
in (5), we have f = �xif0�(1��xi)f1 = �xi(f0�f1)�f1 =
�xif2 � f1. (Q.E.D.)

De�nition 8 The expansions of a given function de-
scribed by (3), (4) and (5) in Theorem 2 are called Type
0 expansions, Type 1 expansions and Type 2 expansions,
respectively. The expansion vector a = (a1; a2; � � � ; an)
of an n-variable function f(x1; x2; � � � ; xn) de�nes ex-
pansions as follows:
when ai = j, we use Type j expansion, where (i =
1; 2; � � � ; n), and ai; j 2 f0; 1; 2g.

By De�nition 8, we have the following:

Lemma 5 When an n-variable function
f(x1; x2; � � � ; xn) is expanded by an expansion vector
a = (a1; a2; � � � ; an), the set of possible products is

fx
b1

1 x
b2

2 � � �x
bn
n
jbi 2 f0; 1; 2g; bi 6= ai(i = 1; 2; � � � ; n)g.

Theorem 2 shows that an expansion of n-variable
function on some variable produces three sub-functions.
Repeating this expansion n times produces 3n coe�-
cients.

De�nition 9 Let f(x1; x2; � � � ; xn) be an n-variable
function. The Extended Truth Table for f , denoted by
ETT (f), has 3n elements, and satis�es the following
conditions: The indices which indicate the entries of
ETT (f) are represented by an n-trit vector called the
index vector. That is expressed as c = (c1; c2; � � � ; cn),
where ci 2 f0; 1; 2g(i = 1; 2; � � � ; n). When f is ex-
panded by the expansion vector a = (a1; a2; � � � ; an),

the coe�cient of the product xb11 x
b2

2 � � � x
bn
n

is stored in
the c-th entry of ETT (f), where ci = (ai+bi+1)mod 3.

Example 4 Let f(x1; x2) = f0�x1�x2�f1�x1x2�f2x1�x2�
f3x1x2. Expansions of f by a vector a are as follows:
When a = (2; 2), f = f0�x1�x2�f1�x1x2�f2x1�x2�f3x1x2.
When a = (2; 1), f = (f0 � f1)�x1�x2 � (f2 � f3)x1�x2 �
f1�x1 � f3x1.
When a = (2; 0), f = (f0 � f1)�x1x2 � (f2 � f3)x1x2 �
f0�x1 � f2x1.



When a = (1; 2), f = (f0 � f2)�x1�x2 � (f1 � f3)�x1x2 �
f2�x2 � f3x2.
When a = (1; 1), f = (f0 � f1 � f2 � f3)�x1�x2 � (f1 �
f3)�x1 � (f2 � f3)�x2 � f3.
When a = (1; 0), f = (f0 � f1 � f2 � f3)�x1x2 � (f1 �
f2)�x1 � (f2 � f3)x2 � f2.
When a = (0; 2), f = (f0 � f2)x1�x2 � (f1 � f3)x1x2 �
f0�x2 � f1x2.
When a = (0; 1), f = (f0 � f1 � f2 � f3)x1�x2 � (f1 �
f3)x1 � (f0 � f1)�x2 � f1.
When a = (0; 0), f = (f0 � f1 � f2 � f3)x1x2 � (f0 �
f2)x1 � (f0 � f1)x2 � f0.
ETT (f) is shown in Table 4. For example, when a =
(0;1), the coe�cient of x11x

2
2, that is (f1 � f3), is stored

in ETT (f) with the index c = (2; 1), because (0; 1) +
(1;2) + (1; 1) = (2; 4) � (2; 1)(mod 3). (End of
exmaple)

An algorithm to obtain the extented truth table will
be shown in Algorithm 2.

Table 4: Extended truth table for 2-variable function
c ETT (f)
00 f0
01 f1
02 f0 � f1
10 f2
11 f3
12 f2 � f3
20 f0 � f2
21 f1 � f3
22 f0 � f1 � f2 � f3

Table 5: Extended weight table for 2-variable function
c EWT (f)
00 2
01 1
02 1
10 2
11 1
12 1
20 4
21 2
22 2

De�nition 10 The number of the products in the ex-
pansion of an n-variable function f by an expansion
vector a is denoted by w(f;a), where 0 � w � 2n.

De�nition 11 Let f(x1; x2; � � � ; xn) be an n-variable
function. The Extended Weight Table for f , denoted

by EWT (f), has 3n elements, and satis�es the fol-
lowing conditions: The indices of EWT (f) are rep-
resented by n-trit vectors a = (a1; a2; � � � ; an), where
ai 2 f0; 1; 2g(i = 1; 2; � � � ; n). The a-th entry of
EWT (f) is equal to w(f;a).

Example 5 Table 5 is the extended weight table for
the function, where f0 = 1, f1 = 0, f2 = 1 and f3 = 0
in Example 4. For example, (2; 0)-th entry of EWT (f)
is 4 because the number of products is 4 according to
Example 4. (End of example)

De�nition 12 Let f be an arbitrary n-variable func-
tion. The LP characteristic vector is one that is ob-
tained from EWT (f) by rearranging the elements in
ascending order, and is denoted by LPV (f).

An algorithm to obtain the extended weight table
will be shown in Algorithm 3.

Lemma 6 Let f(x1; x2; � � � ; xn) be an arbitrary n-
variable function. Let the ESOP, which is obtained by
interchanging the literals �xi and xi of the ESOP for f ,
represent a function g. Then LPV (f) = LPV (g).

Proof: Note that f and g can be represented as
f = �xifi0 � xifi1 and g = xifi0 � �xifi1 = �xigi0 � xigi1,
respectively. Therefore, we have gi0 = fi1, gi1 = fi0
and gi2 = gi0 � gi1 = fi1 � fi0 = fi2. In other
words, g is obtained by interchanging expansion 0 and
expansion 1 in the expansions of f . By setting a =
(a1; a2; � � � ; ai; � � � ; an), b = (a1; a2; � � � ; bi; � � � ; an) and

bi =

�
1 � ai (if ai = 0 or 1)
ai (if ai = 2)

, we have w(f;a) =

w(g; b). That is, EWT (g) can be obtained by in-
terchanging the entries of EWT (f). Hence the
lemma. (Q.E.D.)

Lemma 7 Let f(x1; x2; � � � ; xn) be an arbitrary n-
variable function. Let the ESOP, which is obtained by
interchanging the literals �xi and 1 in an ESOP for f ,
represent a function g. Then, LPV (f) = LPV (g).

Proof: Note that f and g can be represented as
f = �xifi0 � xifi1 and g = 1 � fi0 � xifi1 = �xifi0 �
xi(fi0�fi1) = �xigi0�xigi1, respectively. Therefore, we
have gi0 = fi0, gi1 = fi0�fi1 = fi2 and gi2 = gi0�gi1 =
fi0 � (fi0 � fi1) = fi1. In other words, g is obtained by
interchanging expansion 0 and expansion 2 in the ex-
pansions of f . By setting a = (a1; a2; � � � ; ai; � � � ; an),
b = (a1; a2; � � � ; bi; � � � ; an) and

bi =

�
2 � ai (if ai = 0 or 2)
ai (if ai = 1)

, we have w(f;a) =

w(g; b). That is, EWT (g) is obtained by interchang-
ing the entries of EWT (f). Hence the lemma. (Q.E.D.)



Lemma 8 Let f(x1; x2; � � � ; xn) be an arbitrary n-
variable function. Let the ESOP, which is obtained by
interchanging the literals xi and 1 in an ESOP for f ,
represent a function g. Then, LPV (f) = LPV (g).

Proof: Similar to Lemma 7. (Q.E.D.)

Lemma 9 Let f(x1; x2; � � � ; xn) be an arbitrary n-
variable function. Let g be a function which is obtained
by interchanging the variables xi and xj in f . Then,
LPV (f) = LPV (g).

Proof: Let F be an ESOP which is obtained by ex-
panding f by an expansion vector a = (a1; a2; � � � ; an),
and G be an ESOP which is obtained by interchang-
ing the literals xi and xj in F . Note that G repre-
sents g. Then, we have � (F ) = �(G). By setting
a = (� � � ; ai; � � � ; aj ; � � �) and b = (� � � ; aj ; � � � ; ai; � � �),
we have

w(g;a) = w(f; b) (6)

Because (6) holds for all possible a, we have
EWT (g)a = EWT (f)

b
. Hence the lemma. (Q.E.D.)

Lemma 10 f � g ! LPV (f) = LPV (g).

Proof: From Lemmas 6 to 9, the LP characteristic vec-
tor does not change by the interchange of literals and the
permutation of variables. Hence the lemma. (Q.E.D.)

Lemma 11 LPV (f) = LPV (g) ! f � g (n � 5).

Proof: We prove f 6� g ! LPV (f) 6= LPV (g). All
the LPV s of the LP equivalence representative func-
tions for �ve or fewer variables are computed, and are
found to be distinct. Hence the lemma. (Q.E.D.)

Theorem 3 For �ve or fewer variable functions f and
g, f � g $ LPV (f) = LPV (g).

Proof: From Lemmas 10 and 11, we have the
theorem. (Q.E.D.)

From Theorem 3, when n � 5, the LP equivalence
class of a given function is identi�ed by the LP char-
acteristic vector. Table 6 shows extended weight tables
for �x�y, xy, �x, y and 1. When the elements of the vectors
are rearranged in ascending order, then all the vectors
become (1,1,1,1,2,2,2,2,4). This is the LP characteristic
vector for these functions.

4.2 Algorithm for LP characteristic vector

The procedure for obtaining the LP characteristic
vector of a given function is as follows:
1)Obtain the extended truth table from the truth table.
2)Obtain the extended weight table from the extended

Table 6: Extended weight tables of 2-variable functions
function Extended weight tables

�x�y 4 2 2 2 1 1 2 1 1
xy 1 2 1 2 4 2 1 2 1
�x 2 2 4 1 1 2 1 1 2
y 1 2 1 1 2 1 2 4 2
1 1 1 2 1 1 2 2 2 4

truth table.
3)Sort the extended weight table in ascending order.
This is the LP characteristic vector.

Let f be a truth table of a n variable function,
Ef be an extended truth table and Wf be an extended
weight table. The indices of f are represented by n-bit
vectors. The indices of Ef and Wf are represented by
n-trit vectors.

Algorithm 2 (Extended Truth Table)
1)For the entries with index vectors consisting of either
0 or 1:
Ef (a1; a2; � � � ; an)  f(a1; a2; � � � ; an),
where ak 2 f0; 1g(k = 1; 2; � � � ; n).
2)For the entries with the index vectors where only one
digit, say i-th, is 2:
Ef (a1; � � � ; 2; � � � an) 
Ef (a1; � � � ; 0; � � � ; an)�Ef(a1; � � � ; 1; � � � ; an)
where ak = f0; 1g(k = 1; 2; � � � ; n; k 6= i) and � denotes
bitwise EXOR operation.
3)For the entries with the index vector where two digits,
say i-th and j-th, are 2:
Ef (a1; � � � ; 2|{z}

i

; � � � ; 2|{z}
j

; � � � ; an)

 Ef (a1; � � � ; 0|{z}
i

; � � � ; 2|{z}
j

; � � � ; an)

� Ef (a1; � � � ; 1|{z}
i

; � � � ; 2|{z}
j

; � � � ; an),

where ak = f0; 1g(k = 1; 2; � � � ; n; k 6= i; k 6= j).
4)For the entries with index vectors where three or more
digits are 2:
Obtain similar to the above.

Algorithm 3 (Extended Weight Table)
for i = 0 to 3n do

fif(Ef (i) = 0) then Wf(i) 0
else Wf (i) 1g

for k = 0 to n do f
for j = 0 to 3k�1

� 1 do f
for i = 0 to 3n�k � 1 do f

i0  3n�k(3j + 0) + i;
i1  3n�k(3j + 1) + i;
i2  3n�k(3j + 2) + i;
W1(i0) Wf (i0) +Wf(i2);



W1(i1) Wf(i1) +Wf (i2);
W1(i2) Wf(i0) +Wf (i1);

g

for i = 0 to 3n do
fWf (i) W1(i)g

g

g

The complexities of the algorithms are as follows.

Lemma 12 The complexities for obtaining the ex-
tended truth table and the extended weight table are
O(3n), and O(n3n), respectively.

Theorem 4 The complexity for obtaining the LP

characteristic vector is O(n3n).

Proof: The LP characteristic vector can be obtained
by sorting the extended weight table in ascending order.
Hence the theorem. (Q.E.D.)

Remark 4 To decide the equivalence class of a given
function, the computation time is proportional to n! �6n

if we use a naive algorithm based on the de�nition of
the LP equivalence relation, while only n3n(n � 5) if
we use the LP characteristic vector.

4.3 Algorithm to obtain the MESOP

A MESOP of the given function for 5 variables is
obtained by the following:

Algorithm 4 (MESOP)
1)Obtain the LP characteristic vector LPV (f) of a
given function f .
2)Decide the LP equivalence class of f by using
LPV (f).
3)Obtain �(f) by using the table of MESOPs for the
representative functions[5].
4)Simplify f by EXMIN2[10]. Let F be the simpli�ed
ESOP.
5)If �(f) = � (F ), then F is the minimum, else obtain
the MESOP of the given function by the inverse trans-
formation of the MESOP of the representative function.

Remark 5 1)By Theorem 3, there is a one-to-one cor-
respondence between an LP characteristic vector and
an LP equivalence class for a function of �ve or fewer
variables.
3)Obtain the number of products in an MESOP for a
given function.
5)EXMIN2 is a heuristic simpli�cation program for
ESOPs. It can simplify ESOPs quickly, but does not
always produce minimum solutions. If the number of
products in the simpli�ed ESOP by EXMIN2 is found
to be minimum, then the MESOP is obtained. Else, the

simpli�ed result is not the minimum. Then, the MESOP
for a given function is obtained by the inverse transfor-
mation of the MESOP for the representative function.
In this case, the transformation to obtain the LP equiv-
alence representative function from a given function is
needed. To do this, it takes computation time propor-
tional to n!�6n by the algorithm based on the LP equiv-
alence relation. For �ve variable functions, this takes
about 7 seconds by an HP9000/720 workstation.

5 Experimental Results and Discussions

We have obtained the table of MESOPs for the LP
equivalence representative functions of �ve variables[5].
ESOPs for randomly generated functions of �ve vari-
ables are minimized by using Algorithm 4. When
EXMIN2 produces the minimum solution, the com-
puting time is about 90 milliseconds per function. When
EXMIN2 produces non-minimum and the MESOP is
obtained by the inverse transformation of the MESOP
for the representative function, the computing time is
about 7 seconds per function by an HP9000/720 work-
station. By using the LP characteristic vector, the
equivalence class of a 5-variable function is obtained
very quickly. Because the number of the products in
the MESOP for the representative function is obtained
by a table look-up method, we can decide whether
EXMIN2 produced the minimum or not very quickly.
If the number of the products in the simpli�ed ESOP
is equal to that of the MESOP which is obtained by
the table look-up method, then the simpli�ed ESOP
is the minimum. In this case, we have obtained the
MESOP. On the other hand, if not, we have to obtain
the MESOP by the inverse transformation. Fig. 1 shows
the average computing time for the MESOP of an arbi-
trary 5-variable function.

It has long been conjectured that ESOPs require,
on the average, fewer products than SOPs to realize
logic functions. To con�rm this conjecture for �ve vari-
able functions, we obtained the average number of prod-
ucts in MESOPs and MSOPs for randomly generated
functions. The set of �ve variable functions is parti-
tioned into classes according to the number of minterms.
For each class, we generated 1000 random functions.
Fig. 2 shows the average number of products to realize
these functions in MESOPs and MSOPs. MSOPs were
obtained by Quine-McCluskey method. Fig. 2 shows
that, on the average, MESOPs require fewer products
than MSOPs to realize �ve variable functions. Also, we
proved that MESOPs require only 9 products to realize
an arbitrary function of �ve variables[5], while MSOPs
require 16 products. From these facts, we con�rmed the
above conjecture for the case of 5-variable functions.

6 Conclusion

In this paper, we introduced the LP characteristic
vector of a logic function and showed that the vector
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Figure 1: Average computing time for 5-variable
MESOPs.

uniquely speci�es the equivalence class of a given n-
variable function, when n � 5. Also, we presented an
e�cient algorithm to �nd an MESOP for a 5-variable
function by using the LP characteristic vector. For the
case of 6 or more variable functions, we can decompose
a given function into sums of 2n�5 sub-functions by us-
ing Shannon expansions. By substituting MESOPs for
�ve variables into these sub-functions, we can obtain a
simple ESOP quickly. The LP characteristic vectors of
functions for up to 14 variables can be obtained easily
by an ordinary computer, so other applications can be
expected.
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