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Abstract—Constant weight codewords, in which the number
of 1’s is constant, are essential to combinatorial computing. For
example, it is often useful to generate all subsets of a set with
a fixed number of elements. In this paper, we show an efficient
circuit that converts a constant weight codeword into a unique
index of that codeword. This circuit is a necessary part of a circuit
that uses constant weight codewords to transmit data on and off
chip. Our circuit is based on the combinatorial number system
in which the digits are binomial coefficients

(
n
r

)
. Experimental

results show the efficiency of our design.
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I. INTRODUCTION

A constant weight code to index converter is needed when
constant weight Gray codes are used to encode data in flash
memory. In local rank modulation [2], data stored in flash
memory is viewed as an n-bit constant weight codeword that
differs in exactly two bits from an adjacent memory location
(because of overlap). All codewords in this encoding have the
same weight (number of 1’s).

Balanced codes, with as many 0’s as 1’s, can be used to
transfer data on and off VLSI chips so that the current fluctu-
ations are minimized [8]. On the other hand, codes with small
weight are desired in this application because they yield faster
and more compact circuits [8]. Constant weight codewords
can be used to counter “side-channel” attacks against secure
systems [4]. Such attacks use data dependent differences in
power consumption to extract hidden information. Constant
weight codewords have been used in asynchronous logic to
implement delay-insensitive codewords [9].

The use of constant weight codewords requires two parts,
an index to constant weight code converter and a constant
weight code to index converter. We considered the first part
in [1]. However, we have not seen a hardware implementation
of the second part, except for an implementation that requires
O(2n) complexity [7]. In this paper, we propose an imple-
mentation with O(n3) complexity. In Section II, we discuss
the combinatorial number system. We show how it can be
used to convert a constant weight codeword to an index, and
we present its circuit implementation. Then, in Section III, we
show an improvement to this circuit that significantly reduces
delay for large n. Finally, in Section IV, we give concluding
remarks.

II. THE COMBINATORIAL NUMBER SYSTEM

A. Introduction

The basis for our constant weight code to index converter
is the combinatorial number system [3].

Definition 1. In an
(
n
r

)
combinatorial number system [5],

an integer N <
(
n
r

)
is represented as N = crcr−1 . . . c1,

where

N =

(
cr
r

)
+

(
cr−1

r − 1

)
+ . . .+

(
c1
1

)
, (1)

and cr > cr−1 > . . . > c1 ≥ 0.

Example 1. Table I shows the representation of integers in
the

(
6
3

)
combinatorial number system. The leftmost column

shows the integer’s value in decimal and its vector represen-
tation. The middle column shows how this value is computed
according to (1). The rightmost column of Table I shows the
corresponding 6 bit constant weight code. Note that the three
elements of the vector representation shown in the leftmost
column correspond to the positions of the 1’s in the constant
weight codeword. For example, 19 = 5 4 3 corresponds to
111000, there being 1’s in positions 5, 4, and 3.

(End of Example)

B. Circuit Implementation

A major contribution of this paper is to show how the
combinatorial number system can be used to realize an ef-
ficient circuit that transforms a constant weight codeword to
the index for that codeword. Such a circuit has for inputs the
values of the rightmost column of Table I (the bits of the
constant weight code) and has as outputs the standard binary
number representation of the numbers shown in the leftmost
column (the values of the index N ). As shown in Table I, the
1-bits in the constant weight code contribute a value to its
corresponding index depending on the 1 bit’s position in the
codeword. For example, from Table I, the 1’s in the codeword
111000 contribute

(
5
3

)
,
(
4
2

)
, and

(
3
1

)
, from left to right. This

can be seen in Fig. 1, which shows a circuit that converts a
3-out-of-6 constant weight codeword into the corresponding
index of that codeword.

This circuit contains an array of decoders that control which
digits occur in the combinatorial number. Fig. 2 shows the
detail of the decoders and the tri-state circuit that provides



TABLE I
THE

(6
3

)
COMBINATORIAL NUMBER SYSTEM FOR 0 ≤ N ≤ 19

N Computing the Value of N Const Wght Code

for r = 3 543210

19 = 5 4 3
(5
3

)
+

(4
2

)
+

(3
1

)
= 10 + 6 + 3 111000

18 = 5 4 2
(5
3

)
+

(4
2

)
+

(2
1

)
= 10 + 6 + 2 110100

17 = 5 4 1
(5
3

)
+

(4
2

)
+

(1
1

)
= 10 + 6 + 1 110010

16 = 5 4 0
(5
3

)
+

(4
2

)
+

(0
1

)
= 10 + 6 + 0 110001

15 = 5 3 2
(5
3

)
+

(3
2

)
+

(2
1

)
= 10 + 3 + 2 101100

14 = 5 3 1
(5
3

)
+

(3
2

)
+

(1
1

)
= 10 + 3 + 1 101010

13 = 5 3 0
(5
3

)
+

(3
2

)
+

(0
1

)
= 10 + 3 + 0 101001

12 = 5 2 1
(5
3

)
+

(2
2

)
+

(1
1

)
= 10 + 1 + 1 100110

11 = 5 2 0
(5
3

)
+

(2
2

)
+

(0
1

)
= 10 + 1 + 0 100101

10 = 5 1 0
(5
3

)
+

(1
2

)
+

(0
1

)
= 10 + 0 + 0 100011

9 = 4 3 2
(4
3

)
+

(3
2

)
+

(2
1

)
= 4 + 3 + 2 011100

8 = 4 3 1
(4
3

)
+

(3
2

)
+

(1
1

)
= 4 + 3 + 1 011010

7 = 4 3 0
(4
3

)
+

(3
2

)
+

(0
1

)
= 4 + 3 + 0 011001

6 = 4 2 1
(4
3

)
+

(2
2

)
+

(1
1

)
= 4 + 1 + 1 010110

5 = 4 2 0
(4
3

)
+

(2
2

)
+

(0
1

)
= 4 + 1 + 0 010101

4 = 4 1 0
(4
3

)
+

(1
2

)
+

(0
1

)
= 4 + 0 + 0 010011

3 = 3 2 1
(3
3

)
+

(2
2

)
+

(1
1

)
= 1 + 1 + 1 001110

2 = 3 2 0
(3
3

)
+

(2
2

)
+

(0
1

)
= 1 + 1 + 0 001101

1 = 3 1 0
(3
3

)
+

(1
2

)
+

(0
1

)
= 1 + 0 + 0 001011

0 = 2 1 0
(2
3

)
+

(1
2

)
+

(0
1

)
= 0 + 0 + 0 000111
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Fig. 1. Constant Weight Codeword to Index Converter Circuit.
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Fig. 2. Decoder and Binomial Constant Generator.

constants for the combinatorial number. We can make the
following observations.

1) If a 1 occurs on either or both inputs to the OR gate in
the upper left hand corner of the decoder, then a 1 is
produced at exactly one of the two outputs. Specifically,
if xi, the input driving the decoder is 1, then a 1 appears
at the horizontal output (solid line), and a 0 appears at
the vertical output (dotted line). On the other hand, if xi

is 0, then a 0 appears at horizontal output and a 1 appears
at the vertical output. However, if both inputs to the OR
gate in the upper left hand corner are 0, then both the
horizontal and vertical outputs produce 0.

2) There is a path of 1’s through the array of decoders in
Fig. 1 beginning at the upper left hand corner. The path is
determined by the values of xi in the constant codeword.
For example, if x5x4x3x2x1x0 = 111000, then the three
decoders along the top of the array of decoders starting
from the upper left hand decoder all produce 1 at their
horizontal outputs. This is because their inputs, x5, x4,
and x3, are 1. However, the decoder in the upper right
hand corner is driven by x2, which is 0. So, the 1 at
its OR gate input is directed now to its vertical output
(while its horizontal output is 0). Because x1 and x0 are
both 0, this 1 is directed downward (along dotted lines)
through two decoders into the 2-input OR gate that drives
Valid. That is, when x5x4x3x2x1x0 = 111000, Valid
is 1, indicating the input codeword is a valid 3-out-of-6
codeword.

3) All other valid codewords result in a path of 1’s from the
upper left hand corner to the lower right hand corner,
causing Valid to be 1. Conversely, a non-codeword
causes Valid to be 0.

4) All horizontal lines from decoders drive binomial co-
efficient generators which apply to one of three bus
lines that drive inputs of an adder whose output is the
Index. Specifically, a 1 on the horizontal line causes the
corresponding binomial coefficient generator to drive its
line. A 0 disconnects the binomial coefficient generator.
For example, in the case of x5x4x3x2x1x0 = 111000, the
three horizontal lines driven by decoders cause

(
5
3

)
,
(
4
2

)
,



and
(
3
1

)
to be applied to the three adder inputs resulting

in 19 at the output, which is the index of 111000.
5) As shown in Fig. 1, the adder has three tri-state inputs,

and each tri-state adder input is driven by four tri-state
outputs from binomial coefficient generators. The first
(leftmost) 1 in the constant weight codeword specifies
which binomial coefficient generator drives the left input
of the adder. The second 1 determines which drives the
middle adder input, and the third (rightmost) 1 determines
which drives the right adder input.

C. Complexity of Implementation

The complexity of the constant weight code to index con-
verter, is dominated by the array of binomial coefficient gener-
ators and decoders. This array is an r+1 by n−r+1 rectangle,
with a total of (r + 1)(n− r + 1) elements. With r = n

2 , the
(worst case) number of binomial coefficient generators and
decoders is O(n2) for each. The decoder has a complexity
that is independent of n. However, the binomial coefficient
generator requires O(n) tri-state buffers. That is, the binomial
coefficient with the most tri-state buffers is the one in the upper
left hand corner; it realizes

(
n−1
r

)
. This requires no more that

O(n) tri-state buffers. Thus, the total complexity is O(n3) tri-
state buffers. And so, the constant weight codeword to index
converter has complexity polynomial in n. Table II shows the
exact number of tri-state buffers and decoders needed in the
proposed constant weight codeword to index converter. In the
case of the tri-state buffers, the array cell at the top of each
column corresponds to the largest binomial coefficient in that
column and thus determines the number of bits needed for
that adder input. These binomial coefficients are

(
n−r+i−1

i

)
for r ≤ i ≤ 1, where i represents the i-th column (i = r is on
the left and i = 1 is on the right). The number of bits needed
is �log2

(
n−r+i−1

i

)�. Since there are r + 1 rows, we have the
following

Theorem 1: The total number of tri-state buffers needed
by the constant weight code to index converter is (r +
1)

∑r
i=1�log2

(
n−r+i−1

i

)�.

TABLE II
THE NUMBER OF TRI-STATE BUFFERS AND DECODERS NEEDED IN THE

CONSTANT WEIGHT CODEWORD TO INDEX CONVERTER

n r # of # of n r # of # of

tri-state decoders tri-state decoders

4 2 12 9 14 7 424 64

6 3 36 16 16 8 648 81

8 4 90 25 18 9 920 100

10 5 162 36 20 10 1254 121

12 6 266 49 22 11 1680 144

The longest path in the circuit is from xn−1 through the
array to the Valid output, and it is O(n). The delay of the
adder can be neglected, since it is O(log n). Thus, the overall
delay is O(n).

D. FPGA Resources Used

To understand how the complexity of a
(
n
r

)
combinatorial

number system constant weight code to index converter de-
pends on n and r, we implemented this system for various n
and r on the 40 nm Altera Stratix IV EP4SE530F43C3NES
FPGA. Table III shows the delay obtained and the resources
used in this implementation. The leftmost column shows the
constant weight code as a binomial number. For example,(
128
64

)
corresponds to a 64-out-of-128 bit code. The second

column shows how many bits in the output Index are needed
to represent the largest codeword. The third column gives
the delay achieved, which is inversely proportional to the
frequency of the circuit. The rightmost column gives the
number of ALMs needed to realize this circuit, which a
measure of the area. Although this table shows only balanced
constant weight code generators where the number of bits is
a power of 2, our approach applies to any number of bits and
to any weight.

TABLE III
DELAY AND RESOURCES USED TO REALIZE A COMBINATORIAL NUMBER

SYSTEM CONSTANT WEIGHT CODEWORD TO INDEX CONVERTER ON THE

ALTERA STRATIX IV EP4SE530F43C3NES FPGA.

Con. Wgt. # Bits Freq. Delay Est. # of

Code
(n
r

)
Index (MHz) (ns.) Packed ALMs

(4
2

)
3 261.6 3.8 2 (0%)

(8
4

)
7 178.7 5.6 17 (0%)

(16
8

)
14 104.4 9.6 120 (0%)

(32
16

)
30 57.5 17.4 647 (0%)

(64
32

)
61 31.5 31.7 3,203 (1%)

(128
64

)
125 15.2 65.8 20,497 (9%)

Our circuit was synthesized using Synplify Pro and modeled
using ModelSim. A large codeword is achievable; a 64-out-
of-128 bit converter uses only 9% of the available ALMs. The
large values of n required special Verilog programming. For
example, to implement the 64-out-of-128 bit constant weight
codeword to index converter requires that the binary value of(
127
64

)
be applied to the adder circuit. The binary number that

represents this value requires 124 bits, which exceeds the 32
bits used by Synplify Pro to represent integers. To overcome
this deficiency, we computed the binary value of

(
127
64

)
and

other values of
(
n
r

)
in a MATLAB program and wrote it to a

header file that was included in the Verilog code.

III. COMPLEX DISJOINT DECOMPOSITION SOLUTION

It can be seen for Fig. 1 that the longest path through the
array of the constant weight codeword converter has length
n, where n is the number of bits in the constant weight
code. In computing the index, each 1 contributes a value that
depends on the number of 1’s that preceded it. A 1 in the
leftmost bit position is an exception to this. This 1 always
contributes

(
6
3

)
= 10. This can be seen in Table I; the constant

weight codewords with a 1 in the leftmost bit corresponds to
a combinatorial number in which the most significant digit is(
5
3

)
. However, a 1 in the second bit from the left contributes



a different value to its combinatorial number representation
depending on whether the leftmost bit is 1 or 0. If 1, then the
second 1 contributes

(
4
2

)
. If 0, then it contributes

(
4
3

)
.

A similar phenomena exists at the right side. Interestingly,
the least significant bit, whether 0 or 1 contributes 0 to the
combinatorial number’s value. This is because that bit is
”forced” to be 0 or 1 depending on whether there are six
or five 1 bits to its left. However, note that if the right bit
of the constant weight code is 1, then the right digit of the
combinational number system is 0. This can also be seen in
the circuit of Fig. 1. Here, if x0 is 1, then 0 drives the least
significant digit if the other five bits have three 0’s and two 1’s.
Thus, none of the other three binomial coefficients can drive
this least significant digit. That is, x0 and the only decoder
it drives is the ”mirror” image of x5 and the only decoder
it drives. Similarly, x1 and the two decoder it drives are the
mirror image of x4 and the two decoder it drives. Therefore,
we can realize the same circuit by reversing the decoders in
Fig. 1 that are driven by x2, x1, and x0. The new circuit is
shown in Fig. 3.
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Fig. 3. Constant Weight Codeword to Index Converter Circuit Consisting of
Two Subcircuits.

In the new circuit, the inputs are divided into two parts
{x5, x4, x3} and {x2, x3, x1}, where each part drives a sepa-
rate triangular-shaped subcircuit. The two subcircuits, in turn,
drive inputs to the adder, which, in turn, drives the Index
output. Such a circuit is said to have a complex disjoint
decomposition (CDD).

Table IV shows the delay achieved and the resources used
for the CDD circuit. The benefit of the new circuit is its
reduced delay, especially in large circuits. This can be seen
by comparing Tables IV and III. For example, for 64-out-of-

TABLE IV
DELAY AND RESOURCES USED FOR THE CDD CONSTANT WEIGHT

CODEWORD TO INDEX CONVERTER ON THE ALTERA STRATIX IV
EP4SE530F43C3NES FPGA.

Con. Wgt. # Bits Freq. Delay Est. # of

Code
(n
r

)
Index (MHz) (ns.) Packed ALMs

(4
2

)
3 262.9 3.8 3 (0%)

(8
4

)
7 193.5 5.2 16 (0%)

(16
8

)
14 127.9 7.8 116 (0%)

(32
16

)
30 80.8 12.4 657 (0%)

(64
32

)
61 47.8 20.9 3,503 (1%)

(128
64

)
125 23.6 42.4 20,723 (9%)

128 codes, the delay of circuit consisting of two subcircuits is
64% that of the full rectangle circuit.

IV. CONCLUDING REMARKS

Although there is a need for a circuit that computes an index
from a constant weight codeword, we have not seen a simple
implementation. We show a circuit based on the combinatorial
number system that has complexity O(n3), where n is the
number of bits in the code. Our circuit is useful, for example,
in the encoding/decoding of data, such as between on-chip
and off-chip and in delay-insensitive logic for asynchronous
circuits. It has only O(n) delay. We also show an improvement
that reduces by about half the delay that still has O(n3)
complexity. We have implemented our designs on an Altera
Stratix IV EP4SE530F43C3NES FPGA. This has shown that
both circuits are efficiently implemented. For a comparison of
various circuits that realize a constant-weight code to index
converter, please see [6].
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