
J. of Mult.-Valued Logic & Soft Computing, Vol. 0, pp. 1–29 ©2013 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

Index Generation Functions: Tutorial

TSUTOMU SASAO

Department of Computer Science, Meiji University, Kawasaki 214-8571, Japan
E-mail: sasao@cs.meiji.ac.jp

Received: September 28, 2011. Accepted: May 7, 2012.

Given a set of k distinct binary vectors of n bits, for each vector assign a
unique integer from 1 to k. An incompletely specified index generation
function produces an index for a given vector. This tutorial first intro-
duces index generation functions, which are useful for pattern match-
ing in communication circuits. Then, it shows a method to represent a
given index generation function using fewer variables. A linear trans-
formation is used to reduce the number of variables. An extension to
the multiple-valued case is also presented.

1 INDEX GENERATION FUNCTION

This tutorial shows recent results on index generation functions. Applications
of index generation functions include: IP address table lookup, packet filter-
ing, terminal access controllers, memory patch circuits, virus scan circuits,
fault maps for memory, and pattern matching. In addition, this paper intro-
duces an index generation unit that efficiently realizes an index generation
function by a linear circuit and a pair of smaller memories. Due to space
limitations, definitions of standard terminology used in switching circuit the-
ory [10] are omitted.

Definition 1. Consider a set of k different binary vectors of n bits. These
vectors are registered vectors. For each registered vector, assign a unique
integer from 1 to k. A registered vector table shows the index of each reg-
istered vector. An index generation function produces the corresponding
index if the input matches a registered vector, and produces 0 otherwise. Let

1

330i-MVLSC˙V2 1

2 TSUTOMU SASAO

Vector Index

x1 x2 x3 x4

0 0 1 0 1
0 1 1 1 2
1 1 0 0 3
1 1 1 1 4

TABLE 1
Registered vector table.

the weight of the index generation function be k. An index generation func-
tion represents a mapping: Bn → {0, 1, 2, . . . , k}.

Example 1. Table 1 shows a registered vector table. It shows an index gen-
eration function with weight k = 4.

The rest of the paper is organized as follows: Section 2 discusses appli-
cations of index generation functions. Section 3 shows that an incompletely
specified index generation functions can often be represented with fewer vari-
ables than the original specification. Section 4 shows an algorithm to mini-
mize the number of variables to represent incompletely specified index gen-
eration functions. Section 5 shows that most uniformly distributed index gen-
eration functions with weight k can be represented with 2�log2(k + 1)� − 3
variables. Section 6 shows a method to reduce the number of variables by
using a linear transformation. Section 7 shows the effect of linear transfor-
mations in the reduction of the number of variables. Section 8 explains the
operation of an index generation unit. Section 9 shows design examples of
m-out-of-n code converters. Section 10 extends the theory to multiple-valued
input functions. Section 11 surveys related works on linear transformations.
Section 12 concludes the paper.

2 APPLICATIONS

An index generator is a circuit that realizes an index generation function.
Index generators are used for address tables in the internet, terminal access
controllers for local area networks, databases, memory patch circuits, elec-
tronic dictionaries, password lists, code converters etc. [12].

2.1 Address Table in the Internet
IP addresses of the internet are often represented in 32 bits. An address
table for a router stores IP addresses and corresponding indexes to a memory

330i-MVLSC˙V2 2

INDEX GENERATION FUNCTIONS 3

FIGURE 1
Terminal access controller.

that stores the details of the addresses. For example, in a typical problem, the
number of addresses in the table is 40, 000. Thus, the number of inputs is 32
and the number of outputs is 16, which can represent 65,536 addresses. Note
that the address table must be updated frequently.

2.2 Terminal Access Controller
A terminal access controller (TAC) for a local area network checks whether
the requested terminal has permission to access Web resources outside the
local area network, E-mail, FTP, Telnet, etc.. In Figure 1, eight terminals are
connected to the TAC. Some can access all the resources. Others can access
only limited resources because of security risks. The TAC checks whether the
requested computer has permission to access the Web, E-mail, FTP, Telnet,
or not. Each terminal has its unique MAC address represented by 48 bits. We
assume that the number of terminals in the table is at most 255. To implement
the TAC, we use an index generator and a memory. The memory stores the
details of the terminals. The number of inputs for the index generator is 48
and the number of outputs is 8. In many cases, the table for the terminal
access controller must be updated frequently.

Example 2. Figure 2 shows an example of the terminal access controller.
The first terminal has the MAC address 53:03:74:59:03:02. It is allowed to
access everything, including the Web outside the local area network, E-mail,
FTP, and Telnet. The second one is allowed to access both the Web and E-
mail. The third one is allowed to access only the Web. And, the remaining ones
are allowed to access only E-mail. The index generated by the index gener-
ator is used as an address to read the memory which stores the permissions.

330i-MVLSC˙V2 3

4 TSUTOMU SASAO

Index Generator Memory
Address DATA

MAC Address Index Web E-mail FTP Telnet
53:03:74:59:03:32 1 1 1 1 1 1
92:6D:56:26:1E:63 2 2 1 1 0 0
0B:97:26:34:08:76 3 3 1 0 0 0
73:6E:58:56:73:52 4 ⇒ 4 0 1 0 0
81:0A:97:26:44:08 5 5 0 1 0 0
46:06:76:75:39:89 6 6 0 1 0 0
83:3A:57:26:46:29 7 7 0 1 0 0
64:6E:41:42:56:73 8 8 0 1 0 0

︸ ︷︷ ︸ ︸ ︷︷ ︸
48-bit 4-bit

FIGURE 2
Index generator for terminal access controller.

If we implement the TAC by a single memory, we need a memory with 256
Tera words, since the number of inputs is 48. To reduce the size of the memory,
we use an index generator to produce the index, and an additional memory
to store the permission data for each internal address.

The index generators in the previous examples have common properties:

1. The values of the non-zero outputs are distinct.
2. The number of non-zero output values is much smaller than the total

number of the input combinations.
3. High-speed circuits are required.
4. Data must be updated.

The third property is important in the communication networks. The last
property requires that index generators be programmable.

3 INCOMPLETELY SPECIFIED INDEX GENERATION
FUNCTIONS

An application of index generation function often involves incompletely
specified functions. In this section, we introduce some methods to represent
a given incompletely specified function with fewer variables [13, 14, 16].

Definition 2. Let D = {�a1, �a2, . . . , �ak} be a set of k distinct vectors in
Bn, where B = {0, 1}. f̂ : Dn → {1, 2, . . . , k} is an incompletely specified

330i-MVLSC˙V2 4

INDEX GENERATION FUNCTIONS 5

41110

x4x3x2x1

30011

21101

11000

24

1

3

x1

x2

x3

x4

),,,(43211 xxxxf

1f

(a) Registered Vector Table (b) Decomposition chart

^

^

FIGURE 3
Reduction of variables to represent an incompletely specified index generation function.

index generation function with weight k if

f̂ (�ai) = i, (when �ai ∈ D), and

f̂ (�b) = d, (when �b ∈ Bn − D),

where d denotes don’t care or undefined.

The number of variables to represent incompletely specified index gener-
ation functions can be often reduced.

Example 3. Consider the registered vector table shown in Figure 3(a).
It defines a 4-variable incompletely specified index generation function
f̂1(X). Let X1 = (x1, x2) and X2 = (x3, x4). The corresponding decompo-
sition chart for f̂1(X) is shown in Figure 3(b), where blank cells denote
don’t cares. In this function, for the vectors �a1 = (0, 0, 0, 1), �a2 = (1, 0, 1, 1),
�a3 = (1, 1, 0, 0), and �a4 = (0, 1, 1, 1), the values of functions are f̂1(�a1) = 1,
f̂1(�a2) = 2, f̂1(�a3) = 3, and f̂1(�a4) = 4, respectively. For other inputs, the
values of f̂1 are d (don’t care).

In the decomposition chart, when each column has at most one specified
element, then the function can be represented by column variables only, since,
for each column, the values of all don’t cares can be set to the specified value
of the column. In Figure 3(a), values for (x1, x2) are distinct, and the index
can be specified by using only these two variables:

f1 = 1 · x̄1 x̄2 ∨ 2 · x1 x̄2 ∨ 3 · x1x2 ∨ 4 · x̄1x2.

Example 4. Consider the registered vector table in Figure 4, and the
decomposition chart for an incompletely specified index generation func-
tion f̂2. Consider the number of variables to represent the function. In the

330i-MVLSC˙V2 5

6 TSUTOMU SASAO

41111

x4x3x2x1

30011

21110

10100

1

42

3

x1

x2

x3

x4

41111

x3x2x4x1

30101

21110

11000

3

42

1

x1

x4

x3

x2

),,,(43212 xxxxf

(a) (b)

2f

),,,(43212 xxxxf

2f

^

^

^

^

FIGURE 4
Reduction of variables to represent an input incompletely specified index generation function.

decomposition chart in Figure 4(a), two non-zero elements exist in the col-
umn (x1, x2) = (1, 1). Thus, the function f̂2 cannot be represented by {x1, x2}.
Similarly, in the row (x3, x4) = (1, 1), two non-zero elements exist, and the
function f̂2 cannot be represented by {x3, x4}, either.

Next, let us change the partition of the input variables into (x1, x4) and
(x2, x3) as shown in Figure 4(b). In this case, each column has at most one
specified element. Note that, in the registered vector table in Figure 4(b),
values of the vectors (x1, x4) are all different. Thus, the function f̂2 can be
represented by using only {x1, x4}.

4 ALGORITHM TO MINIMIZE THE NUMBER OF VARIABLES

This section describes an algorithm to represent an incompletely specified
index generation function f : D → {1, 2, . . . , k}, where D ⊂ Bn , using the
minimum number of variables. Minimization methods of input variables for
single-output incompletely specified functions are considered in [3,4,11,15].
To show the idea of the method, we use the following:

Example 5. Let us minimize the number of variables to represent the index
generation function shown in Figure 5.

1. Let the four vectors be �a1 = (1, 0, 0, 1), �a2 = (1, 1, 1, 1), �a3 =
(0, 1, 0, 1), and �a4 = (1, 1, 0, 0).

330i-MVLSC˙V2 6

INDEX GENERATION FUNCTIONS 7

FIGURE 5
Index generation function with four-variables.

2. To distinguish �a1 and �a2, either x2 or x3 is necessary. Thus, we have
the condition x2 ∨ x3 = 1, where xi = 1 denotes that xi must appear in
the expression. Thus, x2 ∨ x3 = 1 denotes either x2 or x3 must appear in
the expression. In the same way, to distinguish �a1 and �a3, we have the
condition x1 ∨ x2 = 1; to distinguish �a1 and �a4, we have the condition
x2 ∨ x4 = 1; to distinguish �a2 and �a3, we have the condition x1 ∨ x3 =
1; to distinguish �a2 and �a4, we have the condition x3 ∨ x4 = 1; and to
distinguish �a3 and �a4, we have the condition x1 ∨ x4 = 1.

3. To distinguish all the vectors, all the conditions must hold at the same
time. This is expressed by the condition R = 1, where

R = (x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)(x1 ∨ x3)(x3 ∨ x4)(x1 ∨ x4).

4. By the distributive law, and the absorption law, we have

R = x1x2x4 ∨ x1x2x3 ∨ x2x3x4 ∨ x1x3x4.

5. Since each product consists of three literals, each corresponds a mini-
mum solution. Thus, f can be represented with three variables. Since no
variable appears in all products, no variable is essential.

6. The expression for the original function is

f = 1 · x1 x̄2 x̄3x4 ∨ 2 · x1x2x3x4 ∨ 3 · x̄1x2 x̄3x4 ∨ 4 · x1x2 x̄3 x̄4.

To obtain the expression corresponding to the first product x1x2x4 in Step
4, remove the literals for x3:

f = 1 · x1 x̄2x4 ∨ 2 · x1x2x4 ∨ 3 · x̄1x2x4 ∨ 4 · x1x2 x̄4.

330i-MVLSC˙V2 7

8 TSUTOMU SASAO

Algorithm 1 (Algebraic Method)

1. Let A be the set of vectors �ai , such that f (�ai) = i , where i = 1, 2, . . . , k
2. For each pair of vectors �ai = (a1, a2, . . . , an) ∈ A and �b j =

(b1, b2, . . . , bn) ∈ A, associate a product defined by s(i, j) = ∨n
r=1 yr ,

where yr = 0 if ar = br and yr = xr if ar
= br , where r = 1, 2, . . . , n.
Note that there are k(k − 1)/2 pairs.

3. Define a covering function R = ∧
i< j s(i, j).

4. Represent R by the a minimum SOP.
5. The product with the fewest literals corresponds to the minimum solu-

tion.
6. Derive an expression with the minimum number of variables.

In Algorithm 1, Steps 2, 3 and 4 compute a minimum covering. By first
detecting the essential variables, we can reduce the computational effort to
derive the covering function. The next example illustrates this.

Example 6. The 7-segment display shown in Figure 2 displays a decimal
number by using 7 segments: a, b, c, d, e, f, and g.

Table 2 shows the correspondence between segment data and the binary
number. Consider a logic circuit that converts 7 segment data into the cor-
responding Binary Coded Decimal (BCD) representation of a digit. The
straightforward circuit requires 7 inputs. However, only five inputs are nec-
essary to distinguish the decimal numbers. This means that only 5 segments
are needed to distinguish between the 10 digits.

7-segment BCD code

a b c d e f g 8 4 2 1

0 1 1 0 0 0 0 0 0 0 1

1 1 0 1 1 0 1 0 0 1 0

1 1 1 1 0 0 1 0 0 1 1

0 1 1 0 0 1 1 0 1 0 0

1 0 1 1 0 1 1 0 1 0 1

1 0 1 1 1 1 1 0 1 1 0

1 1 1 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 0 1 1 1 0 0 1

1 1 1 1 1 1 0 1 0 1 0

TABLE 2
7-segment to BCD converter.

330i-MVLSC˙V2 8

INDEX GENERATION FUNCTIONS 9

a

b

c

d

e

f g

FIGURE 6
7-segment display.

1. Let the vectors be
�a1 = (0, 1, 1, 0, 0, 0, 0), �a2 = (1, 1, 0, 1, 1, 0, 1), �a3 =
(1, 1, 1, 1, 0, 0, 1), �a4 = (0, 1, 1, 0, 0, 1, 1), �a5 = (1, 0, 1, 1, 0, 1, 1),
�a6 = (1, 0, 1, 1, 1, 1, 1), �a7 = (1, 1, 1, 0, 0, 0, 0), �a8 =
(1, 1, 1, 1, 1, 1, 1), �a9 = (1, 1, 1, 1, 0, 1, 1), and �a10 =
(1, 1, 1, 1, 1, 1, 0).

2. First, find the essential variables. From �a1 and �a7, we can see that a is
essential. From �a6 and �a8, we can see that b is essential. From �a8 and
�a9, we can see that e is essential. From �a3 and �a9, we can see that f is
essential. From �a8 and �a10, we can see that g is essential.

3. Next, we derive R. Since a, b, e, f , and g are essential, we can ignore
the pairs, where the essential variables are inconsistent. For example,
from the pair (�a1, �a2), we have the sum a ∨ c ∨ d ∨ e ∨ g. Note that, in
this case, two vectors are inconsistent with the essential variable a. Since
the essential variable a is always included in the solution, we know that
a = 1. Thus, the sum is equal to one. Thus, we need not generate it. Note
that there are

(10
2

) = 45 pairs. We can verify that all the pairs contain an
essential variable. Thus, we can conclude that R = abe f g.

4. Since the product has five literals, it corresponds to the minimum solu-
tion. Thus, the BCD numbers can be represented by five variables.

Thus, we can eliminate segments c and d, and still determine which digit is
being represented. Figure 7 is Figure 6 with segments c and d eliminated.
Because all 10 digits can still be identified, this illustrates why c and d can
be eliminated.

5 PROPERTY OF UNIFORMLY DISTRIBUTED FUNCTIONS

As shown in the previous section, incompletely specified index generation
functions often can be represented with fewer variables.

330i-MVLSC˙V2 9

10 TSUTOMU SASAO

a

b

c

d

e

f g

FIGURE 7
5-segment display.

Example 6 shows a 7 variable index generation function with weight 10.
In this case, only five variables are sufficient to represent the function. Sup-
pose that a 7-variable index generation function with weight 10 is given.
How many variables, on the average, are necessary to represent the function?
There exist

∏9
i=0(128 − i) = 8.23 × 1023 different 7-variable index genera-

tion functions with weight 10. It is hard to obtain the average by an exhaustive
method. So, we randomly generated 1000 functions, and obtained statistical
results. Figure 8 shows the numbers of functions that require 4, 5, and 6
variables. It shows that out of 1000 functions, 978 required 4 or 5 variables,
while only 22 required 6 variables. Thus, Example 6 may be typical among
7-variable index generation functions with weight 10.

FIGURE 8
Number of variables to represent 7 variable index generation functions with weight 10.

330i-MVLSC˙V2 10

INDEX GENERATION FUNCTIONS 11

Then, how many variables are necessary to represent an index generation
function with weight k? The following shows a lower bound.

Theorem 1. To represent any incompletely specified index generation func-
tion f with weight k, at least q = �log2 k� variables are necessary.

Proof. The number of different vectors specified with q − 1 variables is at
most 2q−1 < k. Thus, at least q variables are necessary to represent an index
generation function with weight k.

To show the upper bound, we need to define a class of functions.

Definition 3. A set of functions is uniformly distributed, if the probability
of occurrence of any function is the same as any other function.

For example, the set of two-valued input two-valued output 4-variable
incompletely specified functions with weight 1 consists of 32 members, 16
having a single 1 and 16 having a single 0. If the functions are uniformly
distributed, the probability of the occurrence of any one of them is 1

32 .
Table 3 shows average numbers of variables to represent incompletely

specified index generation functions for different n and different weight k.
This was obtained by minimizing 1000 randomly generated functions for
each parameter. The variance of the distribution is quite small. For exam-
ple, in the case of n = 20 and k = 127, the numbers of functions that require
9, 10, and 11 variables are shown in Figure 9. It shows that out of 1000 func-
tions, only two required 9 variables, 997 required 10 variables, and only one
required 11 variables. Thus, most functions require 10 variables.

k n=16 n=20 n=24 2�log2(k + 1)� − 3

7 3.052 3.018 3.003 3
15 4.980 4.947 4.878 5
31 6.447 6.115 6.003 7
63 8.257 8.007 8.000 9

127 10.304 10.000 9.963 11
255 12.589 11.996 11.896 13
511 14.890 14.019 13.787 15

1023 15.991 16.293 15.874 17
2047 16.000 18.758 17.965 19
4095 16.000 19.992 20.093 21

TABLE 3
Average numbers of variables to represent incompletely specified index generation function.

330i-MVLSC˙V2 11

12 TSUTOMU SASAO

FIGURE 9
Number of variables to represent 20 variable index generation functions with weight 127.

From the experimental results and mathematical observation [18], we have
the following:

Conjecture 1. Consider a set of uniformly distributed incompletely specified
index generation functions of n binary input variables with weight k ≥ 7.
Then, the fraction of the functions represented with p = 2�log2(k + 1)� − 3
variables approaches 1.0 as n increases.

Although there exist functions that require more than p = 2�log2(k +
1)� − 3 variables, the fraction of such functions approaches 0.0 as n
increases.

6 REPRESENTATION OF INDEX GENERATION FUNCTIONS
USING LINEAR TRANSFORMATIONS

In this part, we show a method to reduce the number of variables to represent
an incompletely specified function by using a linear transformation of the
input variables.

Definition 4. Consider a function f (x1, x2, . . . , xn). A compound variable
y has a form

y = c1x1 ⊕ c2x2 ⊕ · · · ⊕ cnxn,

where ci ∈ {0, 1}. The compound degree of y is
∑n

i=1 ci . A variable with
the compound degree 1 is a primitive variable. A variable with compound

330i-MVLSC˙V2 12

INDEX GENERATION FUNCTIONS 13

40111

x4x3x2x1

31011

21101

11110

4

21

3

x1

x2

x3

x4

40100

x4x3y2y1

31010

21111

11101

4

12

3

y1

y2

x3

x4

211 xxy ⊕=

322 xxy ⊕=

),,,(43213 xxxxf),,,(43213 xxyyg

3g

(a) (b)

f3

^

^

^

^

FIGURE 10
Incompletely specified index generation function represented by compound variables.

degree 2 is a bi-compound variable, and a variable with compound degree
3 is a tri-compound variable.

Example 7. Consider the incompletely specified index generation function
f̂3 shown in Figure 10. Let us consider the number of variables to represent
this function. In Figure 10(a), the column (x1, x2) = (1, 1) has two non-zero
elements. So, the function cannot be represented by {x1, x2}. In a similar
way, the row (x3, x4) = (1, 1) has two non-zero elements. So, the function
cannot be represented by {x3, x4}. Note that the decomposition chart with
other partitions produce the same results. Thus, to represent the function
f̂3, at least three variables are necessary. Next, consider the bi-compound
variables y1 = x1 ⊕ x2 and y2 = x2 ⊕ x3. In this case, we have the function
ĝ3(y1, y2, x3, x4) shown in Figure 10(b). Note that, in the decomposition chart
shown in Figure 10(b), each column has at most one specified element. Thus,
a function ĝ3 can be represented by using only two variables {y1, y2}.

In the rest of the paper, both a primitive variable xi and a compound vari-
ables y j are treated as input variables.

As shown Example 7, by a linear transformation, we can often reduce the
number of variables to represent the function. Why does this linear transfor-
mation reduce the number of variables? Figure 11 shows the decision tree
for the original function in Figure 10. On the other hand, Figure 12 shows
the decision tree for the transformed function in Figure 10. To distinguish
4 vectors, the tree in Figure 11 requires three variables, while the tree in

330i-MVLSC˙V2 13

14 TSUTOMU SASAO

1

2

3

4d

x1

x2

x3

x4

FIGURE 11
Unbalanced Decision Tree.

Figure 12 requires only two variables. In other words, if we can make a more
balanced decision tree by a linear transformation, we may be able to represent
the functions with fewer variables.

Definition 5. Given an incompletely specified index generation function, the
linear transformation that minimizes the number of variables is optimum.

When the number of variables satisfies the relation p = �log2 k�, it is an
optimum linear transformation.

When only primitive variables are used, the number of variables for an
incompletely specified index generation function can be minimized by Algo-
rithm 1. In principle, the minimization of variables using both primitive and
compound variables can be done in the same way. That is, we can perform
the minimization of the variables, where not only the primitive variables

1 3 24

y2

y1

FIGURE 12
Balanced Decision Tree.

330i-MVLSC˙V2 14

INDEX GENERATION FUNCTIONS 15

x1, x2, . . . , xn , but also the compound variables y1, y2, . . . , yt can be con-
sidered as the input variables. When both the primitive and the bi-compound
variables are used, the number of the input variables to consider is

n +
(

n

2

)
= n(n + 1)

2
.

When tri-compound variables, in addition to the bi-compound and the prim-
itive variables are used, the number of variables to consider is

n +
(

n

2

)
+

(
n

3

)
= n(n2 + 5)

6
.

If we consider all the compound variables, the total number of (compound)
variables would be 2n − 1. Thus, an exhaustive method would be impractical.

In [21], we developed a heuristic method to select compound variables.
The selection of the compound variables can be considered as the optimiza-
tion of a binary decision tree.

Definition 6. In the registered vector table, let ν(xi , 0) be the number of
vectors with xi = 0, and let ν(xi , 1) be the number of vectors with xi = 1.
The imbalance measure of the function with respect to xi is defined as

ω(xi) = ν(xi , 0)2 + ν(xi , 1)2.

In the variable xi , when the numbers of occurrences of 0’s and 1’s are the
same, ω(xi) takes its minimum. The larger the difference of the occurrences
of 0’s and 1’s, the larger the imbalance measure. Let k be the number of
registered vectors. Then, ν(xi , 0) + ν(xi , 1) = k.

Example 8. In Figure 10(a), since, for all xi , ν(xi , 0) = 1 and ν(xi , 1) = 3,
we have

ω(xi) = ν(xi , 0)2 + ν(xi , 1)2 = 12 + 32 = 10.

In Figure 10(b), since ν(xi , 0) = 2 and ν(xi , 1) = 2, we have

ω(xi) = ν(xi , 0)2 + ν(xi , 1)2 = 22 + 22 = 8.

In other words, the linear transformation in Example 7 reduces the imbalance
measure, and improves the balance of the decision tree.

330i-MVLSC˙V2 15

16 TSUTOMU SASAO

7-Segment After Linear Transformation

a b c d e f g y1 y2 y3 y4

0 1 1 0 0 0 0 0 1 0 0
1 1 0 1 1 0 1 1 0 1 0
1 1 1 1 0 0 1 0 0 1 1
0 1 1 0 0 1 1 0 1 1 1
1 0 1 1 0 1 1 0 1 0 1
1 0 1 1 1 1 1 1 1 0 0
1 1 1 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 0 1 1 0 0 0 1
1 1 1 1 1 1 0 1 0 0 1

ω 68 68 82 58 52 52 58 52 50 52 50

TABLE 4
7-Segment to BCD Converter After Linear Transformation.

Variables with a smaller imbalance measure tend to partition the set of
registered vectors such that the bits among registered vectors tend to have
nearly the same 0’s and 1’s. Let k be the number of registered vectors. When
the given set of variables partitions the set of vectors into balanced sets, the
number of variables to represent the function is reduced to �log2 k�.

When selecting compound variables, a variable with a small imbalance
measure tends to produce more balanced tree, and tends to reduce the number
of variables needed to represent the function.

Example 9. For the function in Table 2, reduce the number of variables to
represent the function by applying a linear transformation. By applying the
linear transformation

y1 = e,
y2 = b ⊕ d,
y3 = a ⊕ f,
y4 = e ⊕ g,

we have Table 4, where the last row shows the imbalance measure. The imbal-
ance measures are reduced by the linear transformation. Also note that, after
the linear transformation, the four-bit vectors (y1, y2, y3, y4) are all distinct.
This means that these four variables distinguish all the vectors. That is, these
four variables can represent the original index generation function.

7 EFFECT OF LINEAR TRANSFORMATIONS

Consider index generation functions with weight k. When the probabilities
of 0’s and 1’s in the registered vector table are nearly the same, the function

330i-MVLSC˙V2 16

INDEX GENERATION FUNCTIONS 17

may be represented with p = �log2(k + 1)� variables. On the other hand,
when the probabilities of 0’s and 1’s are quite different, more variables are
necessary to represent the function.

7.1 Constant-Weight Code to Index Converter
As an example of functions where the probability of 0’s and 1’s in the regis-
tered vector table are quite different, we consider a class of code converters.

Definition 7. An m-out-of-n code consists of
(n

m

)
binary code words whose

weights are m.

Definition 8. An m-out-of-n to binary converter realizes an index genera-
tion function with

(n
m

)
non-zero elements. It has n inputs and �log2[

(n
m

) + 1]�
outputs. When the number of 1’s in the inputs is not m, the converter produces
the all 0 code. The m-out-of-n code is produced in ascending lexicographical
order. That is, the smallest number is denoted by (0, 0, . . . , 0, 1, 1, . . . , 1),
while the largest number is denoted by (1, 1, . . . 1, 0, 0, . . . , 0).

Example 10. Consider the 1-out-of-15 code to binary converter
f̂ (x1, x2, . . . , x15). It is an index generation function with weight k = 15,
whose registered vector table is shown in Table 5. When only the primitive
variables are used, at least 14 variables are necessary to represent the

1-out-of-15 code
x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 Index

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 6
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 7
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 8
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 9
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 12
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 13
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 14
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

TABLE 5
1-out-of-15 to binary converter.

330i-MVLSC˙V2 17

18 TSUTOMU SASAO

Transformed code

y4 y3 y2 y1 Index

0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

TABLE 6
Transformed 1-out-of-15 to binary converter.

function. Next, consider the linear transformation:

y1 = x1 ⊕ x3 ⊕ x5 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x13 ⊕ x15,

y2 = x2 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x14 ⊕ x15,

y3 = x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x12 ⊕ x13 ⊕ x14 ⊕ x15,

y4 = x8 ⊕ x9 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x13 ⊕ x14 ⊕ x15.

Then, f̂ can be represented by g(y1, y2, y3, y4) as shown in Table 6. In this
case, we can assume that, in the inputs (x1, x2, . . . , x15), only one variable
takes the value 1, while the other variables take the value 0. Note that in the
original registered vector table in Table 5, the probability of 1’s is 1/15, while
in the transformed registered vector table shown in Table 6, the probability of
1’s is 8/15. The linear transformation makes the height of the decision tree
small, and reduces the number of variable to represent the function. Since
the function is represented with p = �log2 k� = 4 variables, it is an optimum
linear transformation.

7.2 Random Index Generation Functions
For n = 24 and k = 1023, we generated 1000 random index generation func-
tions for different number of 1’s in the registered vector table. Figure 13
shows the results. The number of variables after linear transformations is
plotted along the vertical axis. The difference of occurrences of 0’s and 1’s is
plotted along the horizontal axis:

s = |ν(xi , 0) − ν(xi , 1)|
64

.

330i-MVLSC˙V2 18

INDEX GENERATION FUNCTIONS 19

FIGURE 13
Number of Variable to Represent Random Index Generation Functions with Weight = 1023 and
n = 24

Also, t denotes the maximum compound degree of the variables. For s = 0,
the necessary number of variables to represent a function is reduced to 16
from 24 when t = 1 and t = 2. However, for s = 10, the necessary number
of variables to represent a function is 24 when t = 1, while it is reduced to
20 when t = 2, and it is further reduced to 16 when t = 3. Thus, linear trans-
formations with large t are especially effective when the imbalance measure
is large.

8 INDEX GENERATION UNIT

Figure 14 shows an index generation unit (IGU) [13–15]. The linear circuit
has n inputs and p outputs, where p < n. It produces functions:

y1 = c1,1x1 ⊕ c1,2x2 ⊕ c1,3x3 ⊕ · · · ⊕ c1,nxn

y2 = c2,1x1 ⊕ c2,2x2 ⊕ c2,3x3 ⊕ · · · ⊕ c2,nxn

y3 = c3,1x1 ⊕ c3,2x2 ⊕ c3,3x3 ⊕ · · · ⊕ c3,nxn

. . . = . . .

yp = cp,1x1 ⊕ cp,2x2 ⊕ cp,3x3 ⊕ · · · ⊕ cp,nxn,

330i-MVLSC˙V2 19

20 TSUTOMU SASAO

FIGURE 14
Index Generation Unit.

where ci, j ∈ {0, 1}, and ci,i = 1. It is used to reduce the size of the main
memory. Let X1 = (x1, x2, . . . , xp) and X2 = (xp+1, xp+2, . . . , xn).

The main memory has p inputs and �log2(k + 1)� outputs. The main
memory produces correct indices only for registered vectors. However, it may
produce incorrect indices for non-registered vectors, because the number of
input variables is reduced by using don’t care conditions. In an index gen-
eration function, if the input vector is non-registered, then it should produce
0 outputs. To check whether the main memory produces the correct index
or not, we use the AUX memory. The AUX memory has q = �log2(k + 1)�
inputs and n − p outputs: It stores the X2 part of the registered vectors for
each index. The comparator checks if the X2 part of the inputs is the same
as the X2 part of the registered vector. If they are the same, the main memory
produces a correct index. Otherwise, the main memory produces an incorrect
index, and the input vector is non-registered. In this case, the output AND
gates produce 0, showing that the input vector is non-registered. Note that the
main memory produces the correct index only for the registered vectors. In
this way, we can implement an incompletely specified index generation func-
tion instead of a completely specified one. The size of the main memory is
p2p, and the size of the AUX memory is (n − p)2q . Thus, the total memory
size is

q2p + (n − p)2q .

Example 11. Consider the registered vectors in Table 1. The number of vari-
ables is four, but only two variables x1 and x4 are necessary to distinguish
these four registered vectors. Figure 15 shows the IGU. In this case, the lin-
ear circuit produces Y1 = (x1, x4) from X = (x1, x2, x3, x4). The main mem-
ory stores the indices for X1 = Y1 = (x1, x4), and the AUX memory stores

330i-MVLSC˙V2 20

INDEX GENERATION FUNCTIONS 21

FIGURE 15
When the input vector is registered.

the values of X2 = (x2, x3) for the corresponding registered vector. Consider
two cases:

When the input vector is registered:
Suppose that a registered vector (x1, x2, x3, x4) = (1, 1, 0, 0) is applied to
the IGU in Figure 15. First, the linear circuit selects two variables, x1 and
x4, and produces the value X1 = (x1, x4) = (1, 0). Second, the main mem-
ory produces the corresponding index (0, 1, 1). Third, the AUX memory pro-
duces the values of X2 = (x2, x3) = (1, 0) corresponding registered vector
(1, 1, 0, 0). Fourth, the comparator confirms that the values of X2 = (x2, x3)
of the input vector are equal to the output of the AUX memory. And, finally,
the AND gate produces the index for the input vector.

When the input vector is not registered:
Suppose that a non-registered vector (x1, x2, x3, x4) = (1, 0, 1, 0) is applied
to the IGU in Figure 16. Also in this case, the main memory produces the

FIGURE 16
When the input vector is not registered.

330i-MVLSC˙V2 21

22 TSUTOMU SASAO

vector (0, 1, 1), and the AUX memory produces the values of X2 = (x2, x3)
for the corresponding registered vector (1, 1, 0, 0). However, in this case,
the comparator shows that X2 = (x2, x3) = (0, 1) is different from the output
X2 = (x2, x3) of the AUX memory. Thus, the AND gate produces 0, which
shows that the input vector is not registered.

9 DESIGN OF CONSTANT-WEIGHT CODE TO INDEX
CONVERTERS

In this part, we design m-out-of-n to binary converters.

Example 12. When n = 6 and m = 2, we have the function shown in Table
7. This is an index generation function with weight k = (n

m

) = (6
2

) = 15.

When only the primitive variables are used, the number of inputs can be
reduced to five. However, when the inputs are transformed as:

y4 = x6 ⊕ x5

y3 = x5 ⊕ x4

y2 = x4 ⊕ x3

y1 = x3 ⊕ x2

2-out-of-6 code

x6 x5 x4 x3 x2 x1 Index

0 0 0 0 1 1 1
0 0 0 1 0 1 2
0 0 0 1 1 0 3
0 0 1 0 0 1 4
0 0 1 0 1 0 5
0 0 1 1 0 0 6
0 1 0 0 0 1 7
0 1 0 0 1 0 8
0 1 0 1 0 0 9
0 1 1 0 0 0 10
1 0 0 0 0 1 11
1 0 0 0 1 0 12
1 0 0 1 0 0 13
1 0 1 0 0 0 14
1 1 0 0 0 0 15

TABLE 7
2-out-of-6 to binary converter.

330i-MVLSC˙V2 22

INDEX GENERATION FUNCTIONS 23

Transformed code

y4 y3 y2 y1 Index

0 0 0 1 1
0 0 1 1 2
0 0 1 0 3
0 1 1 0 4
0 1 1 1 5
0 1 0 1 6
1 1 0 0 7
1 1 0 1 8
1 1 1 1 9
1 0 1 0 10
1 0 0 0 11
1 0 0 1 12
1 0 1 1 13
1 1 1 0 14
0 1 0 0 15

TABLE 8
Transformed 2-out-of-6 to binary converter.

then, the code converter can be represented with only four variables: y1,
y2, y3, and y4, as shown in Table 8. Since the function is represented with
p = �log2 k� = 4 variables, it is an optimum linear transformation.

In this example, the advantage of using a linear transformation is not so
great. However, when n is large, a linear transformation can drastically reduce
the memory size.

Example 13. Consider the case of m = 2 and n = 20. This is an index gen-
eration function with the weight k = (n

m

) = (20
2

) = 190. In the single-memory
realization, the memory size is

�log2(k + 1)�2n = 8 × 220,

which is too large. To obtain a decomposed realization, partition the inputs
into X1 = (x1, x2, . . . , x10) and X2 = (x11, x12, . . . , x20). The column multi-
plicity with the decomposition with respect to (X1, X2) and (X2, X1) are the
same and are both 57. Thus, it can be realized by the circuit shown in Fig-
ure 17. In this realization, the total memory size is

2 × 6 × 210 + 8 × 212 = 44 × 210.

330i-MVLSC˙V2 23

24 TSUTOMU SASAO

FIGURE 17
Tree-type realization of 2-out-of-20 to binary converter.

When we use an IGU to implement the function, the number of inputs to the
main memory can be reduced to p = �log k� + 1 = 9. In this case, the total
memory size in the IGU is

n2p = 20 × 29 = 10 × 210.

Example 14. Consider the case of m = 3 and n = 20. This is an index gen-
eration function with weight k = (n

m

) = (20
3

) = 1140. In the single-memory
realization, the memory size is

�log2(k + 1)�2n = 11 × 220,

which is also too large. To realize a tree-type circuit, we partition the inputs
into X1 = (x1, x2, . . . , x10) and X2 = (x11, x12, . . . , x20). The column multi-
plicity with the decomposition with respect to (X1, X2) and (X2, X1) are the
same and are both 177. Thus, we have the circuit shown in Figure 18. In this
realization, the total memory size is

2 × 8 × 210 + 11 × 216 = 720 × 210.

When we use the IGU, the number of inputs to the main memory is reduced
to p = �log(k + 1)� = 11. Thus, it is an optimum linear transformation. In

FIGURE 18
Tree-type realization of 3-out-of-20 to binary converter.

330i-MVLSC˙V2 24

INDEX GENERATION FUNCTIONS 25

this case, the total memory size in the IGU is

n2p = 20 × 211 = 40 × 210.

Recently, an efficient method to realize constant-weight code to index con-
verters was developed [1]. However, this method is only applicable to this
type of functions.

10 EXTENSION TO MULTIPLE-VALUED CASE

Index generation functions can be extended to multiple-valued input func-
tions as follows:

Definition 9. A multi-valued input index generation function f is a map-
ping {0, 1, . . . , r − 1}n → {0, 1, . . . , k − 1}.

Experimental results [17] and an observation [23] suggest the following:

Conjecture 2. Consider a set of uniformly distributed incompletely specified
r-valued input n-variable index generation functions with weight k, where
r2 ≤ k ≤ rn−2 and n ≥ 10. If

p ≥ �2 logr k − logr 5.485�,

then more than 95% of the functions can be represented with p variables.

Note that there exist functions that require more variables. However, the
fraction of such functions approaches to 0.0 as n increases.

Example 15. Deoxyribonucleic acid (DNA) contains the genetic instructions
used in the development and functioning of all known living organisms. The
four bases found in DNA are adenine (abbreviated A), cytosine (C), gua-
nine (G) and thymine (T). To represent DNA, we use 4-valued logic. Con-
sider the circuit to detect DNA patterns shown in Table 9. Since each pat-
tern consists of 8 characters, a single-memory realization requires a mem-
ory with 2 × 8 = 16 inputs. Since, it has three outputs, the memory size
is 216 × 3 = 192 × 210 bits. However, these patterns can be distinguished
by using only two characters: x4 and x7. Figure 19 shows the circuit to
detect the DNA patterns. In Figure 19, the total amount of memory is only

330i-MVLSC˙V2 25

26 TSUTOMU SASAO

x1 x2 x3 x4 x5 x6 x7 x8 f

A A G A G C T A 1
A A G C A C G C 2
G A A G A T C A 3
C T G G A G G G 4
T A G G G A T A 5
T A T G C C A G 6
T G A C C G C G 7

TABLE 9
4-valued input index generation function.

42 × 3 + 8 × 6 × 2 = 144 bits, or 1/1365 of the memory used in the naive
method.

11 RELATED WORK

The use of linear transformations in logic design was first considered by
Nechiporuk in 1958 [9]. Later, Lechner [7] presented an extensive survey
of the methods, and Varma and Trachtenberg [26] showed the usefulness of
the linear transformation for logic synthesis benchmark functions. In these
design methods, the cost measure of the circuits was the gate count. And,
autocorrelation was used to estimate the cost of the function. Recently, a lin-
ear transformation is used in [6] to reduce circuit complexity. In these works,
the methods apply to totally or partially symmetric functions, including

FIGURE 19
Index generation unit for DNA matching.

330i-MVLSC˙V2 26

INDEX GENERATION FUNCTIONS 27

adders. However, for other functions, linearization are not so effective.
Reductions of the sizes of BDDs using linear transformations were consid-
ered in [2, 5, 8]. In these cases, the methods are useful for error-correcting
circuits (C499, C1355, C1908), in addition to totally and partially symmetric
functions including adders (C7552). In [13], the author presented a method
to reduce the number of variables for incompletely specified function by lin-
ear transformation. In this case, the circuit is implemented by memories, and
the cost measure is the memory size or the number of the variables for the
address of the memory. Minimization of variables for multiple-valued index
generation functions are also considered in [24].

12 CONCLUSIONS

In this paper, we introduced index generation functions, which have wide
applications in pattern matching circuits for the Internet. To represent most
incompletely specified index generation functions with weight k, 2�log2(k +
1)� − 3 variables are sufficient. We also presented a method to implement
an index generation function using an IGU. Reduction of the number of vari-
ables using a linear transformation is shown. An extension to multiple-valued
input case is also shown. This tutorial is based on [18, 19, 21].

ACKNOWLEDGMENTS

This research is partly supported by the MEXT Regional Innovation Cluster
Program (Global Type, 2nd Stage). The author thanks Prof. Jon T. Butler, Dr.
Hiroki Nakahara, and Mr. M. Matsuura for discussion. Prof. R. S. Stankovic
provided us [9] and [25].

REFERENCES

[1] J. T. Butler and T. Sasao, “Fast constant weight codeword to index converter,” The 54th
IEEE International Midwest Symposium on Circuits and Systems, Korea August 7–10,
2011.

[2] W. Gunther and R. Drechsler, “Efficient minimization and manipulation of linearly trans-
formed binary decision diagrams,” IEEE Transactions on Computers, vol. 52. No. 9, pp.
1196–1209, September, 2003.

[3] C. Halatsis and N. Gaitanis, “Irredundant normal forms and minimal dependence sets of a
Boolean function,” IEEE Transactions on Computers, Vol. C-27, No. 11, pp. 1064–1068,
November, 1978.

[4] Y. Kambayashi, “Logic design of programmable logic arrays,” IEEE Trans. on Computers,
Vol. C-28, No. 9, pp. 609–617, September 1979.

330i-MVLSC˙V2 27

28 TSUTOMU SASAO

[5] M. G. Karpovsky, R. S. Stankovic, and J. T. Astola, “Reduction of sizes of decision dia-
grams by autocorrelation functions,” IEEE Transactions on Computers, Vol. 52, No. 5,
pp. 592–606, May, 2003.

[6] O. Keren and I. Levin, “Linearization of multi-output logic functions by ordering of the
autocorrelation values,” FACTA UNIVERSITATIS (NIS), Vol. 20, no. 3, December 2007,
pp. 479–498.

[7] R. J. Lechner, “Harmonic analysis of switching functions,” in A. Mukhopadhyay (ed.),
Recent Developments in Switching Theory, Academic Press, New York, 1971.

[8] C. Meinel, F. Somenzi, and T. Theobald, “Linear sifting of decision diagrams and its appli-
cation in synthesis,” IEEE Trans. CAD, vol. 19, no. 5, pp. 521–533, 2000.

[9] E. I. Nechiporuk, “On the synthesis of networks using linear transformations of variables,”
Dokl. AN SSSR, vol. 123, no. 4, pp. 610–612, Dec. 1958.

[10] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999.

[11] T. Sasao, “On the number of dependent variables for incompletely specified multiple-
valued functions,”30th International Symposium on Multiple-Valued Logic, pp. 91–97,
Portland, Oregon, U.S.A., May 23–25, 2000.

[12] T. Sasao, “Design methods for multiple-valued input address generators,”(invited paper)
International Symposium on Multiple-Valued Logic (ISMVL-2006), Singapore, May
2006.

[13] T. Sasao, “A Design method of address generators using hash memories,” IWLS-2006, Vail,
Colorado, U.S.A, June 7–9, 2006, pp. 102–109.

[14] T. Sasao and M. Matsuura, “An implementation of an address generator using hash mem-
ories,” DSD-2007, Aug. 27–31, 2007, Lubeck, Germany, pp. 69–76.

[15] T. Sasao, “On the number of variables to represent sparse logic functions,” ICCAD-2008,
San Jose, California, USA, Nov. 10–13, 2008, pp. 45–51.

[16] T. Sasao, T. Nakamura, and M. Matsuura, “Representation of incompletely specified index
generation functions using minimal number of compound variables,” DSD-2009, Aug.
2009, pp. 765–772.

[17] T. Sasao, “On the numbers of variables to represent multi-valued incompletely specified
functions,” 13th EUROMICRO Conference on Digital System Design, Architectures, Meth-
ods and Tools, Lille, France DSD-2010, Sept. 2010, pp. 420–423.

[18] T. Sasao, Memory Based Logic Synthesis, Springer, March 2011 .

[19] T. Sasao, “Index generation functions: Recent Developments,” International Symposium
on Multiple-Valued Logic (ISMVL-2011), Tuusula, Finland, May 23–25, 2011 (invited).

[20] T. Sasao, “Linear transformations for variable reduction,” Reed Muller 2011 Workshop,
Tuusula, Finland, May 25–26, 2011.

[21] T. Sasao, “Linear decomposition of index generation functions,” 17th Asia and South
Pacific Design Automation Conference (ASPDAC-2012), Jan. 30–Feb. 2, 2012, Sydney,
Australia, pp. 781–788.

[22] T. Sasao, “Row-shift decompositions for index generation functions,” Design, Automation
& Test in Europe (DATE-2012), March 12–16, 2012, Dresden, Germany, pp. 1585–1590.

[23] T. Sasao, “Multiple-valued input index generation functions: Optimization by linear trans-
formation,” International Symposium on Multiple-Valued Logic (ISMVL-2012), Victoria,
Canada, May 14–16, 2012, pp. 185–190.

[24] D. A. Simovici, D. Pletea, and R. Vetro,“Information-theoretical mining of determining
sets for partially defined functions,” ISMVL-2010, May 2010, pp. 294–299.

330i-MVLSC˙V2 28

INDEX GENERATION FUNCTIONS 29

[25] R. S. Stankovic and J. Astola (eds.) E.I. Nechiporuk, “Network synthesis by using linear
transformation of variables,” in Reprints from the Early Days of Information Sciences,
Tampere International Center for Signal Processing, Tampere 2007.

[26] D. Varma and E. Trachtenberg, “Design automation tools for efficient implementation of
logic functions by decomposition,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. 8, No. 8, pp. 901–916, 1989.

330i-MVLSC˙V2 29

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [504.000 720.000]
>> setpagedevice

