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Abstract

This paper shows a compact realization of regular expression matching circuits on FPGAs. First, the given regular expressi
is converted into a non-deterministic finite automaton (NFA) by the modified McNaughton-Yamada method. Second, to reduc
the number of the states in the NFA, prefixes for the NFA are shared. Also, the NFA is converted into the NFA with multi-
character transition (MNFAU: Modular non-deterministic finite automaton with unbounded string transition). Third, the MNFAU is
decomposed into the transition string part and the state transition part. The transition string part is represented by the Aho-Cora
deterministic finite automaton (AC-DFA), and it is implemented by firchip memory and a register. On the other hand, the state
transition part is implemented by a cascade of logic cells (LCs) and the the interconnection on the FPGA. We implemented tt
regular expressions for SNORT (an open source intrusion detection system) on a Xilinx FPGA. Experimental results showed th:
the embedded memory size per a character of the MNFAU is reduced to 0.2% of the pipelined DFA; 4.2% of the bit-partitionec
DFA; 41.0% of the MNFAU(3); and 71.4% of the MNFAU without prefix sharing. Also, the number of LCs per a character of the
MNFAU is reduced to 0.9% of the pipelined DFA; 15.6% of the NFA; and 80.0% of MNFAU without prefix sharing.
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1. Introduction LCs lowers the system cost. In this paper, we propose the reg-
ular expression matching circuit that requires fewer LCs than

1.1. Regular Expression Matching in Network Applications  ¢onventional methods.

A regular expression which consists ofcharacters and
meta characters represents a set of strings. Various network, 5 Rejated Work
applications (e.g., intrusion detection systems [3, 26, 9], a spam
filter [28], a virus scanning system [7], and an L7 filter [14]) Regular expressions are detected by finite automata (FA). In
useregular expression matchingto detect malicious data in a deterministic finite automaton (DFA), for each state and each
incoming packets. Regular expression matching spends a coimput, there is a unique transition, while in a non-deterministic
siderable fraction of the total computation time for these apfinite automaton (NFA), for each state for each input, multi-
plications. The throughput using the Perl compatible regulaple transitions may exist. In an NFA, there existgansitions
expression (PCRE) library [23] on a general purpose MPU igo other states without consuming input characters. Floyd and
up to hundreds of Mega bits per second (Mbps) [24], which idJliman [10] proposed a hardware implementation of the regular
too low for most applications. Thus, a dedicated circuit for reg-expression matching based on the NFA in 1982. After this, var-
ular expression matching is required. For network applicationspus FA-based regular expression matching circuits have been
since the high-mix low-volume production and the frequent upproposed.
date for new protocols are required, FPGAs are widely used. Realization of regular expression matching circuits:Most
With the advent of FPGAs embedding dedicated high-speedf the proposed regular expression matching circuits are based
transceivers for the high-speed network, we expect extensiven finite automata. DFA-based regular expression matchings
use of FPGAs in the future. include: An Aho-Corasick DFA (AC-DFA) algorithm on a

For different users, systems withfidirent performance and computer [1]; a bit-partitioned AC-DFA [30]; a combination of
price are required. Thus, fierent architectures should be the bit-partitioned AC-DFA and the MPU [4]; and a pipelined
designed. For the IXPs (Internet exchange points) and thBFA [6]. Also, NFA-based regular expression matchings in-
ISPs (Internet service providers), a high throughput, e.g., morelude: An algorithm that emulates the NFA by shift and AND
than tens of Giga bits per second (Gbps), is the first prioritypperations (Baeza-Yates'’s algorithm) [2]; an FPGA realization
but the cost of the systems is the second priority. However, foof Baeza-Yates's algorithm [25]; an FPGA realization reduced
low-end users, such as SOHO (smdlice and homeftice), a by prefix and postfix sharing of regular expressions [15]; and a
low cost system is the first priority. Since the cost for the FPGAmethod that maps repeated parts of regular expressions into the
increases with the number of LCs, reduction of the number oKilinx FPGA primitive (SRL16) [5].
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Complexity Analysis of DFAs: For regular expression
matching circuits based on DFAs, the area is proportional to

bit-partitioned AC-DFA.
Regular Expression Matching Circuit Based on the NFA

the number of states. Moscola et al. [17] analyzed the DFA rep- [ 0 LI O ] L Interconnection
resenting the regular expressiaithout meta characters. Yu o __[:]__[:]_‘D

et al. [34] analyzed the DFA representing the regular expres- i

sionwith meta characters. Also, Dixon et al. [8] analyzed the - —-[:]--[:]-‘E./ I/0 Block

with String Transition: A conventional NFA is based on a
single-character transitions [25]. Since the area is proportional

to the number of states for the NFA, the reduction of the number
of states also reduces the area.

I

In [18], we developed a regular expression matching circuit S50 5

based on the NFA with string (multi-character) transition. This
method drastically reduced the number of the states, and won
the design contest for the eighth AGIMEE international con-
ference on formal methods and models for co-design (MEM-
OCODE2010) [22]. We analyzed the area complexity for the
NFA with string (bounded characters) transition [19]. To fur-
ther reduce the number of states, we proposed the NFA with
unbounded characters [20].
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Figure 1: Architecture of the Xilinx FPGA.
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1.3. Xilinx FPGA

The proposed method uses the Xilinx FPGA to implement

to

FPGA consisting of configurable logic blocks (CLBs), block Neighbors
RAMs (BRAMs), )/O blocks, and interconnection elemehts
Fig. 2 shows the structure for the CLB. In the Xilinx FPGA,

the regular expression matching circuit. Here, we introduce
ili i i SLICE
the Xilinx FPGA. Fig. 1 shows the structure for the Xilinx <" G | =

-

a CLB consists of fourSLICEs, and a SLICE consists of <ﬁ
two logic cells (LCs) An LC consists of a four-inpulbok-

up table (LUT) 2 and a flip-flop. In the CLB, two types
of SLICEs (SLICEM and SLICEL) exist. An LUT on the
SLICEM can be configured as a shift register (SRL16) or an
LUT, while an LUT on the SLICEL can be configured only as
an LUT [33]. Fig. 3 shows two LUT modes of a Xilinx FPGA.

1.4. Contributions of Our Previous Works [18, 19, 20, 21]
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Figure 2: CLB structure of Xilinx FPGA.

We showed compact realizations of regular expression * g grg ﬁrg g g g g ﬁ i ﬁ g g
matching circuits. In the regular expression matching circuits, 77‘7‘[ [ { , { { , [ { ,

we assume that the area is proportional to the number of statels”T . a1 o010 wii o100 o101 0110 0111 1000 1001 1010 1011 1109 1101 1110 111

in the NFA. In a conventional NFA, the NFA goes to the next P

state by consuming a character. By merging a sequence of states
in an NFA, we have an NFA with string (in other words, multi-
character) transition. In most cases, the NFA with string transi-Shift 7 [
tion has fewer states than the conventional NFA with a ch::xracte‘lnput f

{ LUT output
Four-input LUT Mode

transition. However, a special technique (e.g., a DFA) is necClock

essary to imp|ement the string transitions. An imp|ementation —| 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

of the string transitions by using the primitive for the Xilinx
FPGAs is shown in [20].

1Additionally, some FPGAs have DSP blocks, DLLs, and embedded pro-
cessors.

2For modern FPGAs (Spartan VI, and Virtex 6), six or five inputs LUTs can
be configured by using multiple four-input LUTs.
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1.5. Contributions of This Paper 3.1. Definitions of DFA

This paper is an extension of previous publications [18, 19pefinition 3.1. A deterministic finite automaton (DFA) is
20, 21]. New contributions are: defined by a five-tuple pta = (S,Z.6, So, A), where S =

1. Application of the prefix sharing to the regular expressiond S0 St - - -» -1} i a finite set of the states; is-a finite set of
for the SNORT (an open source instruction detection systh€ input charactersj is a transition functiond: Sxx — S);
tem). S € S is the initial state; and AC S is the set of accept

Regular expressions in the SNORT have common prefixe§tat95- Since our system treats ASCII characters, we assume
and they can be shared without using any additional logifhat/=l = 2° = 256
cal elements [5].

2. Implementation ofall the regular expressions for the
SNORT including an extended regular expression. In th
previous papers, only the subset of the SNORT were im-
plemented.

Definition 3.2. Let se S, and ce X. If §(s,c) € S, thencisa
éransition character from state sto states(s, ¢).

To definea transition string accepted by the DFA, we ex-

tend the transition functioito 6.

1.6. Organization of the Paper o . -
g ) P ) ] _ Definition 3.3. LetX* be a set of strings, andl: SxX* —» S

The rest of the paper is organized as follows: Section 2 inye the extended transition function. IfCs* and se S, then

troduces the Perl compatible regular expression (PCRE); Segg ) represents a transition state of s with respect to the input
tion 3 shows a regular expression matching circuit based OBiring C.

the FA. Section 4 introduces area reduction techniques for the

regular expression matching circuit; Section 5 shows a regulahefinition 3.4. Consider a DFA Mea = (S,5,6,%, A). Let
expression matching circuit based on an NFA with string tranc. s+, Then, Myea accepts a string , if the following
sition; Section 6 shows a design method of a regular expressioQ|ation holds:

matching circuit based on the NFA with string transition; Sec-
tion 7 shows the experimental results; and Section 8 concludes  §(sy,Cin) € A 1)
the paper.

Let ¢; be a character of a strin@ = coC; --- ¢y, andé be a
transition function. Then, the extended transition funcéids

2. Perl Compatible Regular Expression (PCRE) defined recursively as follows:

This section briefly introduces Berl compatible regular
expression (PCRE)which is used in this paper.

A PCRE consists otharact(_ars anq meta characters A By using (1) and (2), the DFA performs the string matching
character is repr_esented by eight bits. Téregth of the reg- by repeating state transitions.
ular expression is the number of characters. Table 1 shows
the PCRE considered in this paper, whBrdenotes a regular .
expression. Our regular expression matching circuit does not-2- Aho-Corasic DFA (AC-DFA)

support some meta characters as follows: anchaks\¢, and For some DFAsbacktrackings are necessary to detect mul-

\z); word boundaries\@B, and\b); continuing from the pre- tiple regular expressions. Thus, the matching speed tend to be
vious match {G); and application specific flag&,\R, and  g|ow.

\B). Since these meta characters are not used in network in-

trusions [5], we need not consider the realization of these metayample 3.1. Fig. 4 shows a DFA accepting two strings
characters. “ABCD” and “BCAB”. In this DFA, s, denotes the initial state,
and g and g denote the accept states. Note that, when the mis-
3. Regular Expression Matching Circuit Based on Finite ~Match occurs, itbacks to the initial state.
Automaton When the text is “ABCAB”, first, it goes to, oy con-
suming “A” (Fig. 4 (a)). Second, it goes to, y consum-
A regular expression can be converted into an equivalent fing “B” (Fig. 4 (b)). Third, it goes to g by consuming
nite automaton. Thus, the regular expressions can be detecté@” (Fig. 4 (c)). Fourth, for the input “A”, since a mismatch
by finite automata. First, we introduce a conversion from a regoccurs, it backs to the initial state. Then, it goes 1dog con-
ular expression into a finite automaton. Then, we show the resuming “A” (Fig. 4 (d)). Finally, although it goes to,sy con-
alization of the finite automaton on the FPGA. suming “B”, it cannot detect “BCAB” (Fig. 4 (b)).
To detect “BCAB”, it must perform the backtracking in

Fig. 4 (c). In this case, it also must back to the text pointer to the

3The XML filter [31] requires these meta characters. To realize them, ad-, upn ; foN RY (C
ditional hardware is necessary. For example, [12] built a single deterministi second “B”. Then, it goes tossby consuming "B (Fig. 4 ().

push down automata using a lazy approach, and realized them by a sequencj%y performing state transi.tions _repeatedly (Fig. 4 (g)-(h)), it
LCs with a stack. goes to the accept state @ig. 4 (i)). ]

3

8(s0,.C) = &(5(S0,Co). C1C2 "+ - Cn). @3




Table 1: Perl compatible regular expressions (PCRES) considered in this paper.

Expression

Meaning

Example

Character

(ASCII character)

\x(Hexadecimal number

Match a single character
Match a single character

Meta character denotes a regular expression, andenotes an empty character)

Match any single character except newlina)

={a,b,...,z,AB,...,Z,0,1,...

19

oG

Repeat R zero or more times (Kleene closure) A*={p,A,AAAAA,... }
R+ Repeat R one or more times A+=AA* ={A,AA AAA,... }
R? Repeat R zero or one times A?={¢,A}
R{a} Repeat Ry times
R{a,} Repeat Rr or more times
R{a,8} Repeat R at least and at mosB times
R1IRs R1 or R, (union)
(R) Groups regular expressions, so operators can be applied
\(meta character) Match a meta character as a character \? matches “?”
[(characters)] Set of characters [abc] = (ablc)

[~ (characters)]

Complement set of characters

"R

Matching start from the first character

R$ Matching ends at the last character
R1(?=Ry) Lookahead (Continue matching whep Ratches after B
R1(?'Ry) Negation of lookahead

(Continue matching whenRloes not match afteriR
(<=R1)R; Lookbehind (Continue matching when Riatches before R
(<'R1)Ry Negation of lookbehind

(Continue matching whenjRloes not match before,R

SNORT shorthand character class

\d A set of numbers£[0-9])

\D Complement set ofd (=[ ~0-9])

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal Tab

\Vv Vertical Tab

\s A set of white spaces={\f\n\r\t\v])

\S Complement set ofs

\w A set of alphabets[A-Za-z0-9])

\W Complement set ofw

Flag

\i Case insensitive (matches both lowercase and uppercase characters)
\m ~and $ match after and before newlines




Pattern = ABCD,BCAB
Text = %BCAB

Pattern= ABCD,BCAB Pattern= ABCD,BCAB
Text = AECAB Text = A%CAB

S
Pattern = ABCD,BCAB ~ Pattern = ABCD,BCAB
Text = ABCAB gév Text = ABCAB

& &

Pattern = ABCD,BCAB Pattern = ABCD,BCAB
Text = ABC%B Text = ABC%B

Pattern = ABCD,BCAB Pattern= ABCD,BCAB
Text = A BCA Text = ABCA{}_;,

accept ‘BCAB’ accept ‘BCAB’

Figure 4: An example of backtracking.



To detect multiple patterns without performing backtracking,
the Aho-Corasick DFA (AC-DFA) has been proposed [1]. To
construct the AC-DFA, first, the transition strings are repre-
sented by a text tree (Trie). NexXgilure paths that indicate
the transitions for the mismatches are attached to the text tree.
Since the AC-DFA stores all possible paths for all the patterns,
no backtracking is necessary. By scanning the input text only
once, the AC-DFA detects all matched strings.

Example 3.2. In Fig. 4, by attaching the failure path from ®
s7, we have the DFA shown in Fig. 5 that detects both “ABCD”
and “BCAB” without the backtracking.

First, the DFA goes to;shy consuming “A” (Fig. 5 (a)), sec-
ond, it goes to sby consuming “B” (Fig. 5 (b)), third, it goes
to 3 by consuming “C” (Fig. 5 (c)). In this case, it goes te s
by consuming “A” through the failure path (Fig. 5 (d)). Finally,
it goes to the accept statg By consuming “B” (Fig. 5 (e)). &

3.3. Realization of AC-DFA

Fig. 6 shows the AC-DFA machine, where the register stores
the present state and the memory st@esate transition ta-
ble for 6. Letq = |S| be the number of the states, amd |Z|
be the number of dierent characters iB. Then, the amount of
memory to implement the DFA jgog,q]2/'°%"1+logdl pits4, In
fact, the sizes of the memories for the AC-DFAs increase expo-
nentially [34]. Thus, a direct hardware realization of the regular
expression matching using an AC-DFA is often impractical.

3.4. Definitions of NFA

Definition 3.5. A non-deterministic finite automaton (NFA)

is defined by a five-tuple \Ma = (S,%,y, S, A), where S X,

S0, and A are the same as Definition 3.1, while the transition
functiony : S x (Z U {&}) — P(S) is different. Note thatg
denotes an empty character, an@3p denotes the power set of
S.

In an NFA, the emptyd) input is permitted. Thus, a state for
the NFA can transit to multiple states for a single input. The
state transition with the input isan & transition . In this paper,
in a state transition diagram, arsymbol with an arrow denotes
the e transition.

Example 3.3. Fig. 7 shows the NFA for the regular expression
“A +[AB]{3}D". An ¢ transition exists from the second state to
the first state. ]

Example 3.4. Fig. 8 illustrates the state transitions for the NFA
in Fig. 7 when the input string is “ABABD”. Note that, multiple
state transitions occur in certain rows, since the NFA can be
in multiple states given the input string “ABABD”. There is at
least one path from the initial state $0 the accept statess
Thus, “ABABD” is accepted by this NFA. ]

4Since the size of the register in the DFA machine is much smaller than that
for the memory storing the transition function, we ignore the size of the register.

6

Pattern = ABCD,BCAB
Text = %BCAB

accept ‘ABCD’
Failure path — A

Pattern= ABCD,BCAB
Text = AECAB

B C D

accept ‘ABCD’
Failure path —, A

Pattern = ABCD,BCAB
Text = AB%AB

accept ‘ABCD’
Failure path — A

Pattern = ABCD,BCAB
Text = ABC%B

accept ‘ABCD’
Failure path — A

Pattern = ABCD,BCAB
Text = ABCA{]?

accept ‘ABCD’
Failure path — A

accept ‘BCAB’

Figure 5: An example of AC-DFA.



— ‘l\ |—log2 n—\bits

Present Input Next State Transition
State Character State Table
a N
So b Sy
a S5 Pattern = A+[AB]{3}D
S, b S Text = ABABD
| @
a 9 (A )AB] _[AB] _[AB] D
Sa1 b So ©O—®@ 2 3 O—0O
: : initial accept
|—log2 q—|bits -----------------------------------------------
: Pattern = A+[AB]{3}D
R
cgister_| Text = ABABD
(b) ¢
Figure 6: AC-DFA machine. m [AB] [AB] [AB] D
© I @ 3
initial accept
E e
m [AB] _[AB] [AB] D
@ (1) {2) (3) (4) @ Pattern = A+[AB]{3}D
initial accept Text= ABABD
Figure 7: NFA for the regular expression{£AB] {3}D". (C) o
(A ) AB] _[AB] _[AB] D
©—@ 2 ©
: o initial accept
3.5. Conversion of a Regular Expression into the NFA
Several methods exist to convert a regular expression int  ------=--=--=--=--=----------------------------
an NFA. This paper usdhe Modified McNaughton-Yamada Pattern = A+[AB]{3}D
method[11] that is suitable for hardware realization. The mod- Text = ABABD
ified McNaughton-Yamada method is shown in Fig. 9, where
denotes the regular expression, andenotes the transition. (d)
By applying the Modified McNaughton-Yamada method to the ﬁ [AB] [AB [AB] D
regular expression repeatedly, we have an NFA.
1n1t1al accept
Example 3.5. Fig. 10 illustrates the conversion of the regular =~~~ """"""""7""7""7""7=----ommomoommommommomes
expression “A[AB]{3}D" into the NFA by using the Modified
McNaughton-Yamada method. [ | Pattern = A+[AB]{3}D

Text= ABABD

3.6. Realization of NFA (e)
Sidhu and Prasanna [25] proposed the realization of the reg- @ [AB] [AB] _ [ABI

ular expression matching circuit based on an NFA. In their initial accept
circuit, each state is implemented by a cascade of LCs on an ‘ABABD’
FPGA. Thus, the necessary number of LCs increases with the

number of states. The conversion from the NFA to the circuit Figure 8: NFA shown in Fig. 7 accepts “ABABD".

is shown in Fig. 11, wher® denotes the regular expression.
Note that, repetitionsR{«} and R{«,}) can be realized by cir-
cuits shown in Figs. 11 (1) and 11 (3).

Example 3.6. Fig. 13 shows a circuit for the NFA shown in
Fig. 7. ]



O—0O O & OO & O

(1) state transition with

character class ‘[C]’ (2) Concatenation of R, and R,

&

(3) Kleene closure (4) Repetition of one or
(R*) more than one (R+)

&

(5) Repetition of zero
or one (R?) (6) Union (R,|R,)
& times

(7) Repetition of times (R{})

o times Kleene Closure

&
(8) Repetition of n or more n (R{&, }=R{C¢}R*)
o times p - octimes
0RO OR O OR (O O

(9) Repetition at least & and at most 5 (R{ct,3})

Figure 9: Modified McNaughton-Yamada Method.

‘ Regular expression ‘
A+[AB]{3}D
Apply conversion rule (2)
(Concatenation of “"A+”,""[ABK3}”, and 'D”)

'O A+ OO [4B]3} OO D O+—0O

B ~ R accept
Apply Apply
l conversion | conversion
rule (4) rule (7)

OMBICEOMABIEOMBIEOD €0

S - -~ accept
Apply conversion rule (1),
NFA and remove redundant nodes
&
(. A ) [AB] [AB] _[AB] D
O—0
accept

Figure 10: An example of NFA conversion by modified McNaughton-Yamada
method.

3.7. Realization of Extended Regular Expressions

In this part, we briefly show the realization of extended reg-
ular expressions, which were not implemented in the previous
works [18, 19, 20, 21].

3.7.1. SNORT Shorthand Character Class

The SNORT shorthand character class can be represented by
a meta character “[]” (set of characters) or}'I(complement
set of characters). Thus, the circuit shown in Fig. 11 (1) can
realize a SNORT shorthand character class.

Example 3.7. A SNORT shorthand character classs” can
be written by “\Nf\n\r\t\v]". Fig. 12 shows a circuit for
SNORT shorthand character classs”. ]

3.7.2. Flag [5]

A case insensitive flag\{) can be written by the set of low-
ercase and uppercase characters. Thus, it can be realized by
the circuit for the character class shown in Fig. 11 (1). To real-
ize the flag {m) considering the newline, a small sequencer is
attached to the regular expression matching circuit. When it de-
tects the newline charact&n), it checks whether the matching
is succeeded or not.

3.7.3. Lookahead and Lookbehind [5]

In a hardware implementation, we ignore any software re-
lated features (lookahead and lookbehind) by rewriting regular
expressions. For a lookahead (lookbehind) meta character, we
remove it. On the other hand, for a negative one, we remove it,
but insert an inverter into the outputs for negative one.



Jrs

Input character Match
(binary code)
\f (00001100) 1

g \n (00001010) 1
T ili ******************* T \r (00001101) 1
i ch]aan;::er Mateh ;:r]*rlz;‘;;ie(;ndeteclor § l o \t (0000 1 00 1 ) 1
; a 0 | (Realizedby LUTS) | \v (00001011) 1
| b 1 — | /) N
1 . - v Otherwise 0
i h inpul |
i}jljnifﬁjﬁﬂﬁﬁﬂﬁﬂ/ﬂj, match output match input LJ\ DQ

clock
(1) State transition with character class clock

Input Input
character 3 character
8
c c
—iRo i Ryo ) )

clock 41—] clock . . .
(3) Kleene closure 4. Area Reduction Techniques for Regular Expression

(2) Concatenation of R, and R, (R¥) Matching Circuits

Input Input

character g character 8 4.1. Sharing of Transition Character Detector
C

iR o iR o Sidhu and Prasanna [27] realized transition character detec-
tors by LUTs in a straightforward manner. However, by sharing
clockg] clock them, the necessary number of LUTs can be reduced. Sour-
(4) Repetition of one (5) Repetition of zero dis and Pnevmatikatos [27] realized the character detectors by
or more than one (R+) or one (R?) a content addressable memory (CAM). Since the CAM is ex-
nput pensive and dissipates high power [32], we realize transition
character _g_‘—l character detectors by an SRAM.

Figure 12: Circuit for the SNORT shorthand character class’"

PR D— Example 4.8. In the circuit of Fig. 13, the transition charac-

| ter sets “[AB]” are used three times. Fig. 14 shows the regu-
— lar expression circuit, where the transition character detector
c is implemented by a memory. ]

l As shown in Fig. 14a decomposed NFAconsists ofthe
clock — transition character detection part andthe state transition
(6) Union (R |R,) part. The transition character detection part can be realized
by an df-chip memory, while the state transition part can be
o times B -atimes realized by the cascade of LCs.

Input
character

4.2. Prefix Sharing

Many regular expressions used in network applications share
the same prefixes arat postfixes [15]. By sharing them, the
clock number of states for the NFA can be decreased.

(7) Repetition at least & and at most 5 (R {« LD

%‘01—4

]
?

> X o l—4q
1
!

Example 4.9. Consider the NFA accepting regular expressions
Figure 11: Circuit conversion from the NFA. “ABCD” and “ABEF". Since the prefixes “AB” can be shared,

we have the NFA shown in the lower part of Fig. 15. Next,
consider the NFA accepting regular expressions “ABCD” and
“EFCD?". Since the postfixes “CD” can be shared, we have the
NFA shown in the lower part of Fig. 16. As shown in these
examples, a sharing a part of regular expressions will decrease
the number of states. ]



Clock

Input
Character

In Out
A 1
Otherwise | 0

In

A

B

Otherwise | 0

In Out

D 1

Otherwise | 0

Clock

Figure 13: A circuit for the NFA [25].

Input _/_l
Character 8
In Out (Transition Signal)
A 1 1 1 1 0
B 0 1 1 1 0
D 0 0 0 0 1
Otherwise | 0 0 0 0 0
| |
\ detect ‘[AB]’ detect ‘[AB]’ detect ‘[AB]’
********** i e

o o

D Q. D Q! D Q

detect

Figure 14: A circuit for the decomposed NFA [27].

10
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Transition

Character

Detection
Part

-

State
> Transition
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=0

accept

‘ABCD’

accept
‘ABEF’

accept
‘ABCD’

accept
‘ABEF’

Figure 15: An example of prefix sharing.

A B C D
OanOan® 0.0
accept
‘ABCD’

E F C D
O—(O0—0=U-0
accept
‘EFCD’

accept

Figure 16: An example of postfix sharing.

‘EFCD’ or ‘ABCD’
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In a circuit for a prefix shared NFA, matched regular expres-
sions are distinguished without any additional hardware. How-
ever, in a circuit for a postfix shared NFA, an additional hard-
ware (OR gates, AND gates, shift registers) is necessary to dis-
tinguish matched regular expressions [15].

Example 4.10. Fig. 17 shows the regular expression matching
circuit for the prefix shared NFA shown in Fig. 15. ]

Example 4.11. Fig. 18 shows the regular expression matching

circuit for the postfix shared NFA shown in Fig. 16. To distin-

guish matched regular expressions, the following hardware is
necessary: An OR gate (Fig. 18 (1)); shift registers (Fig. 18 (2))
that retains matched states for each regular expression; AND
gates (Fig. 18 (3)) that produce the match signals. [ ]

As shown in Example 4.11, although the postfix sharing re-
duces the number of states, it requires additional hardware to
implement. Thus, in this paper, we do not share the postfix in
the NFA.

5. Regular Expression Matching Circuit Based on NFA
with String Transition

5.1. MNFAU

Sidhu and Prasanna [25] implemented a regular expression
matching by an FPGA. However, they did not use embedded
memory. Since a modern FPGA consists of LCs and embedded
memories, their method wastes existing resources. Each state
of the NFA is implemented by an LC of an FPGA. Thus, the
necessary number of LCs increases with the number of states.
To reduce the number of states, we propose a regular expression
matching circuit based onraodular non-deterministic finite
automaton with unbounded string transition (MNFAU) . To
convert an NFA into an equivalent MNFAU, we merge a se-
quence of states. To retain the equivalence between the NFA
and the MNFAU, the states are merged as follows:

Lemma5.1. Let S = {s,8,..., 41} be the set of states for
the NFA. Assume that a subsetS {s, S1, ..., Swp-1} € S,
fork <i < k+p-2, s goesto 53 only. Then, Sis merged into
one state of the MNFAU only if both in-degree and out-degree
fors (k<i<k+p-1)are one.

Definition 5.6. Let ¢; € X be the transition character of; $or
j=kk+1,...,k+p,then C= cCy1 - Ckp denotesa tran-
sition string of Sy.

In this case, a set of stat¢s, Sc1.- .. , Sk+p} Of an NFA is
merged into a stat8y of an MNFAU.

Example 5.12. In the NFA shown in Fig. 7, the set of states
{s2, S3, 4, S5} can be merged into a state of the MNFAU. How-
ever, the set of statgs,, s;} cannot be merged, since & 0.

[ |



Input
Character 8

In Out (Transition Signal)
A 1 0 0 0 0 0
B 0 1 0 0 0 0
C 0 0 0 1 0 0
D 0 0 0 0 0 1
E 0 0 1 0 0 0
F 0 0 0 0 1 0
Otherwise | 0 0 0 0 0 0
T ﬁ
T detect*CT || detedt D
| |
: b g : D Q! Match
_|_detect*A” | detect B’ | Co , "ABCD’
| I 7 | ( ] J |
| [ | [ R ! [ !
I
1 — D Q—— D Q—r" ‘
| b L ]
| Lo | [ detect ‘B> [ detect ‘F”
|
R B Suiail At | b o ! | b Q . Match
| | 3 ]
Clock ‘ . ° r ‘ 1 F . ‘ABEF
| ! | !
[ ! [ !
Figure 17: A circuit for the prefix shared NFA shown in Fig. 15.
Input
Character 8
In Out (Transition Signal)
A 0 1 0 0 0 0
B 0 0 0 1 0 0
C 0 0 0 0 1 0
D 0 0 0 0 0 1
E 1 0 0 0 0 0
F 0 0 1 0 0 0
Otherwise | 0 0 0 0 0 0
-
| detect D7
D Q——
| detect ‘A" i | detect ‘B> N e =
| ! | !
! D Q— : D Q D Q b Q Match
| {— : | ( : > | L ‘ABCD’
| |
! * : : (2) 3)
V| detect ‘BT | detect ‘F° 4
| ! | !
! D Q! ! D Q—! D Q D Q Match
| | ‘ ‘EFCD’
| | !

[

Figure 18: A circuit for the postfix shared NFA shown in Fig. 16.
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& A _[AB] [AB] [AB] D
init o e o o @
€ accept

(a) (NFA)

8 A [ABJAB] [AB] D
im'tial o o at

&
(b)

& A [AB] [AB][AB] D
init o e o @
€ accept

(©)

& A [AB]J[AB][AB] D
N o¥o @0
initial accept

&
(d)

& A [AB] [AB] [AB]D
R0
g accept

(e)

& q A [AB][AB] [AB]D
initia] 9 a@t

&
U]

& A _[AB] [AB][AB]D
(o i—o o
initial - accept

(9)

8 A [AB][AB][AB]D
. V—-‘ O @
initial at

(h)

ABD

O——7-—70

Detect ‘ABD’

Shift register
(Realized by SRL16)

‘ (a) State transition circuit with character ‘ ‘ (b) State transition circuit with string

Figure 21: State transition circuits for NFA and MNFAU.

5.3.2. State Transition Circuit for the MNFAU [18].

In an NFA, each state is realized by a small machine con-
sisting of a flip-flop and an AND gate. The right-hand side
of Fig. 21 shows the state transition circuit for the MNFAU
Example 5.13. Fig. 19 shows gierent MNFAUs derived from that accepts “ABD”. When the AC-DFA detects the transition
the NFA shown in Fig. 7. In the NFA, since the numbers oftring (“ABD” in Fig. 21), a detection signal is sent to the state
¢ transitions inputs and outputs for three stafes s3, &4} are  transition circuit. Then, the state transition is performed. The
e = 0, the number of dferent MNFAUs are eight. In Fig. 19, AC-DFA scans a character in every clock, while the state tran-
the MNFAU (h) is the most compact MNFAU. B sition circuit has to wait fop clocks to perform the state transi-

tion, wherep denotes the length of the transition string. Thus,

As shown in Example 5.13, we can convert the given NFAa (p — 1)-bit shift register is inserted between small machines
into a compact MNFAU. However, there exists the restrictionto synchronize with the AC-DFA. As shown in Fig. 3, a four-
of the hardware realization. The next Section 5.3 shows théhput LUT of a Xilinx FPGA can also be used as a shift register
hardware realization for the MNFAU, and Section 6 shows thewith up to 16 bits (SRL16). With the SRL16, we can reduce the
design method for the MNFAU. necessary number of LUTs and flip-flops.

Figure 19: Possible MNFAUs derived from the NFA shown in Fig. 7.

- Example 5.14. Fig. 21 (a) shows a state transition circuit with
5.2. Decomposition of MNFAU a character for the NFA accepting “ABD”, while Fig. 21 (b)

Consider the MNFAU in Fig. 20. It can be decomposed @to shows a state transition circuit with a string for the MNFAU
transition string detection circuit anda state transition cir- accepting “ABD”. In the circuit of the NFA, three AND gates
cuit. Two circuits are connected hy— 1 transition string  and flip-flops are used, thus, the total number of LCs is three.
detections signals Note that, in Fig. 20g denotes the number On the other hand, in the circuit of the MNFAU, one AND gate,
of states for the MNFAU, an@; denotes the transition string one flip-flop, and one shift register are used. We can realize a
for i-th state of the MNFAU. Since transition strings do not in- shift register by a SRL16. Thus, the total number of necessary
clude meta charactefs they are detected byxact matching LCs is two. ]
Exact matching is a subclass of regular expression matching,

and the AC-DFA for it can be realized by memory and a statg=yample 5.15. Fig. 22 shows an example of operations for an
register. On the other hand, the state transition part treating th@ea and an MNFAU.

¢ transition is implemented by the cascade of logic cells Shown The jefthand side column of Fig. 22 illustrates the operation
in Fig. 11 (1) and interconnections. of the circuit for the NFA shown in Fig. 21. First, the transition
character detection circuit reads “A”, and sends a transition
character detection signal to the first flip-flop. Then, the first
flip-flop is activated (Fig. 21 (a)). Second, it reads “B”, and
The lengths for the transition strings for the MNFAU are Second flip-flop is activated (Fig. 21 (b)). Finally, it reads "D,
different in general. To detect multiple strings withiteient ~a"d the last flip-flop is activated (Fig. 21 (c)). In this way, the

lengths, we use the AC-DFA [1] shown in Fig. 6. Since thisCirCUit a_ccepts “AB,D”' ) )
part tend to be large, the state transition table is implemented The righthand side column of Fig. 22 illustrates the opera-

by an df-chip memory. However, the state register is imple-{0" Of the circuit for the MNFAU shown in Fig. 21. First, the
mented by the FPGA. transition string detection circuit reads “A”. Also, the first flip-

flop is activated (Fig. 21 (a)). Second, it reads “B”, and also
the second flip-flop is activated (Fig. 21 (b)). Finally, the tran-
sition string detection circuit sends the detection signal to the

13

5.3. Circuit Realization of Decomposed MNFAU
5.3.1. Transition String Detection Circuit

SHowever, meta characters “[]” can be used.



C/ ~ Cz ~ C3 qu1
MNFAU D 2 3 (9)

Decomposition
Input Transition String
character —7 AC-DFA Detection Circuit
Decomposed Match | Match | Match Match Transition String
C, G (SR R O Detection Signal
MNFAU q ctection Signals
O O State Transition
! 2 3 d Circuit
Match Jr
Figure 20: Decomposed MNFAU.
last flip-flop. Then, it is activated (Fig. 21 (c)). In this way, the
circuit accepts “ABD”. ]
5.3.3. Realization of Decomposed MNFAU
Transition Character Transition Strin . . .
A1 Detection Circuit A~ Detection Circutt Fig. 23 shows the circuit for the decomposed MNFAU con-
sisting of the transition string detection part and the state tran-
Detect ‘ABD’ sition part. The transition string part is realized by the AC-DFA

Detect ‘A’ Detect ‘B’ Detect ‘D’

machine shown in Fig. 6, while the state transition part is real-
ized by the cascade of the LCs shown in Fig. 21.
LetR (1 <i < r) ber regular expressiongSunrau| be
the number of states for th®INFAU; representingR;, and
guNFAU = Xi-1 ISuneaul be the total number of states in the
B | ansiton Character Bj{ prmsition String MNFAU. In Fig.23, the transition string detection circuit (AC-
DFA machine) sendgunrautransition string detection sig-
nalsto the state transition circuit (a cascade of LCs). Thus, the
number of outputs of the AC-DFA machine would dgnrFau.
If all the outputs for the AC-DFA machine was implemented by
an df-chip memory, then a large number ¢Ipins® would be
necessary. In this case, the use of an FPGA is impractical.
To reduce the number of®@ pins, we use the decoder that
D Densim D1 Daeon oo converts state numbersidzdac-ral bItS) of the AG-DFA
into transition string detection signalgyneau bits), where
dac-pra denotes the number of states for the AC-DFA. The
decoder is realized by the BRAM on the FPGA. In this way,
the number of pins for the FPGA is reduced framineau tO

[log20ac-pral.

Detect ‘A’ Detect ‘B’ Detect ‘D’

Detect ‘A’ Detect ‘B’ Detect ‘D’

clk
() Example 5.16. Fig. 24 shows the regular expression match-
ing circuit for the MNFAU representing the regular expression
NFA MNFAU
Figure 22: Operations for an NFA and an MNFAU. 60ur experiment shows that the present version of SNORT requires a mem-

ory with gunrau = 10, 066.
14



Transition String
Detection Circuit
(Realized by an Off-chip
Memory and a Register)

State Transition
Circuits
(Realized by LCs and
Interconnections)

<

<

Input Character

— |

State
Transition Table
(Oft-chip Memory)

| * ,,,,,,,,,,,,,, g ducpral

‘ Register ‘ FPGA
11102, ¢ic o |

Decoder
(On-chip Memory)

P

‘ State Transition Circuit for MNFAU, }—

P

‘ State Transition Circuit for MNFAU, }—

v
‘ State Transition Circuit for MNFAU, }#

q MNFAU

Match
Signals

Figure 23: Realization of a decomposed MNFAU.
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Definition 6.7. Assume that two regular expressiong &d

A+ABI3ID A+DB R, have a common prefix with length w. Let S=
Modified McNaughton-Yamada Method {S(11), S12)s - - -» Squ)} be the set of states for the NFA accept-

& & H .
(VA JABI__[AB] [AB] D O a P B ing Ry; S» = {S21) S22 - - - » S2q2)) be the set of states for the
.6. O—0—0-0 0O & =00 Nra accepting R Spre, = {S(1.1)> S1.2)> - - - » SLw)}» Spre € S1

be a set of states corresponding to the prefix far Bnd

@ Prefix Sharing ss B D SPRE; = {5(2.,1), S2,2)s -+ S(ZZW)}, SPR5 cS, be a Set. of states
s (48, O—O—O—O corresponding to the prefix for,R When all incoming edges
.. o and outgoing edges for botly g and s, are the same for all
£ OO0 i (1<i<w), the states for Sz and Sore> can be shared.
@ MNFAU Converston The problem is to share prefixes so that the resulting NFA
8 N [ABIIABIIABID () has the minimum number of states. Since the exhaustive search
.6. to find an optimal prefix sharing is impractical, we use a greedy
b8 O method to find a near optimal prefix sharing. We define the
@ Decomposition, figure of merit function to find good prefixes to share.
and HDL conversion
Definition 6.8. Let S; and S be sets of states defined in Defi-
nition 6.7. The figure of merit function for the pair (Si, Sy)
Logic Synthesis, and Routing iS
@ (by Xilinx ISE Design Suite)

M(Sl,SQ) = W

‘ Configuration data for FPGA ‘

Example 6.17.Fig. 26 shows three NFAs for a part of file
transfer protocol (ftp) rule in the SNORT. Le{,SS,, and S

be the sets of states for the NFAs shown in Fig. 26 (1-3), re-
spectively. MSi, S,) is eight, while MS;, S3) and M(S,, S3)

Figure 25: Design flow for regular expression matching circuit.

“A+[AB]{3}D". In this case, the number of states in the AC- are six. ]
DFA dac_pra is eight. On the other hand, the number of string
detection signal gnFau IS two. [ | The following algorithm tries to share two sets of states hav-

ing the longest common prefix, repeatedly.

Algorithm 6.1. (A near optimal prefix sharing of NFAS)
6. Design of a Decomposed Regular Expression Matching aAssume that r regular expressions,R,,... R are given. Let
Circuit Si = {Si1), %.2), - - - » Si,qi)} e the set of states for the NFA ac-
] cepting R, and Sgiven = {S1,S», -+, S} be the set of S(1 <
6.1. Design Flow i<r).

Fig. 25 shows a design flow for regular expression match- 1 Sehared — &
ing circuit based on a decomposed MNFAU. First, given regu-
lar expressions are converted into NFAs by using the Modified
McNaughton-Yamada method. Second, states corresponding to
the prefixes in regular expressions are shared. An algorithm for
prefix sharing is shown in Section 6.2. Third, the prefix shared
NFA is converted into the prefix shared MNFAU. An algorithm
for the MNFAU design is shown in Section 6.3. Fourth, the
prefix shared MNFAU is decomposed into the transition string
detection part and the state transition part. The transition string 3.3 ITM(S;, Sse) = Oforall S, thenSsnared — Sshared
detection part is represented by the AC-DFA. Fifth, these cir- Ssel
cuits are converted into the HDL code, and finally, the config- 4 !f Sgiven # ¢, then go to Step 2.
uration data for the FPGA is generated by Xilinx ISE Design 5 Terminate.

Suite.

2 AmongSgiven Select a set & with the largest numbers of
states. ThenSgiven < Sgiven— Ssel-
3.1 Find a set $in Sgven that has the largest figure of
merit M(S;, Ssel).
3.2 If M(Sj,Sse) > 0O, then obtain a new set of states
Shew Dy applying prefix sharing to g and S;. Let
Ssel < Snew Sgiven < Sgiven— Sj, and go to Step 4.

Example 6.18. Fig. 27 illustrates of Algorithm 6.1 applied to

. . . the NFAs accepting regular expressions for a part of ftp rules

6.2. Algorithm to Derive Prefix Shared NFA of SNORT. In Fig. 27, the first NFA {An Fig. 27) accepts
As shown in Example 4.9, the number of states in the NFA'SITEASCHMOD\s[~\n]200"; the second NFA (Ain Fig. 27)

can be reduced by sharing common prefixes. First, we defineccepts “SITERSCHOWNSs[~\n]100"; the third NFA (Ag in

the common prefixes for two regular expressions, and correFig. 27) accepts “SITESCPWDs["\n]100”; and the last

sponding states in the NFA. NFA (A in Fig. 27) accepts “SITESEXEC".
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Clock

\1\ Input Character

Present Input | Next | |Present Input Next
State | Character | State State | Character | State
sO A sl s4 A s5

B s2 B s6

Otherwise | s0O Otherwise | s0

sl A s3 s5 A s5
B s4 B s6

Otherwise | sO D s7

s2 A s3 Otherwise | s0
B s4 s6 A s5

Otherwise | s0 B s6

s3 A s5 D s7
B s6 Otherwise | s0

Otherwise | s0 s7 A sl

B s2

Otherwise | sO

State Transition Table for AC-DFA

accept
‘[AB]J[AB][AB]D’

AC-DFA that accepts transition strings
‘A’ and ‘TAB][AB][AB]D’

v

State Register

Decoder

!

In
(State

from AC-DFA)

Out
(Transition

Signal)

sl

s3

s5

s7

Otherwise

olo|—|—]|—
(=N Ll Kl Rl ]

Match ‘A’

Match ‘{AB][AB][AB]D’

[AB][AB][AB]D

Figure 24: A circuit for regular expression 44AB] {3}D” based on a decomposed MNFAU.
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&
T E &\s

S 1 C

H M_0O_ D

s [l ~[n] [

(1) H(:) accept
SITE\s+CHMOD\s[*\n] {200}
M(S,,S,)=8
e (51,5
) S I T, EJALs Y C H O _ W _N s [Mn] —["n] [Nl 5) accept
SITE\s+CHOWN\s["\n] {100}
M(S,,85)=6
&
S 1 .T E E X E _C
3) O-OC-O-0O0-0O—0O—-0C~0O—0O—0 accept

SITE\s+tEXEC

Figure 26: An example showing the figure of merit function.

1st sharing: We select A(Step 2), since Ahas the largest
number of states. Since (®,S;) = 8, M(S1,S3) = 7, and
M(S1, S4) = 6, we choose Afor sharing (Step 3.1). Then, we
share the states inifand A (Step 3.2), and obtain the prefix
shared NFA (Ain Fig. 27).

2nd sharing: We select A(Step 2), since Ahas the largest
number of states. Since(8s, S3) = 7 and M(Ss, S4) = 6, we

C; and Myft—chip be the memory size for thgF@hip memory.
Assume that, for each;S= (S, Scr1, ..+ Seep)s fOri = Kk +
1,---,k+p-1, s goesto only;s; and both in-degree and out-
degree for sare one. Then, find a partition S that minimizes u
satisfying the memory constraint(®) < Mot t_chip, Where u is
the number of partitionsin S.

choose A for sharing (Step 3.1). Then, we share the states in L&tS = {So., s1...., 41} be the set of states in the NFA, and

As and A (Step 3.2), and obtain the prefix shared NFA (A
Fig. 27).

3rd sharing: We select A(Step 2), since Ahas the largest
number of states. Since (8, S4) = 4, we choose Afor shar-
ing (Step 3.1). Then, we share the statesgiaid A, (Step 3.2),
and obtain the prefix shared NFA{ Fig. 27).

t be the number of states for the NFAwgh> 0 (0<i < q-1),
whereg be the total number of transition inputs and out-
puts in the states. Then, the number of fierent MNFAUs

is 2471, Since this can be very large, an exhaustive method to
find a minimum MNFAU satisfying the fé-chip memory con-
straintM(C) < Mot t—chip is impractical. Thus, we use a greedy

Since all the NFAs have been shared, we terminate the algéP€thod to find a near minimum MNFAU.

rithm.

6.3. Design Algorithm for the Decomposed MNFAU [21]

Algorithm 6.2. (Find a near minimum MNFAU from the NFA)
Let S = {5y, 51,..., 541} be the set of states for the NFA, and
Mot f—chip b€ the memory size for thg-@hip memory.

As shown in Example 5.13, any NFA can be converted into

an MNFAU using Lemma 5.1.
The transition string detection circuit is implemented by an
off-chip memory, while the state transition circuit for MNFAU

is implemented by an on-chip memory of an FPGA. In order to

minimize the system cost, given the size of tlieahip mem-
ory, we try to use the smallest FPGA.

1. Obtain a minimum partition S= S; U S, U --- U Sy,
where SN'S; = ¢(i # j), such that, for each S=
{S6 Setr - Seap), fori = Kk+1,--- k+p-1, 5
goes to only i$1 and both in-degree and out-degree for
s are one. Then, obtain a set of transition strings=C
{C1,Co,...,Cyl.

The number of the states in the transition string detection 2-
circuitincreases with the length of the string. On the other hand, 3.
the number of the states in the state transition circuit for the
MNFAU decreases with the length of the string.

With these conditions in mind, the conversion problem from
an NFA to an MNFAU is formulated as follows:

4.

Problem 6.1. Let S = {sp, S1,..., S-1) be the set of states of
the NFA; S U S, U --- U S, be a partition of S, where; S
and SN'Sj = ¢(i # j); Ci be a transition string for a set of
states § C = {C1,Cy,...,Cy} be a set of transition strings;
Oac-pra be the number of states in the AC-DFA for C(®) =

5.

Construct the AC-DFA for C. Then, obtain(®).

While MC) > Mo+ t_chip, perform Step 4. Otherwise go to
Step. 4.

Select a set S= {S, Sct1, - - . Swem} With the maximum
number of states from S, and partition @&to two sub-
sets $1and S 5, where $1 = {Sc, Scv1r -+ - » Sl and
Si2 = {Sa21+1- - - > Skrml- Also, obtain a set of transition
strings C = {C4,C»,...,Ci_1,Ci 2,...,Cy}, where G is

a transition string for $ 3, and G_» is that for § .
Terminate the algorithm.

Algorithm 6.2 repeatedly bi-partitions the maximum subset

[Qac_pra]28log%dac-0ral he the memory size of the AC-DFA for of S while the memory siz&1(C) exceedMof t—chip-
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& [Mn]{200}

4, S I T E C H M _O_ D \s ["n] ~["n] —["n] [M\n] 5 accept
SITE\s+CHMOD\s["\n] {200}
& ["\n]{100}
4, S -I-T -E C H O -W_-N_\s ["n] —["n] [M\n] 0 accept
SITE\s+CHOWN\s[*\n] {100}
& [Mn]{100}
A3 S 1 T E C P _W_D _\s ["n] —["n] _[.A\n] 5) accept
SITE\s+CPWD\s["\n] {100}
&
S I T E E X E _C
Ay O-O~-O—0~0O—0~0O—=0~0O—0 accept
SITE\s+tEXEC
(a) Original
&
A 5 [A\IE@ accept
SITE\s+CHMOD\s["\n] {200}
OM.O_. [A\Iﬂ.@ accept
e SITE\s+CHOWN\s["\n] {100}
" S I T E C P _W_D_ \s —["n] —["n] [N 5) accept
e SITE\s+CPWD\s[*\n] {100}
S I T E E X E - C
4, O~O-O—0O~0O—0~0=0—~0O~0 accept
SITE\s+EXEC
(b) After 1% sharing
M_O D s [A\n] [A\n] [M\n] 5 accept
SITE\s+CHMOD\s["\n] {200}
A [A\IL]@ accept
6
SITE\s+CHOWN\s[\n] {100}
.[.A\ri© accept

SITE\s+CPWD\s["\n] {100}

£
SITEEXEC
4, O-O-O~0~0—0~0~0~0—0 accept

SITE\S+EXEC

(c) After 2" sharing

% [A\Iﬂ.@ accept

SITE\s+CHMOD\s["\n] {200}

[A\IL].@ accept
SITE\s+CHOWN\s["\n] {100}
_[f\ﬂ@ accept

SITE\s+CPWD\s["\n] {100}

SITE\S+tEXEC

(d) After 3 sharing

Figure 27: Anillustration of Algorithm 6.1.
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Table 2: Comparison of NFA based regular expression matching circuits.
FA NFA |AC-DFA| On-chip #LC | #LC/ | MEM/
Type #Stateg #States| MEM (Kb) #Char| #Char
NFA 661,510 0 0(690,617 1.04 0
Prefix Shared NFA | 610,972 0 0/640,078 0.96 0
MNFAU 83,703 12,714 12,909 171,776 0.26] 19.9
Prefix Shared MNFAU 64,387 9,443 9,930/ 132,136 0.20] 15.3

Table 3: Comparison with other methods.

Method FA FPGA Th #LC Oft-chip | #Char | #LC/ | MEM/
Type (Gbps) MEM (Kb) #Char| #Char
Pipelined DFA [6] (ISCA06) DFA| Virtex 2 4.0/ 247,000 3,456 11,126/ 22.22|3182.2
MPU-+Bit-partitioned DFA [4] (FPL06) DFA| Virtex4| 1.4 N/A 6,000 16,715 N/A| 367.5
Improvement of Sidhu-Prasanna method [5] (FPT]06) NFA| Virtex 4 2.9 25,074 0| 19,580 1.28 0
MNFA(3) [19] (SASIMI'10) MNFA(p)| Virtex6| 3.2] 4,717 441| 12,095 0.39] 37.3
MNFAU withoutprefix sharing [20] (ARC'11) MNFAU | Spartan3  1.6| 19,552 1,585/ 75,633 0.25| 21.4
Prefix shared MNFAU (Proposed) MNFAU | Virtex 5 1.6 132,134 9,930 665,040 0.20| 15.3
7. Experimental Results the FPGA (Kbits); andChardenotes the number of characters

for the regular expression.
7.1. Implementation of the MNFAU Fig. 28 compares four flierent implementations of a part of

on the S2C Inc., Virtex-5 TAI logic module board (FPGA: of the NFA reduced the number of statesﬁém%‘\:

XC5VLX330: 207360 logic cells (LCs), total 10,368 £927% = 923%. Since, for the regular expression of SNORT,
Kbits BRAM). The total number of regular expressions isabout 10% of the prefixes are specified pyotocol (such
3,533 (665,040 characters) The prefix shared MNFAU has as “SITE\s” & in Fig. 28), the prefix sharing reduces pre-
64,387 states, and the AC-DFA for the transition string detecfixes (Fig. 28 (b)). On the other hand, the conversion of the NFA
tion has 9,443 states. This implementation requires 132,13fto the MNFAU reduced the number of statestﬁﬁéﬁj% =
LCs, and an fi-chip memory of 16 Mbits. Note that, the 83703 _ 15604 Since. about 70% of the postfixes consist
16 Mbits df-chip SRAM is used to store the transition func- °6%°1° ’

. . . : : of repetition of redundant charactefsuch as “f\n]{n}” 9),
tion of.the AC-DFA, while 9,930 Kbits on-chip BRAM is used the MNFAU that merges such repetition reduces the number of
to realize the decoder. The FPGA operates at 306.3 MHz. How: : : X
S : states for postfixes (Fig. 28 (c)). Since the number of states
ever due to the limitation on the clock frequency for tifeahip ) ; :
for prefixes are reduced by the prefix sharing and that for post-

SRAM, the system clock was set to 200 MHz. Our regular €X%ixes are reduced by the MNFAU, the prefix shared MNFAU

ression matching circuit scans one character in every clock. .
g through%ut isPx 8 = 1.6 Gbps Y %% educed the number of states @ Sgrameneny  s4387
’ ' ' 9.7% (Fig. 28 (d)) of the NFA.

7.2. Comparison of NFA Based Regular Expression Matchin

Circuits %.3. Comparison with Other Methods

Table 2 compares four types of NFA based regular expres- Table 3 compares our method with other methods. _Since
sion matching circuits: NFA based (shown in Fig. 13); prefix nose Mmethods realizeffirent numbers of reqular expressions,
shared NFA based (shown in Fig. 17); MNFAU based (showr’bedded mgmor size per é cha,ractelandtr;le nur¥1ber of
in Fig. 23); and prefix shared MNFAU based. In all the cir- Cs per a char)::lcter [Ijn Table 3.Th denotes the throuah-
cuits, 3,533 regular expressions (665,040 characters) are ir"T— gb 4Cd ' h b  logi IMEM dg-
plemented. In Table 2L C denotes the number of logic cells; put (Gbps); enotes the number of logic cellst €

On-chip MEMdenotes the amount of embedded memory fOInotes the amount of embedded memory for the FPGA (Kbits);
and #Char denotes the number of characters for the regu-

lar expression. Table 3 shows that, the embedded memory
7As for the same device (Spartan I1l: XC3S4000 consists of 62,208 LCs and
1,728 Kbit BRAMSs) used in [20], we can store 1,325 rules (89,625 characters)
by using a prefix sharing technique and a dedicated hardware shown in Section 8For ftp, “SITE” executes the subsequent command. Thus, this command is
3.7. However, since the restriction of amount of BRAM, this devices cannotused to send a malicious data by attackers.
realize all regular expressions of SNORT. 91t causes a hitier overflow by attackers.
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SITE\s+CHMOD\s[*\n] {200} ToE €M PoE M Ml Ple
&
SITE\s*CHOWN\s["\n]{100} MQLQE&%%%WQM@ Holg
&
SITEs+CPWD\s[Mn]{100}  OSOLOTOE CRNRoS ol Sl ~  Dalg
&
a) NFA
Prefix sharing Merge states (MNFAU)
& \‘
SITE C MO D s Pl [l
&
SITE CAHAOAW AN s AP ol
&
SITE C AP VAR A AR ()
&
,SITE AE EEACo
(b) Prefix shared NFA (c) MNFAU

-

ODls ~[Malwnl[\a] | [n]

WN's [Ma][a](Nn] - [o] o

WD's il [l

(d) Prefix shared MNFAU

Figure 28: Four dierent NFAs for a set of regular expressions.
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size per a character of the MNFAU is reduced to 0.2%0 ( [6]

Prelixshared UNFAU — 183y of the pipelined DFA; 4.2% %

453 of the bit-partitioned DFA with an

Bit—partitionedDFA
MPU; 41.0% € ZERERarniREAY - 189 of the MNFA(3); and

PrefixsharedMNFAU 15.3 .
0, = =29 -
71.4% & MNFAUwithoutpre fixsharing™ 2].4) of the MNFAU with

out prefix sharing. Also, the number of LCs per a character of

PipelinedDFA
PrefixsharedMNFAU _

(7]
(8]

. PrefixsharedMNFAU _ 0.20

the MNFAU is reduced to O.Qngﬁw = 22 0f g

the pipelined DFA; 15.6%= =g = 223) of the 0]

NFA; 51.2% ( PElRStaciiiiAl = 920) of the MNFAU(3);
PrefixsharedMNFAU _ 020

and 80'0%.% MNFAUwithoutpre fixsharing — WS) of the MNFAU [11]

without prefix sharing.

8. Conclusion [12]

This paper showed a regular expression matching circuit
based on a decomposed MNFAU. First, the given regular ext3
pression is converted into the NFA by using the McNaughtony4)
Yamada method. Second, to reduce the number of states of the
NFA, the prefix sharing is applied. Third, to further reduce thel1®]
number of states, the prefix shared NFA is converted into the
MNFAU. Fourth, the MNFAU is decomposed into the transi- [1¢]
tion string part and the state transition part. The transition string
part is realized by the AC-DFA machine, while the state transi-
tion part is realized by the cascade of LCs. These circuits arg’!
connected by the decoder using BRAMs. We implemented all
the regular expressions used in the SNORT on a Xilinx FPGA.
Comparison with conventional methods showed that the enfél
bedded memory size per a character of the MNFAU is reduced
to 0.2% of the pipelined DFA,; 4.2% of the bit-partitioned DFA;
41.0% of the MNFAU(3); and 71.4% of the MNFAU without [19]
prefix sharing. Also, the number of LCs per a character of the
MNFAU is reduced to 0.9% of the pipelined DFA; 15.6% of the

NFA; and 80.0% of MNFAU without prefix sharing.
(20]
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