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Abstract

This paper shows a compact realization of regular expression matching circuits on FPGAs. First, the given regular expression
is converted into a non-deterministic finite automaton (NFA) by the modified McNaughton-Yamada method. Second, to reduce
the number of the states in the NFA, prefixes for the NFA are shared. Also, the NFA is converted into the NFA with multi-
character transition (MNFAU: Modular non-deterministic finite automaton with unbounded string transition). Third, the MNFAU is
decomposed into the transition string part and the state transition part. The transition string part is represented by the Aho-Corasic
deterministic finite automaton (AC-DFA), and it is implemented by an off-chip memory and a register. On the other hand, the state
transition part is implemented by a cascade of logic cells (LCs) and the the interconnection on the FPGA. We implemented the
regular expressions for SNORT (an open source intrusion detection system) on a Xilinx FPGA. Experimental results showed that,
the embedded memory size per a character of the MNFAU is reduced to 0.2% of the pipelined DFA; 4.2% of the bit-partitioned
DFA; 41.0% of the MNFAU(3); and 71.4% of the MNFAU without prefix sharing. Also, the number of LCs per a character of the
MNFAU is reduced to 0.9% of the pipelined DFA; 15.6% of the NFA; and 80.0% of MNFAU without prefix sharing.
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1. Introduction

1.1. Regular Expression Matching in Network Applications

A regular expression, which consists ofcharacters and
meta characters, represents a set of strings. Various network
applications (e.g., intrusion detection systems [3, 26, 9], a spam
filter [28], a virus scanning system [7], and an L7 filter [14])
useregular expression matchingto detect malicious data in
incoming packets. Regular expression matching spends a con-
siderable fraction of the total computation time for these ap-
plications. The throughput using the Perl compatible regular
expression (PCRE) library [23] on a general purpose MPU is
up to hundreds of Mega bits per second (Mbps) [24], which is
too low for most applications. Thus, a dedicated circuit for reg-
ular expression matching is required. For network applications,
since the high-mix low-volume production and the frequent up-
date for new protocols are required, FPGAs are widely used.
With the advent of FPGAs embedding dedicated high-speed
transceivers for the high-speed network, we expect extensive
use of FPGAs in the future.

For different users, systems with different performance and
price are required. Thus, different architectures should be
designed. For the IXPs (Internet exchange points) and the
ISPs (Internet service providers), a high throughput, e.g., more
than tens of Giga bits per second (Gbps), is the first priority,
but the cost of the systems is the second priority. However, for
low-end users, such as SOHO (small office and home office), a
low cost system is the first priority. Since the cost for the FPGA
increases with the number of LCs, reduction of the number of

LCs lowers the system cost. In this paper, we propose the reg-
ular expression matching circuit that requires fewer LCs than
conventional methods.

1.2. Related Work

Regular expressions are detected by finite automata (FA). In
a deterministic finite automaton (DFA), for each state and each
input, there is a unique transition, while in a non-deterministic
finite automaton (NFA), for each state for each input, multi-
ple transitions may exist. In an NFA, there existsε-transitions
to other states without consuming input characters. Floyd and
Ullman [10] proposed a hardware implementation of the regular
expression matching based on the NFA in 1982. After this, var-
ious FA-based regular expression matching circuits have been
proposed.

Realization of regular expression matching circuits:Most
of the proposed regular expression matching circuits are based
on finite automata. DFA-based regular expression matchings
include: An Aho-Corasick DFA (AC-DFA) algorithm on a
computer [1]; a bit-partitioned AC-DFA [30]; a combination of
the bit-partitioned AC-DFA and the MPU [4]; and a pipelined
DFA [6]. Also, NFA-based regular expression matchings in-
clude: An algorithm that emulates the NFA by shift and AND
operations (Baeza-Yates’s algorithm) [2]; an FPGA realization
of Baeza-Yates’s algorithm [25]; an FPGA realization reduced
by prefix and postfix sharing of regular expressions [15]; and a
method that maps repeated parts of regular expressions into the
Xilinx FPGA primitive (SRL16) [5].
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Complexity Analysis of DFAs: For regular expression
matching circuits based on DFAs, the area is proportional to
the number of states. Moscola et al. [17] analyzed the DFA rep-
resenting the regular expressionwithout meta characters. Yu
et al. [34] analyzed the DFA representing the regular expres-
sion with meta characters. Also, Dixon et al. [8] analyzed the
bit-partitioned AC-DFA.

Regular Expression Matching Circuit Based on the NFA
with String Transition: A conventional NFA is based on a
single-character transitions [25]. Since the area is proportional
to the number of states for the NFA, the reduction of the number
of states also reduces the area.

In [18], we developed a regular expression matching circuit
based on the NFA with string (multi-character) transition. This
method drastically reduced the number of the states, and won
the design contest for the eighth ACM/IEEE international con-
ference on formal methods and models for co-design (MEM-
OCODE2010) [22]. We analyzed the area complexity for the
NFA with string (bounded characters) transition [19]. To fur-
ther reduce the number of states, we proposed the NFA with
unbounded characters [20].

1.3. Xilinx FPGA

The proposed method uses the Xilinx FPGA to implement
the regular expression matching circuit. Here, we introduce
the Xilinx FPGA. Fig. 1 shows the structure for the Xilinx
FPGA consisting of configurable logic blocks (CLBs), block
RAMs (BRAMs), I/O blocks, and interconnection elements1.
Fig. 2 shows the structure for the CLB. In the Xilinx FPGA,
a CLB consists of fourSLICEs, and a SLICE consists of
two logic cells (LCs). An LC consists of a four-inputlook-
up table (LUT) 2 and a flip-flop. In the CLB, two types
of SLICEs (SLICEM and SLICEL) exist. An LUT on the
SLICEM can be configured as a shift register (SRL16) or an
LUT, while an LUT on the SLICEL can be configured only as
an LUT [33]. Fig. 3 shows two LUT modes of a Xilinx FPGA.

1.4. Contributions of Our Previous Works [18, 19, 20, 21]

We showed compact realizations of regular expression
matching circuits. In the regular expression matching circuits,
we assume that the area is proportional to the number of states
in the NFA. In a conventional NFA, the NFA goes to the next
state by consuming a character. By merging a sequence of states
in an NFA, we have an NFA with string (in other words, multi-
character) transition. In most cases, the NFA with string transi-
tion has fewer states than the conventional NFA with a character
transition. However, a special technique (e.g., a DFA) is nec-
essary to implement the string transitions. An implementation
of the string transitions by using the primitive for the Xilinx
FPGAs is shown in [20].

1Additionally, some FPGAs have DSP blocks, DLLs, and embedded pro-
cessors.

2For modern FPGAs (Spartan VI, and Virtex 6), six or five inputs LUTs can
be configured by using multiple four-input LUTs.
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1.5. Contributions of This Paper

This paper is an extension of previous publications [18, 19,
20, 21]. New contributions are:

1. Application of the prefix sharing to the regular expressions
for the SNORT (an open source instruction detection sys-
tem).
Regular expressions in the SNORT have common prefixes,
and they can be shared without using any additional logi-
cal elements [5].

2. Implementation ofall the regular expressions for the
SNORT including an extended regular expression. In the
previous papers, only the subset of the SNORT were im-
plemented.

1.6. Organization of the Paper

The rest of the paper is organized as follows: Section 2 in-
troduces the Perl compatible regular expression (PCRE); Sec-
tion 3 shows a regular expression matching circuit based on
the FA. Section 4 introduces area reduction techniques for the
regular expression matching circuit; Section 5 shows a regular
expression matching circuit based on an NFA with string tran-
sition; Section 6 shows a design method of a regular expression
matching circuit based on the NFA with string transition; Sec-
tion 7 shows the experimental results; and Section 8 concludes
the paper.

2. Perl Compatible Regular Expression (PCRE)

This section briefly introduces aPerl compatible regular
expression (PCRE)which is used in this paper.

A PCRE consists ofcharacters and meta characters. A
character is represented by eight bits. Thelength of the reg-
ular expression is the number of characters. Table 1 shows
the PCRE considered in this paper, whereR denotes a regular
expression. Our regular expression matching circuit does not
support some meta characters as follows: anchors (\A,\Z, and
\z); word boundaries (\B, and\b); continuing from the pre-
vious match (\G); and application specific flags (\U,\R, and
\B). Since these meta characters are not used in network in-
trusions [5], we need not consider the realization of these meta
characters3.

3. Regular Expression Matching Circuit Based on Finite
Automaton

A regular expression can be converted into an equivalent fi-
nite automaton. Thus, the regular expressions can be detected
by finite automata. First, we introduce a conversion from a reg-
ular expression into a finite automaton. Then, we show the re-
alization of the finite automaton on the FPGA.

3The XML filter [31] requires these meta characters. To realize them, ad-
ditional hardware is necessary. For example, [12] built a single deterministic
push down automata using a lazy approach, and realized them by a sequence of
LCs with a stack.

3.1. Definitions of DFA

Definition 3.1. A deterministic finite automaton (DFA) is
defined by a five-tuple MDFA = (S,Σ, δ, s0,A), where S =
{s0, s1, . . . , sq−1} is a finite set of the states;Σ is a finite set of
the input characters;δ is a transition function (δ : S×Σ→ S );
s0 ∈ S is the initial state; and A⊆ S is the set of accept
states. Since our system treats ASCII characters, we assume
that |Σ| = 28 = 256.

Definition 3.2. Let s∈ S , and c∈ Σ. If δ(s, c) ∈ S , then c isa
transition character from state s to stateδ(s, c).

To definea transition string accepted by the DFA, we ex-
tend the transition functionδ to δ̂.

Definition 3.3. LetΣ+ be a set of strings, and̂δ : S × Σ+ → S
be the extended transition function. If C⊆ Σ+ and s∈ S , then
δ̂(s,C) represents a transition state of s with respect to the input
string C.

Definition 3.4. Consider a DFA, MDFA = (S,Σ, δ, s0,A). Let
Cin ⊆ Σ+. Then, MDFA accepts a string Cin, if the following
relation holds:

δ̂(s0,Cin) ∈ A. (1)

Let ci be a character of a stringC = c0c1 · · · cn, andδ be a
transition function. Then, the extended transition functionδ̂ is
defined recursively as follows:

δ̂(s0,C) = δ̂(δ(s0, c0), c1c2 · · · cn). (2)

By using (1) and (2), the DFA performs the string matching
by repeating state transitions.

3.2. Aho-Corasic DFA (AC-DFA)

For some DFAs,backtrackings are necessary to detect mul-
tiple regular expressions. Thus, the matching speed tend to be
slow.

Example 3.1. Fig. 4 shows a DFA accepting two strings
“ABCD” and “BCAB”. In this DFA, s0 denotes the initial state,
and s4 and s8 denote the accept states. Note that, when the mis-
match occurs, it backs to the initial state.

When the text is “ABCAB”, first, it goes to s1 by con-
suming “A” (Fig. 4 (a)). Second, it goes to s2 by consum-
ing “B” (Fig. 4 (b)). Third, it goes to s3 by consuming
“C” (Fig. 4 (c)). Fourth, for the input “A”, since a mismatch
occurs, it backs to the initial state. Then, it goes to s1 by con-
suming “A” (Fig. 4 (d)). Finally, although it goes to s2 by con-
suming “B”, it cannot detect “BCAB” (Fig. 4 (b)).

To detect “BCAB”, it must perform the backtracking in
Fig. 4 (c). In this case, it also must back to the text pointer to the
second “B”. Then, it goes to s5 by consuming “B” (Fig. 4 (f)).
By performing state transitions repeatedly (Fig. 4 (g)-(h)), it
goes to the accept state s8 (Fig. 4 (i)).
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Table 1: Perl compatible regular expressions (PCREs) considered in this paper.

Expression Meaning Example

Character
(ASCII character) Match a single character
\x(Hexadecimal number) Match a single character

Meta character (Rdenotes a regular expression, andϕ denotes an empty character)
. Match any single character except newline (\n) .={a,b,. . . ,z,A,B,. . . ,Z,0,1,. . . ,9}
R* Repeat R zero or more times (Kleene closure) A*={ϕ,A,AA,AAA,. . . }
R+ Repeat R one or more times A+=AA* ={A,AA,AAA,. . . }
R? Repeat R zero or one times A?={ϕ,A}
R{α} Repeat Rα times
R{α,} Repeat Rα or more times
R{α,β} Repeat R at leastα and at mostβ times
R1|R2 R1 or R2 (union)
(R) Groups regular expressions, so operators can be applied
\(meta character) Match a meta character as a character \? matches “?”
[(characters)] Set of characters [abc]= (a|b|c)
[^(characters)] Complement set of characters
^R Matching start from the first character
R$ Matching ends at the last character
R1(?=R2) Lookahead (Continue matching when R2 matches after R1)
R1(?!R2) Negation of lookahead

(Continue matching when R2 does not match after R1)
(?<=R1)R2 Lookbehind (Continue matching when R1 matches before R2)
(?<!R1)R2 Negation of lookbehind

(Continue matching when R1 does not match before R2)

SNORT shorthand character class
\d A set of numbers (=[0-9])
\D Complement set of\d (=[^0-9])
\f Form feed
\n Line feed
\r Carriage return
\t Horizontal Tab
\v Vertical Tab
\s A set of white spaces (=[\f\n\r\t\v])
\S Complement set of\s
\w A set of alphabets (=[A-Za-z0-9 ])
\W Complement set of\w

Flag
\i Case insensitive (matches both lowercase and uppercase characters)
\m ^ and $ match after and before newlines
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To detect multiple patterns without performing backtracking,
the Aho-Corasick DFA (AC-DFA) has been proposed [1]. To
construct the AC-DFA, first, the transition strings are repre-
sented by a text tree (Trie). Next,failure paths that indicate
the transitions for the mismatches are attached to the text tree.
Since the AC-DFA stores all possible paths for all the patterns,
no backtracking is necessary. By scanning the input text only
once, the AC-DFA detects all matched strings.

Example 3.2. In Fig. 4, by attaching the failure path from s3 to
s7, we have the DFA shown in Fig. 5 that detects both “ABCD”
and “BCAB” without the backtracking.

First, the DFA goes to s1 by consuming “A” (Fig. 5 (a)), sec-
ond, it goes to s2 by consuming “B” (Fig. 5 (b)), third, it goes
to s3 by consuming “C” (Fig. 5 (c)). In this case, it goes to s7

by consuming “A” through the failure path (Fig. 5 (d)). Finally,
it goes to the accept state s8 by consuming “B” (Fig. 5 (e)).

3.3. Realization of AC-DFA

Fig. 6 shows the AC-DFA machine, where the register stores
the present state and the memory storesa state transition ta-
ble for δ. Let q = |S| be the number of the states, andn = |Σ|
be the number of different characters inΣ. Then, the amount of
memory to implement the DFA is⌈log2q⌉2⌈log2n⌉+⌈log2q⌉ bits4. In
fact, the sizes of the memories for the AC-DFAs increase expo-
nentially [34]. Thus, a direct hardware realization of the regular
expression matching using an AC-DFA is often impractical.

3.4. Definitions of NFA

Definition 3.5. A non-deterministic finite automaton (NFA)
is defined by a five-tuple MNFA = (S,Σ, γ, s0,A), where S ,Σ,
s0, and A are the same as Definition 3.1, while the transition
functionγ : S × (Σ ∪ {ε}) → P(S) is different. Note that,ε
denotes an empty character, and P(S) denotes the power set of
S .

In an NFA, the empty (ε) input is permitted. Thus, a state for
the NFA can transit to multiple states for a single input. The
state transition with theε input isan ε transition . In this paper,
in a state transition diagram, anε symbol with an arrow denotes
theε transition.

Example 3.3. Fig. 7 shows the NFA for the regular expression
“A+[AB] {3}D”. An ε transition exists from the second state to
the first state.

Example 3.4. Fig. 8 illustrates the state transitions for the NFA
in Fig. 7 when the input string is “ABABD”. Note that, multiple
state transitions occur in certain rows, since the NFA can be
in multiple states given the input string “ABABD”. There is at
least one path from the initial state s0 to the accept state s5.
Thus, “ABABD” is accepted by this NFA.

4Since the size of the register in the DFA machine is much smaller than that
for the memory storing the transition function, we ignore the size of the register.
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Figure 7: NFA for the regular expression “A+[AB] {3}D”.

3.5. Conversion of a Regular Expression into the NFA

Several methods exist to convert a regular expression into
an NFA. This paper usesthe Modified McNaughton-Yamada
method [11] that is suitable for hardware realization. The mod-
ified McNaughton-Yamada method is shown in Fig. 9, whereR
denotes the regular expression, andε denotes theε transition.
By applying the Modified McNaughton-Yamada method to the
regular expression repeatedly, we have an NFA.

Example 3.5. Fig. 10 illustrates the conversion of the regular
expression “A+[AB] {3}D” into the NFA by using the Modified
McNaughton-Yamada method.

3.6. Realization of NFA

Sidhu and Prasanna [25] proposed the realization of the reg-
ular expression matching circuit based on an NFA. In their
circuit, each state is implemented by a cascade of LCs on an
FPGA. Thus, the necessary number of LCs increases with the
number of states. The conversion from the NFA to the circuit
is shown in Fig. 11, whereR denotes the regular expression.
Note that, repetitions (R{α} andR{α,}) can be realized by cir-
cuits shown in Figs. 11 (1) and 11 (3).

Example 3.6. Fig. 13 shows a circuit for the NFA shown in
Fig. 7.
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Figure 8: NFA shown in Fig. 7 accepts “ABABD”.

7



[C]

(1) state transition with 

character class ‘[C]’
(2) Concatenation of R1 and R2

R1 R2

R

ε

ε
(3) Kleene closure

(R*)

R

ε

(4) Repetition of one or 

more than one (R+)

ε

R

ε
(5) Repetition of zero 

or one (R?) (6) Union (R1|R2)

R1

R2

ε

ε

ε

ε

(7) Repetition of times (R{ })

R R R

times

ε ε ε

α

α α

(8) Repetition of n or more n (R{ ,}=R{   }R*)

R

times

R R R

ε

ε

Kleene Closure

(9) Repetition at least and at most (R{   ,   })

R R R R

times - times

ε

ε ε ε ε

ε ε ε ε ε ε

α

α α

α α

α β

β

βα

Figure 9: Modified McNaughton-Yamada Method.

A+[AB]{3}D

Apply conversion rule (2)

(Concatenation of ``A+’’,``[AB]{3}’’, and ``D’’)

A+ [AB]{3} D
accept

Apply

conversion 

rule (4)

Apply

conversion 

rule (7)

A

ε ε ε

ε

ε

ε ε ε ε

accept

[AB] [AB] [AB] D

Regular expression

Apply conversion rule (1),

and remove redundant nodes

A

ε

[AB] D[AB] [AB]

accept

NFA

Figure 10: An example of NFA conversion by modified McNaughton-Yamada
method.

3.7. Realization of Extended Regular Expressions

In this part, we briefly show the realization of extended reg-
ular expressions, which were not implemented in the previous
works [18, 19, 20, 21].

3.7.1. SNORT Shorthand Character Class

The SNORT shorthand character class can be represented by
a meta character “[]” (set of characters) or “[^]” (complement
set of characters). Thus, the circuit shown in Fig. 11 (1) can
realize a SNORT shorthand character class.

Example 3.7. A SNORT shorthand character class “\s” can
be written by “[\f\n\r\t\v]”. Fig. 12 shows a circuit for
SNORT shorthand character class “\s”.

3.7.2. Flag [5]

A case insensitive flag (\i) can be written by the set of low-
ercase and uppercase characters. Thus, it can be realized by
the circuit for the character class shown in Fig. 11 (1). To real-
ize the flag (\m) considering the newline, a small sequencer is
attached to the regular expression matching circuit. When it de-
tects the newline character (\n), it checks whether the matching
is succeeded or not.

3.7.3. Lookahead and Lookbehind [5]

In a hardware implementation, we ignore any software re-
lated features (lookahead and lookbehind) by rewriting regular
expressions. For a lookahead (lookbehind) meta character, we
remove it. On the other hand, for a negative one, we remove it,
but insert an inverter into the outputs for negative one.
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Figure 12: Circuit for the SNORT shorthand character class “\s ”.

4. Area Reduction Techniques for Regular Expression
Matching Circuits

4.1. Sharing of Transition Character Detector

Sidhu and Prasanna [27] realized transition character detec-
tors by LUTs in a straightforward manner. However, by sharing
them, the necessary number of LUTs can be reduced. Sour-
dis and Pnevmatikatos [27] realized the character detectors by
a content addressable memory (CAM). Since the CAM is ex-
pensive and dissipates high power [32], we realize transition
character detectors by an SRAM.

Example 4.8. In the circuit of Fig. 13, the transition charac-
ter sets “[AB]” are used three times. Fig. 14 shows the regu-
lar expression circuit, where the transition character detector
is implemented by a memory.

As shown in Fig. 14,a decomposed NFAconsists ofthe
transition character detection part and the state transition
part . The transition character detection part can be realized
by an off-chip memory, while the state transition part can be
realized by the cascade of LCs.

4.2. Prefix Sharing

Many regular expressions used in network applications share
the same prefixes and/or postfixes [15]. By sharing them, the
number of states for the NFA can be decreased.

Example 4.9. Consider the NFA accepting regular expressions
“ABCD” and “ABEF”. Since the prefixes “AB” can be shared,
we have the NFA shown in the lower part of Fig. 15. Next,
consider the NFA accepting regular expressions “ABCD” and
“EFCD”. Since the postfixes “CD” can be shared, we have the
NFA shown in the lower part of Fig. 16. As shown in these
examples, a sharing a part of regular expressions will decrease
the number of states.
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In a circuit for a prefix shared NFA, matched regular expres-
sions are distinguished without any additional hardware. How-
ever, in a circuit for a postfix shared NFA, an additional hard-
ware (OR gates, AND gates, shift registers) is necessary to dis-
tinguish matched regular expressions [15].

Example 4.10. Fig. 17 shows the regular expression matching
circuit for the prefix shared NFA shown in Fig. 15.

Example 4.11. Fig. 18 shows the regular expression matching
circuit for the postfix shared NFA shown in Fig. 16. To distin-
guish matched regular expressions, the following hardware is
necessary: An OR gate (Fig. 18 (1)); shift registers (Fig. 18 (2))
that retains matched states for each regular expression; AND
gates (Fig. 18 (3)) that produce the match signals.

As shown in Example 4.11, although the postfix sharing re-
duces the number of states, it requires additional hardware to
implement. Thus, in this paper, we do not share the postfix in
the NFA.

5. Regular Expression Matching Circuit Based on NFA
with String Transition

5.1. MNFAU

Sidhu and Prasanna [25] implemented a regular expression
matching by an FPGA. However, they did not use embedded
memory. Since a modern FPGA consists of LCs and embedded
memories, their method wastes existing resources. Each state
of the NFA is implemented by an LC of an FPGA. Thus, the
necessary number of LCs increases with the number of states.
To reduce the number of states, we propose a regular expression
matching circuit based on amodular non-deterministic finite
automaton with unbounded string transition (MNFAU) . To
convert an NFA into an equivalent MNFAU, we merge a se-
quence of states. To retain the equivalence between the NFA
and the MNFAU, the states are merged as follows:

Lemma 5.1. Let S = {s0, s1, . . . , sq−1} be the set of states for
the NFA. Assume that a subset S′ = {sk, sk+1, . . . , sk+p−1} ⊆ S ,
for k ≤ i ≤ k+p−2, si goes to si+1 only. Then, S′ is merged into
one state of the MNFAU only if both in-degree and out-degree
for si (k ≤ i ≤ k+ p− 1) are one.

Definition 5.6. Let cj ∈ Σ be the transition character of sj for
j = k, k+ 1, . . . , k+ p, then C= ckck+1 · · · ck+p denotesa tran-
sition string of SM.

In this case, a set of states{sk, sk+1,. . . , sk+p} of an NFA is
merged into a stateSM of an MNFAU.

Example 5.12. In the NFA shown in Fig. 7, the set of states
{s2, s3, s4, s5} can be merged into a state of the MNFAU. How-
ever, the set of states{s1, s2} cannot be merged, since e1 , 0.
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Figure 19: Possible MNFAUs derived from the NFA shown in Fig. 7.

Example 5.13. Fig. 19 shows different MNFAUs derived from
the NFA shown in Fig. 7. In the NFA, since the numbers of
ε transitions inputs and outputs for three states{s2, s3, s4} are
ei = 0, the number of different MNFAUs are eight. In Fig. 19,
the MNFAU (h) is the most compact MNFAU.

As shown in Example 5.13, we can convert the given NFA
into a compact MNFAU. However, there exists the restriction
of the hardware realization. The next Section 5.3 shows the
hardware realization for the MNFAU, and Section 6 shows the
design method for the MNFAU.

5.2. Decomposition of MNFAU

Consider the MNFAU in Fig. 20. It can be decomposed intoa
transition string detection circuit anda state transition cir-
cuit. Two circuits are connected byq − 1 transition string
detections signals. Note that, in Fig. 20,q denotes the number
of states for the MNFAU, andCi denotes the transition string
for i-th state of the MNFAU. Since transition strings do not in-
clude meta characters5, they are detected byexact matching.
Exact matching is a subclass of regular expression matching,
and the AC-DFA for it can be realized by memory and a state
register. On the other hand, the state transition part treating the
ε transition is implemented by the cascade of logic cells shown
in Fig. 11 (1) and interconnections.

5.3. Circuit Realization of Decomposed MNFAU

5.3.1. Transition String Detection Circuit
The lengths for the transition strings for the MNFAU are

different in general. To detect multiple strings with different
lengths, we use the AC-DFA [1] shown in Fig. 6. Since this
part tend to be large, the state transition table is implemented
by an off-chip memory. However, the state register is imple-
mented by the FPGA.

5However, meta characters “[]” can be used.

A
2

B D
3 41

A  B  D
21

DQ DQ DQ DQDQDQ1 1

clkclk

Shift register

(Realized by SRL16)

Detect ‘A’ Detect ‘B’ Detect ‘D’ Detect ‘ABD’

NFA MNFAU

(a) State transition circuit with character (b) State transition circuit with string

Figure 21: State transition circuits for NFA and MNFAU.

5.3.2. State Transition Circuit for the MNFAU [18].
In an NFA, each state is realized by a small machine con-

sisting of a flip-flop and an AND gate. The right-hand side
of Fig. 21 shows the state transition circuit for the MNFAU
that accepts “ABD”. When the AC-DFA detects the transition
string (“ABD” in Fig. 21), a detection signal is sent to the state
transition circuit. Then, the state transition is performed. The
AC-DFA scans a character in every clock, while the state tran-
sition circuit has to wait forp clocks to perform the state transi-
tion, wherep denotes the length of the transition string. Thus,
a (p − 1)-bit shift register is inserted between small machines
to synchronize with the AC-DFA. As shown in Fig. 3, a four-
input LUT of a Xilinx FPGA can also be used as a shift register
with up to 16 bits (SRL16). With the SRL16, we can reduce the
necessary number of LUTs and flip-flops.

Example 5.14. Fig. 21 (a) shows a state transition circuit with
a character for the NFA accepting “ABD”, while Fig. 21 (b)
shows a state transition circuit with a string for the MNFAU
accepting “ABD”. In the circuit of the NFA, three AND gates
and flip-flops are used, thus, the total number of LCs is three.
On the other hand, in the circuit of the MNFAU, one AND gate,
one flip-flop, and one shift register are used. We can realize a
shift register by a SRL16. Thus, the total number of necessary
LCs is two.

Example 5.15. Fig. 22 shows an example of operations for an
NFA and an MNFAU.

The lefthand side column of Fig. 22 illustrates the operation
of the circuit for the NFA shown in Fig. 21. First, the transition
character detection circuit reads “A”, and sends a transition
character detection signal to the first flip-flop. Then, the first
flip-flop is activated (Fig. 21 (a)). Second, it reads “B”, and
second flip-flop is activated (Fig. 21 (b)). Finally, it reads “D”,
and the last flip-flop is activated (Fig. 21 (c)). In this way, the
circuit accepts “ABD”.

The righthand side column of Fig. 22 illustrates the opera-
tion of the circuit for the MNFAU shown in Fig. 21. First, the
transition string detection circuit reads “A”. Also, the first flip-
flop is activated (Fig. 21 (a)). Second, it reads “B”, and also
the second flip-flop is activated (Fig. 21 (b)). Finally, the tran-
sition string detection circuit sends the detection signal to the
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Figure 22: Operations for an NFA and an MNFAU.

last flip-flop. Then, it is activated (Fig. 21 (c)). In this way, the
circuit accepts “ABD”.

5.3.3. Realization of Decomposed MNFAU
Fig. 23 shows the circuit for the decomposed MNFAU con-

sisting of the transition string detection part and the state tran-
sition part. The transition string part is realized by the AC-DFA
machine shown in Fig. 6, while the state transition part is real-
ized by the cascade of the LCs shown in Fig. 21.

Let Ri (1 ≤ i ≤ r) be r regular expressions,|SMNFAUi | be
the number of states for theMNFAUi representingRi , and
qMNFAU =

∑r
i=1 |SMNFAUi | be the total number of states in the

MNFAU. In Fig.23, the transition string detection circuit (AC-
DFA machine) sendsqMNFAUtransition string detection sig-
nals to the state transition circuit (a cascade of LCs). Thus, the
number of outputs of the AC-DFA machine would beqMNFAU.
If all the outputs for the AC-DFA machine was implemented by
an off-chip memory, then a large number of I/O pins6 would be
necessary. In this case, the use of an FPGA is impractical.

To reduce the number of I/O pins, we use the decoder that
converts state numbers (⌈log2qAC−DFA⌉ bits) of the AC-DFA
into transition string detection signals (qMNFAU bits), where
qAC−DFA denotes the number of states for the AC-DFA. The
decoder is realized by the BRAM on the FPGA. In this way,
the number of pins for the FPGA is reduced fromqMNFAU to
⌈log2qAC−DFA⌉.

Example 5.16. Fig. 24 shows the regular expression match-
ing circuit for the MNFAU representing the regular expression

6Our experiment shows that the present version of SNORT requires a mem-
ory with qMNFAU = 10,066.
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“A+[AB] {3}D”. In this case, the number of states in the AC-
DFA qAC−DFA is eight. On the other hand, the number of string
detection signal qMNFAU is two.

6. Design of a Decomposed Regular Expression Matching
Circuit

6.1. Design Flow

Fig. 25 shows a design flow for regular expression match-
ing circuit based on a decomposed MNFAU. First, given regu-
lar expressions are converted into NFAs by using the Modified
McNaughton-Yamada method. Second, states corresponding to
the prefixes in regular expressions are shared. An algorithm for
prefix sharing is shown in Section 6.2. Third, the prefix shared
NFA is converted into the prefix shared MNFAU. An algorithm
for the MNFAU design is shown in Section 6.3. Fourth, the
prefix shared MNFAU is decomposed into the transition string
detection part and the state transition part. The transition string
detection part is represented by the AC-DFA. Fifth, these cir-
cuits are converted into the HDL code, and finally, the config-
uration data for the FPGA is generated by Xilinx ISE Design
Suite.

6.2. Algorithm to Derive Prefix Shared NFA

As shown in Example 4.9, the number of states in the NFA
can be reduced by sharing common prefixes. First, we define
the common prefixes for two regular expressions, and corre-
sponding states in the NFA.

Definition 6.7. Assume that two regular expressions R1 and
R2 have a common prefix with length w. Let S1 =

{s(1,1), s(1,2), . . . , s(1,q1)} be the set of states for the NFA accept-
ing R1; S2 = {s(2,1), s(2,2), . . . , s(2,q2)} be the set of states for the
NFA accepting R2; SPRE1 = {s(1,1), s(1,2), . . . , s(1,w)}, SPRE1 ⊆ S1

be a set of states corresponding to the prefix for R1; and
SPRE2 = {s(2,1), s(2,2), . . . , s(2,w)}, SPRE2 ⊆ S2 be a set of states
corresponding to the prefix for R2. When all incoming edges
and outgoing edges for both s(1,i) and s(2,i) are the same for all
i (1 ≤ i ≤ w), the states for SPRE1 and SPRE2 can be shared.

The problem is to share prefixes so that the resulting NFA
has the minimum number of states. Since the exhaustive search
to find an optimal prefix sharing is impractical, we use a greedy
method to find a near optimal prefix sharing. We define the
figure of merit function to find good prefixes to share.

Definition 6.8. Let S1 and S2 be sets of states defined in Defi-
nition 6.7. The figure of merit function for the pair (S1,S2)
is

M(S1,S2) = w.

Example 6.17. Fig. 26 shows three NFAs for a part of file
transfer protocol (ftp) rule in the SNORT. Let S1, S2, and S3

be the sets of states for the NFAs shown in Fig. 26 (1-3), re-
spectively. M(S1,S2) is eight, while M(S1,S3) and M(S2,S3)
are six.

The following algorithm tries to share two sets of states hav-
ing the longest common prefix, repeatedly.

Algorithm 6.1. (A near optimal prefix sharing of NFAs)
Assume that r regular expressions R1,R2, . . .Rr are given. Let
Si = {s(i,1), s(i,2), . . . , s(i,qi)} be the set of states for the NFA ac-
cepting Ri , andSgiven = {S1,S2, · · · ,Sr } be the set of Si (1 ≤
i ≤ r).

1 Sshared← ϕ
2 AmongSgiven, select a set Ssel with the largest numbers of

states. Then,Sgiven← Sgiven− Ssel.
3.1 Find a set Sj in Sgiven that has the largest figure of

merit M(S j ,Ssel).
3.2 If M(S j ,Ssel) > 0, then obtain a new set of states

Snew by applying prefix sharing to Ssel and Sj . Let
Ssel← Snew, Sgiven← Sgiven− S j , and go to Step 4.

3.3 If M(S j ,Ssel) = 0 for all S j , thenSshared← Sshared∪
Ssel.

4 If Sgiven, ϕ, then go to Step 2.
5 Terminate.

Example 6.18. Fig. 27 illustrates of Algorithm 6.1 applied to
the NFAs accepting regular expressions for a part of ftp rules
of SNORT. In Fig. 27, the first NFA (A1 in Fig. 27) accepts
“SITE\sCHMOD\s[^\n]200”; the second NFA (A2 in Fig. 27)
accepts “SITE\sCHOWN\s[^\n]100”; the third NFA (A3 in
Fig. 27) accepts “SITE\sCPWD\s[^\n]100”; and the last
NFA (A4 in Fig. 27) accepts “SITE\sEXEC”.
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1st sharing: We select A1 (Step 2), since A1 has the largest
number of states. Since M(S1,S2) = 8, M(S1,S3) = 7, and
M(S1,S4) = 6, we choose A2 for sharing (Step 3.1). Then, we
share the states in A1 and A2 (Step 3.2), and obtain the prefix
shared NFA (A5 in Fig. 27).

2nd sharing: We select A5 (Step 2), since A5 has the largest
number of states. Since M(S5,S3) = 7 and M(S5,S4) = 6, we
choose A3 for sharing (Step 3.1). Then, we share the states in
A5 and A3 (Step 3.2), and obtain the prefix shared NFA (A6 in
Fig. 27).

3rd sharing: We select A6 (Step 2), since A6 has the largest
number of states. Since M(S6,S4) = 4, we choose A4 for shar-
ing (Step 3.1). Then, we share the states in A6 and A4 (Step 3.2),
and obtain the prefix shared NFA (A7 in Fig. 27).

Since all the NFAs have been shared, we terminate the algo-
rithm.

6.3. Design Algorithm for the Decomposed MNFAU [21]

As shown in Example 5.13, any NFA can be converted into
an MNFAU using Lemma 5.1.

The transition string detection circuit is implemented by an
off-chip memory, while the state transition circuit for MNFAU
is implemented by an on-chip memory of an FPGA. In order to
minimize the system cost, given the size of the off-chip mem-
ory, we try to use the smallest FPGA.

The number of the states in the transition string detection
circuit increases with the length of the string. On the other hand,
the number of the states in the state transition circuit for the
MNFAU decreases with the length of the string.

With these conditions in mind, the conversion problem from
an NFA to an MNFAU is formulated as follows:

Problem 6.1. Let S = {s0, s1, . . . , sq−1} be the set of states of
the NFA; S1 ∪ S2 ∪ · · · ∪ Su be a partition of S , where Si ⊆ S
and Si ∩ S j = ϕ(i , j); Ci be a transition string for a set of
states Si ; C = {C1,C2, . . . ,Cu} be a set of transition strings;
qAC−DFA be the number of states in the AC-DFA for C; M(C) =
⌈qAC−DFA⌉28+⌈log2qAC−DFA⌉ be the memory size of the AC-DFA for

C; and Mo f f−chip be the memory size for the off-chip memory.
Assume that, for each Si = {sk, sk+1, . . . , sk+p}, for i = k, k +
1, · · · , k+ p−1, si goes to only si+1 and both in-degree and out-
degree for si are one. Then, find a partition S that minimizes u
satisfying the memory constraint M(C) < Mo f f−chip, where u is
the number of partitions in S .

Let S = {s0, s1, . . . , sq−1} be the set of states in the NFA, and
t be the number of states for the NFA withei > 0 (0≤ i ≤ q−1),
whereei be the total number ofε transition inputs and out-
puts in the statesi . Then, the number of different MNFAUs
is 2q−t−1. Since this can be very large, an exhaustive method to
find a minimum MNFAU satisfying the off-chip memory con-
straintM(C) < Mo f f−chip is impractical. Thus, we use a greedy
method to find a near minimum MNFAU.

Algorithm 6.2. (Find a near minimum MNFAU from the NFA)
Let S = {s0, s1, . . . , sq−1} be the set of states for the NFA, and
Mo f f−chip be the memory size for the off-chip memory.

1. Obtain a minimum partition S= S1 ∪ S2 ∪ · · · ∪ Su,
where Si ∩ S j = ϕ(i , j), such that, for each Si =
{sk, sk+1, . . . , sk+p}, for i = k, k + 1, · · · , k + p − 1, si

goes to only si+1 and both in-degree and out-degree for
si are one. Then, obtain a set of transition strings C=
{C1,C2, . . . ,Cu}.

2. Construct the AC-DFA for C. Then, obtain M(C).
3. While M(C) > Mo f f−chip, perform Step 4. Otherwise go to

Step. 4.
4. Select a set Si = {sk, sk+1, . . . sk+m} with the maximum

number of states from S , and partition Si into two sub-
sets Si 1 and Si 2, where Si 1 = {sk, sk+1, . . . , sk+⌈m

2 ⌉} and
Si 2 = {sk+⌈m

2 ⌉+1 . . . , sk+m}. Also, obtain a set of transition
strings C= {C1,C2, . . . ,Ci 1,Ci 2, . . . ,Cu}, where Ci 1 is
a transition string for Si 1, and Ci 2 is that for Si 2.

5. Terminate the algorithm.

Algorithm 6.2 repeatedly bi-partitions the maximum subset
of S while the memory sizeM(C) exceedMo f f−chip.
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Figure 27: An illustration of Algorithm 6.1.
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Table 2: Comparison of NFA based regular expression matching circuits.

FA NFA AC-DFA On-chip #LC #LC/ MEM/
Type #States #States MEM (Kb) #Char #Char

NFA 661,510 0 0 690,617 1.04 0
Prefix Shared NFA 610,972 0 0 640,078 0.96 0
MNFAU 83,703 12,714 12,909 171,776 0.26 19.9
Prefix Shared MNFAU 64,387 9,443 9,930 132,136 0.20 15.3

Table 3: Comparison with other methods.

Method FA FPGA Th #LC Off-chip #Char #LC/ MEM/
Type (Gbps) MEM (Kb) #Char #Char

Pipelined DFA [6] (ISCA’06) DFA Virtex 2 4.0 247,000 3,456 11,126 22.22 3182.2
MPU+Bit-partitioned DFA [4] (FPL’06) DFA Virtex 4 1.4 N/A 6,000 16,715 N/A 367.5
Improvement of Sidhu-Prasanna method [5] (FPT’06) NFA Virtex 4 2.9 25,074 0 19,580 1.28 0
MNFA(3) [19] (SASIMI’10) MNFA(p) Virtex 6 3.2 4,717 441 12,095 0.39 37.3
MNFAU withoutprefix sharing [20] (ARC’11) MNFAU Spartan 3 1.6 19,552 1,585 75,633 0.25 21.4
Prefix shared MNFAU (Proposed) MNFAU Virtex 5 1.6 132,136 9,930 665,040 0.20 15.3

7. Experimental Results

7.1. Implementation of the MNFAU

We implemented all the regular expressions of SNORT
on the S2C Inc., Virtex-5 TAI logic module board (FPGA:
XC5VLX330: 207360 logic cells (LCs), total 10,368
Kbits BRAM). The total number of regular expressions is
3,533 (665,040 characters)7. The prefix shared MNFAU has
64,387 states, and the AC-DFA for the transition string detec-
tion has 9,443 states. This implementation requires 132,136
LCs, and an off-chip memory of 16 Mbits. Note that, the
16 Mbits off-chip SRAM is used to store the transition func-
tion of the AC-DFA, while 9,930 Kbits on-chip BRAM is used
to realize the decoder. The FPGA operates at 306.3 MHz. How-
ever due to the limitation on the clock frequency for the off-chip
SRAM, the system clock was set to 200 MHz. Our regular ex-
pression matching circuit scans one character in every clock.
Thus, the throughput is 0.2× 8 = 1.6 Gbps.

7.2. Comparison of NFA Based Regular Expression Matching
Circuits

Table 2 compares four types of NFA based regular expres-
sion matching circuits: NFA based (shown in Fig. 13); prefix
shared NFA based (shown in Fig. 17); MNFAU based (shown
in Fig. 23); and prefix shared MNFAU based. In all the cir-
cuits, 3,533 regular expressions (665,040 characters) are im-
plemented. In Table 2,#LC denotes the number of logic cells;
On-chip MEMdenotes the amount of embedded memory for

7As for the same device (Spartan III: XC3S4000 consists of 62,208 LCs and
1,728 Kbit BRAMs) used in [20], we can store 1,325 rules (89,625 characters)
by using a prefix sharing technique and a dedicated hardware shown in Section
3.7. However, since the restriction of amount of BRAM, this devices cannot
realize all regular expressions of SNORT.

the FPGA (Kbits); and#Chardenotes the number of characters
for the regular expression.

Fig. 28 compares four different implementations of a part of
ftp rule on the SNORT. Table 2 shows that the prefix sharing
of the NFA reduced the number of states to#S tatesPre f ixS haredNFA

#S tatesNFA
=

610,972
661,510 = 92.3%. Since, for the regular expression of SNORT,
about 10% of the prefixes are specified byprotocol (such
as “SITE\s” 8 in Fig. 28), the prefix sharing reduces pre-
fixes (Fig. 28 (b)). On the other hand, the conversion of the NFA
into the MNFAU reduced the number of states to#S tatesMNFAU

#S tatesNFA
=

83,703
661,510 = 12.6%. Since, about 70% of the postfixes consist
of repetition of redundant characters(such as “[̂ \n]{n}” 9),
the MNFAU that merges such repetition reduces the number of
states for postfixes (Fig. 28 (c)). Since the number of states
for prefixes are reduced by the prefix sharing and that for post-
fixes are reduced by the MNFAU, the prefix shared MNFAU
reduced the number of states to#S tatesPre f ixS haredMNFAU

#S tatesNFA
= 64,387

661,510 =

9.7% (Fig. 28 (d)) of the NFA.

7.3. Comparison with Other Methods

Table 3 compares our method with other methods. Since
these methods realize different numbers of regular expressions,
direct comparison is difficult. So, we compare by theem-
bedded memory size per a characterand the number of
LCs per a character. In Table 3,Th denotes the through-
put (Gbps);#LC denotes the number of logic cells;MEM de-
notes the amount of embedded memory for the FPGA (Kbits);
and #Char denotes the number of characters for the regu-
lar expression. Table 3 shows that, the embedded memory

8For ftp, “SITE” executes the subsequent command. Thus, this command is
used to send a malicious data by attackers.

9It causes a buffer overflow by attackers.
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size per a character of the MNFAU is reduced to 0.2% (=
Pre f ixsharedMNFAU

PipelinedDFA = 15.3
3182.2) of the pipelined DFA; 4.2% (=

Pre f ixsharedMNFAU
Bit−partitionedDFA =

15.3
367.5) of the bit-partitioned DFA with an

MPU; 41.0% (= Pre f ixsharedMNFAU
MNFA(3) = 15.3

37.3) of the MNFA(3); and

71.4% (= Pre f ixsharedMNFAU
MNFAUwithoutpre f ixsharing=

15.3
21.4) of the MNFAU with-

out prefix sharing. Also, the number of LCs per a character of
the MNFAU is reduced to 0.9% (= Pre f ixsharedMNFAU

PipelinedDFA = 0.20
22.22) of

the pipelined DFA; 15.6% (= Pre f ixsharedMNFAU
NFA = 0.20

1.28) of the

NFA; 51.2% (= Pre f ixsharedMNFAU
MNFA(3) = 0.20

0.39) of the MNFAU(3);

and 80.0% (= Pre f ixsharedMNFAU
MNFAUwithoutpre f ixsharing=

0.20
0.25) of the MNFAU

without prefix sharing.

8. Conclusion

This paper showed a regular expression matching circuit
based on a decomposed MNFAU. First, the given regular ex-
pression is converted into the NFA by using the McNaughton-
Yamada method. Second, to reduce the number of states of the
NFA, the prefix sharing is applied. Third, to further reduce the
number of states, the prefix shared NFA is converted into the
MNFAU. Fourth, the MNFAU is decomposed into the transi-
tion string part and the state transition part. The transition string
part is realized by the AC-DFA machine, while the state transi-
tion part is realized by the cascade of LCs. These circuits are
connected by the decoder using BRAMs. We implemented all
the regular expressions used in the SNORT on a Xilinx FPGA.
Comparison with conventional methods showed that the em-
bedded memory size per a character of the MNFAU is reduced
to 0.2% of the pipelined DFA; 4.2% of the bit-partitioned DFA;
41.0% of the MNFAU(3); and 71.4% of the MNFAU without
prefix sharing. Also, the number of LCs per a character of the
MNFAU is reduced to 0.9% of the pipelined DFA; 15.6% of the
NFA; and 80.0% of MNFAU without prefix sharing.
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