
A Regular Expression Matching Using
Non-Deterministic Finite Automaton

Hiroki Nakahara∗, Tsutomu Sasao∗, and Munehiro Matsuura∗
∗Kyushu Institute of Technology, Iizuka, Japan

Abstract—This paper shows an implementation of CAN-
SCID (Combined Architecture for Stream Categorization and
Intrusion Detection). To satisfy the required system throughput,
the packet assembler and the regular expression matching are
implemented by the dedicated hardware. On the other hand, the
counting of matching results and the system control are imple-
mented by a microprocessor. A regular expression matching cir-
cuit is performed as follows: First, the given regular expressions
are converted into a non-deterministic finite automaton (NFA).
Then, to reduce the number of states, the NFA is converted to
a modular non-deterministic finite automaton (MNFA(p)) with
p-character-consuming transition. Finally, a finite-input memory
machine (FIMM) to detect p-characters is generated, and the
matching elements (MEs) realizing the states for the MNFA(p)
are generated. We loaded 140 regular expressions of the MEM-
OCODE 2010 design contest on Terasic Corp. DE3 prototyping
board (FPGA: Altera’s Stratix III). The maximum throughput
of our implementation was 798 mega bits per second (Mbps).

I. INTRODUCTION

This paper shows an implementation of CANSCID (Com-
bined Architecture for Stream Categorization and Intrusion
Detection) [7] deep packet inspector performing two different
functions: stream categorization (such as L7-filter [5]) and
intrusion detection (such as snort [9]).

The metric judging the design are:
1. The number of the category patterns and the intrusion

patterns represented by regular expressions.
2. The system throughput that must be higher than the line

rate of 500 mega bit per second.

II. OVERVIEW OF IMPLEMENTED SYSTEM

A. Simulated Ethernet
Since the actual ethernet is complex, MEMOCODE2010

design contest uses simulated ethernet shown in Fig. 1. An
original data is partitioned into payloads. A packet consists
of a header and the payload. The header consists of the
source address (SA) flit, the destination (DA) flit, the port
number (PORT) flit, the end of data (EOD) flit, and the end
of packet (EOP) flit. On the other hand, the payload consists
of one or more DATA flits. The simulated ethernet handles up
to 64 original data at the same time. For packets of the same
original data, they are sent in-order. On the other hand, for
packets of different original data, they are sent out-of-order.
In the simulated ethernet, the calculation of checksum and the
packet loss are ignored.

B. Strategy of Our Implementation
The overview of CANSCID is described in [7]. It performs

the following operations:
Job. 1 Assembles the original data from the packets.
Job. 2 Performs stream categorization.
Job. 3 Performs intrusion detection.
Job. 4 Counts matching results, and printout them.

6 5 34 2 1

Original Data 1

Original Data 2

Original Data 3

Original Data 64

Packet Stream
123

HeaderPayload

S
A

D
A

P
O
R
T

E
O
D

D
A
T
A

D
A
T
A

D
A
T
A

E
O
P

Packets are sent in-order
without packet loss

Flit

Fig. 1. Simulated Ethernet.

TABLE I
PROFILE ANALYSIS OF CANSCID.

Job Ratio of CPU Time
Packet Assemble 9.8%
Stream Categorization 20.7%
Intrusion Detection 68.7%
Counts Results and Printout 0.8%

In the design contest, the required throughput must be
higher than 500 Mbps. Note that, throughput of any software
implementation is at most 10 Mbps. We analyzed a profile of
the software implementation of CANSCID. Table I shows that
Jobs. 1-3 occupy 99.2% of the CPU time, while the Job. 4
occupies only 0.8%. Hence, by implementing Jobs. 1-3 by
hardware, the system can be up to 125 times faster. On the
other hand, the control of the system and the counting the
matching results are implemented by a microprocessor.

Off-Chip
SRAM

Packet
Assembler Memory

for
Assembled

Data

Regular
Expression
Matching

Units

Memory
for

Matching
Score

MPU
(Altera NiosII / f)

FIFO

FPGA: Altera Stratix III EP3S340H1152

Fig. 2. Implemented System.

Fig. 2 shows the overview of the implemented system.
Initially, the system stores the packets into the SRAM 1. First,
the packet assembler reads the packets from the SRAM,
and reconstructs the original data, and sends the reconstructed
data to the memory for assembled data. At the same time,
it also sends the start address stored in the memory for
assembled data and the length of the data to the FIFO. A
regular expression matching units scans the assembled data

1For performance evaluation, this processing time is ignored.

to perform stream categorization and intrusion detection. A
memory for matching score stores the matching results
produced by the regular expression matching units.

CAM
for
SA

CAM
for
DA

CAM
for

PORT

SA
DA

PORT
EOD

DATA
DATA

DATA
EOP

match
index

wdata

match
index

wdata

match
index

wdata

Controller

rdata

packet
FIFO

page

length

Memory for
Assembled Data

wdata

pa
ge

 1
pa

ge
 2

SA: Source Address, DA: Destination Address
EOD: End of Data, EOP: End of Packet

Packet Assembler

pa
ge

 6
4

page
1
2

64

status

Used
or

Unused

Memory for
Used Page

Fig. 3. Packet Assembler.

C. Packet Assembler

Fig. 3 shows the packet assembler that reconstructs the
original data from the packets. For packets of different original
data, the simulated ethernet sends the packets out of order. On
the other hand, for packets of the same original data, it sends in
order. The packet assembler performs a packet classification
to reconstruct the original data. If the headers (consisting of
SA, DA, and PORT) of the packets are the same, then the
packets come from the same original data. To perform the
packet classification, content addressable memories (CAMs)
are used. The packet assembler sends the assembled data to the
memory for assembled data. The simulated ethernet sends up
to 64 data at the same time. Thus, the memory for assembled
data has 64 pages to retain 64 assembling data. A memory
for used page stores the page status (used or unused). In our
implementation, one page stores up to 2,040 flits.

Algorithm 2.1: The packet assembler reconstructs the orig-
inal data as follows:

Alg.1 Clears the CAMs and the memory for used
page (Fig. 4(1)).

Alg.2 Reads the header, and checks to see if it matches a stored
header in the CAMs (Fig. 4(2)).

Alg.2.1 If the header does not match, then the packet assembler
stores the header into the CAMs (Fig. 4(3)). In this case,
the packet assembler assigns an index corresponding to
unused page number showing the memory for unused
page.

Alg.2.2 If the header matches, then the packet assembler read
an index stored in the CAMs, and assigns it to the page
number.

Alg.3 Reads the payload from the packet, and stores it
in the assigned page in the memory for assembled
data (Fig. 4(4)).

Alg.4 Continues Alg.3 until it reads the EOP .
Alg.5 If EOD = 1, then the packet assembler send the page

number and the data length to the FIFO (Fig. 4(5)).
When the FIFO is full, the packet assembler waits until
the space is available in the FIFO.

Alg.6 Terminate.
The packet assembler handles the one flit (32 bits) for each

clock. On the other hand, the regular expression matching units
matches one character (8 bits) for each clock. Since both use

Entry

0
DAT1
DAT2

EOP

Packet
FIFO

DAT3

1. Initialization

Index

Entry Index

Entry Index

Controller

page
1
2

64

status
Unused
Unused

Unused

Memory for
Used Page

CAM for SA

CAM for DA

CAM for PORT

Memory for
Assembled Data

1101
0010
0011

Empty

Empty

Empty

pa
ge

 1
pa

ge
 2

pa
ge

 6
4

Entry

0
DAT1
DAT2

EOP

Packet
FIFO

DAT3

2. Packet classification

Index

Entry Index

Entry Index

Controller

page
1
2

64

status
Unused
Unused

Unused

Memory for
Used Page

CAM for SA

CAM for DA

CAM for PORT

Memory for
Assembled Data

1101
0010
0011

Empty

Empty

Empty

pa
ge

 1
pa

ge
 2

pa
ge

 6
4

Entry
1101

0
DAT1
DAT2

EOP

Packet
FIFO

DAT3

3. Store Header, and Assign Page

Index
1

Entry
0010

Index
1

Entry
0011

Index
1

Controller

page
1
2

64

status
Used

Unused

Unused

Memory for
Used Page

CAM for SA

CAM for DA

CAM for PORT

Memory for
Assembled Data

1101
0010
0011

pa
ge

 1
pa

ge
 2

pa
ge

 6
4

0
DAT1
DAT2

EOP

Packet
FIFO

DAT3

4. Send Data

Controller

page
1
2

64

status
Used

Unused

Unused

Memory for
Used Page

Memory for
Assembled Data

1101
0010
0011

DAT1
DAT2
DAT3

Entry
1101

Index
1

Entry
0010

Index
1

Entry
0011

Index
1

CAM for SA

CAM for DA

CAM for PORT

pa
ge

 2
pa

ge
 6

4

Entry
1101

DAT1
DAT2

EOP

Packet
FIFO

DAT3

5. End of Assembler

Index
1

Entry
0010

Index
1

Entry
0011

Index
1

Controller

page
1
2

64

status
Used

Unused

Unused

Memory for
Used Page

DAT2

CAM for SA

CAM for DA

CAM for PORT

Memory for
Assembled Data

1101
0010
0011

1 DAT1

DAT3

page=1
length=3

pa
ge

 2
pa

ge
 6

4

Fig. 4. Operations of Packet Assembler.

the same clocks and they can be processed in parallel, the
regular expression matching units becomes the bottleneck.

III. REGULAR EXPRESSION MATCHING USING NFA

A. Non-deterministic Finite Automaton (NFA)

The regular expressions can be detected by finite automata.
In a deterministic finite automaton (DFA), for each state,
there is a unique transition to a state for an input, while in
a non-deterministic finite automaton (NFA), for each state,
there is a multiple transitions to states for an input. In an
NFA, there exist transition to other states with ε-transition
regardless of the inputs. Sidhu-Prasanna’s [8] realized the
regular expression by an NFA with one-character-consuming
transition [1]. Each state for the NFA was implemented by
a single character detector and the AND gate. Also, an ε-
transition was realized by OR gates and routing on the FPGA.
Although the modern FPGA consists of the LUT and the
embedded memory, Sidhu-Prasanna’s method failed to utilize
the embedded memory2. So, their method is inefficient with
respect to the resource utilization of FPGA. In contrast,
our method implements an NFA with p-character-consuming
transition by embedded memories and LUTs to utilize the
resources of the FPGA efficiently.

2Their method uses single character detectors (comparators) instead of the
memory shown in Fig. 7

string: abc

a b c

a*

a

a+

a

a?

a

a|b

a b

Fig. 5. Conversion of Regular Expression into NFA.

(, , , , , ,)
(, , , , , ,)
(, , , , , ,)
(, , , , , ,)
(, , , , , ,)
(, , , , , ,)
(, , , , , ,)
(, , , , , ,)
(, , , , , ,)

a b aa b c

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 1 0
1 1 0 0 1 0 1
1 1 0 1 1 1 1

input ‘a’

input ‘b’

input ‘c’

input ‘a’

-transition

Accept ‘abca’

initial

-transition

-transition

-transition

Fig. 6. NFA for Regular Expression ‘abc(ab)*a’.

1

8

in
pu

t

i
c

i
c

i
c

i
c

i
c

i
c

eo ei m
at

ch

in
a
b
c

out
100101
010010
001000

FF
oc

oooooo

i

eo ei

eo ei eo ei eo ei eo ei eo ei

ME

Memory

Fig. 7. Realization of NFA [8].

B. Conversion of Regular Expression into NFA

A regular expression consists of characters and meta char-
acters. Our implementation accepts the following meta char-
acters: ‘*’ (repetition of more than zero character); ‘?’ (zero
or one character); ‘.’ (an arbitrary character); ‘+’ (more than
one repetition of character); ‘()’ (specify the priority of the
operation); ‘|’ (logical OR). Fig. 5 shows examples of conver-
sions of regular expressions into NFAs, where ‘ε’ denotes an
ε-transition, and a gray state denotes an accept state. Fig. 6
shows the NFA accepting the regular expression ‘abc(ab)*a’,
and state transitions with the input string ‘abca’. In Fig. 6, each
element of the vector corresponds to a state of the NFA, and
’1’ denotes an active state. Fig. 7 shows the circuit realizing
the NFA in Fig. 6. To realize the NFA, first, the memory
detects the character for the state transition, and then it sends
the character detection signal to the matching element (ME).
Each ME corresponds to a state of the NFA, and the ME for
the accepted state generates the match signal. In Fig. 7, in each
ME, the FF corresponds to the element of the vector shown in
Fig. 6; i denotes the matching signal from the previous state;
o denotes the matching signal to the next state; c denotes the
character detection signal; ei (eo) denotes the input (output)
signal for the ε-transition.

ab aabc

Fig. 10. MNFA(3) Equivalent to NFA
Shown in Fig. 6.

in out

R
eg.

R
eg.

R
eg. input

8

888

88

(don’t care)

Fig. 11. Finite Input Memory
Machine (FIMM).

a b c

FF FF FF

‘abc’ detection signal
from the FIMM

Fig. 12. Circuit for Multi-character-
consuming Transition.

in out

R
eg.

8
in out in out

R
eg.

8

R
eg.

8

8 8 8
input

bitwise-AND
3

3 3 3

Fig. 13. Partition of FIMM.

C. Realization of NFA Using Memories and Shift Registers

In the circuit for the NFA, each state is implemented by an
LUT of an FPGA. Thus, the necessary number of LUTs is
equal to the number of states. To reduce the number of states,
we use the NFA with p-character-consuming transition
modular non-deterministic finite automaton: MNFA(p).
Note that, MNFA(1) is simply written by ‘NFA’. To reduce
an NFA into an MNFA(p), we concatenate characters for
sequence of the states. However, to retain the ε-transition,
we apply the following restriction: For any state between
concatenated characters, no edge is allowed for the ε-transition
inputs and outputs. Fig. 10 shows the MNFA(3) that is derived
from the NFA shown in Fig. 6.

In an MNFA(p), for each state, there exist transition to
other states by consuming string with up to p characters.
For the MNFA(3) shown in Fig. 10, the set of transition
strings is {abc,ab,a}. To detect the transition strings, we
use the finite input memory machine (FIMM). Fig. 11
illustrates the FIMM that detects the strings {abc,ab,a}. When
the FIMM detects a string, it generates a detection signal.
Fig. 12 illustrates the circuit for three-character-consuming
transition. To synchronize the detection signal from the FIMM
and the matching signal from the preceding ME, we insert
shift registers. Let p be the maximum number of characters
for the transition strings of the MNFA(p). The single-memory
realization of the FIMM requires p28p bits. In Fig. 11, since
p = 3, the necessary memory size is 48 mega bits, which
is impractical. Our method decomposes the memory of the
FIMM into p parts and uses the bitwise-AND [6]. Each part
of the memory is implemented by embedded memories of the
FPGA. Fig. 8 shows the circuit for the MNFA(3) in Fig. 10.
To realize the multi-character-consuming transition, we insert
shift registers into MEs. When the FIMM detects a transition
string, it sends the detection signals to the corresponding
ME. Then, the ME performs the multi-character-consuming
transition.

FF
oci

eo ei
FF FF FF

oci

eo ei
FF FF

oci

eo ei
1

m
at

ch

FIMM (Fig. 13)
8 input

Fig. 8. Circuit for MNFA(3).

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6
 p

of

 L
U

Ts

0

500000

1000000

1500000

2000000

2500000

3000000

M
em

or
y

Si
ze

 [b
its

]

of LUTs
Memory Size

Fig. 9. Number of LUTs and Memory Size for
Different Value of p.

Terasic Technologies Inc.
DE3 Development Board

FPGA: Altera Corp.
StratixIII EP3S340H1152

Terasic Technologies Inc.
Off-Chip SSRAMs

Terasic Technologies Inc.
NEEK Upgrade Kit

Fig. 14. Photograph of the System.

IV. IMPLEMENTATION RESULTS

A. Environment
We implemented CANSCID on a Terasic Technologies

Inc. DE3 development board utilizing Altera Stratix III
FPGA (EP3S340H1152C3N4, 270,400 ALUTs and
16,662,528 bits embedded memory). The synthesis tool
was Altera Corp. Quartus II version 9.1. We loaded 140
regular expression patterns of MEMOCODE2010 design
contest. The embedded processor was Nios II/f. To store
the original packet data, we attached two off-chip SSRAMs
to the board. Also, to read the packets from the SD-Card,
we attached NEEK update kit to the board. Fig. 14 is the
photograph of the system.

B. Optimal Value p for MNFA(p)
Let p be the number of characters for the transition strings of

NFA. Then, the number of states for the MNFA(p) decreases
with p. To implement the MNFA(p), the required number
of LUTs is proportional to the number of states. Also, the
memory size of the FIMM increases with p. To obtain the
value p that reduces both the memory size and the number of
states, we realized MNFA(p) for different p. Fig. 9 shows the
number of LUTs and the memory size for different values of p
of MEMOCODE2010 design contest 140 regular expressions.
Fig. 9 shows that an increase of p from 1 to 2 reduces the LUTs
by 43.3%. The increase of p from 2 to 3 reduces the LUTs by
23.9%. When p is further increased, the ratios of reduction are
16,5% (p=3), 11,6% (p=4), and 8.3% (p=5), respectively. On
the other hand, an increase of p by 1 increases the memory
by 11.8%. Thus, in our implementation, we chose p = 2.

C. Implementation Results
Our FPGA implementation used 11,218 ALUTs and

4,827,008 bits embedded memory. We set the maximum

system clock frequency to 100 MHz. The maximum through-
put was 798 Mbps. This outperforms required specifica-
tion (500 Mbps) of the design contest.

V. CONCLUSION

We implemented CANSCID on a DE3 development board.
To improve the performance, the packet assembler and the
regular expression matching units are implemented by ded-
icated hardware. 140 regular expressions of MEMOCODE
2010 design contest were loaded on an Altera’s FPGA. Our
regular expression matching circuit is based on the MNFA(p).
To detect p characters, an FIMM is used.

Other reduction methods for the NFA-based regular ex-
pression circuit include: sharing a part of regular expression
circuit [2]; and using the shift register to realize the repeated
pattern [3]. In the implementation, the memory of FIMM
are decomposed into smaller ones to be implemented by an
embedded memory of FPGA. Our method efficiently uses both
LUTs and the embedded memory of the FPGA.

VI. ACKNOWLEDGMENTS

This research is supported in part by the grant of Regional
Innovation Cluster Program (Global Type, 2nd Stage). Dis-
cussion with Prof. J. T. Butler was quite useful. Dr. Hiroaki
Yoshida encouraged us to participate the design contest. The
authors appreciate the organizer’s hard work to prepare for the
contest.

REFERENCES

[1] R. Baeza-Yates and G. H. Gonnet, “A new approach to text searching,”
COMMUNICATION of the ACM, , Vol.35, No.10, pp. 74-82, Oct., 1992.

[2] J. C. Bispo, I. Sourdis, J. M.P. Cardoso, and S. Vassiliadis, “Regular
expression matching for reconfigurable packet inspection,” Proc. IEEE
Int’l Conf. on Field Programmable Technology (FPT 2006), pp. 119-126,
2006.

[3] I. Sourdis, J. Bispo, J. M. P. Cardoso and S. Vassiliadis, “Regular
expression matching in reconfigurable hardware,” Int. Journal of VLSI
Signal Processing Systems, Vol. 51, Issue 1, pp. 99 - 121, 2008.

[4] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill Inc.,
1979.

[5] L7 filter official web site, “http://l7-filter.sourceforge.net/”.
[6] H. Nakahara, T. Sasao, M. Matsuura, and Y. Kawamura, “A virus scan-

ning engine using a parallel finite-input memory machines and MPUs,”
Proc. Int’l Conf. on Field Programmable Logic and Applications (FPL
2009) Aug. 31- Sept. 2, 2009.

[7] M. Pellauer, A. Agarwal, A. Khan, M. C. Ng, M. Vijayaraghavan,
F. Brewer, and J. Emer, “Design contest overview: Combined archi-
tecture for network stream categorization and intrusion detection (CAN-
SCID),” Proc. of Eighth ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE 2010), Grenoble,
France, July 26-28, 2010.

[8] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
FPGAs,” FCCM 2001, pp. 227-238, 2001.

[9] SNORT official web site, “http://www.snort.org”.

