
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016 73

LUT Cascades Based on Edge-Valued
Multi-Valued Decision Diagrams:
Application to Packet Classification

Hiroki Nakahara, Member, IEEE, Tsutomu Sasao, Life Fellow, IEEE, Hisashi Iwamoto, and Munehiro Matsuura

Abstract—This paper presents a packet classifier using multiple
LUT cascades for edge-valued multi-valued decision diagrams
(EVMDDs). Since the proposed one uses both DSP blocks
and on-chip memories, it can efficiently use the available FPGA
resources. Thus, it can realize a parallel packet classifier on a
single-chip FPGA for the next generation 400 Gb/s Internet link
rate (IEEE 802.3). Since it is a memory-based one, the power con-
sumption is lower than the TCAM-based one. Also, we proposed
an on-line update method that can be done without intermitting
the packet classification. Compared with the conventional off-line
update which requires resynthesis of the re-generated HDL codes,
it drastically reduces the update time. Although the proposed
on-line update requires additional hardware, the overhead is
only 8.5% of the original LUT cascades, which is acceptable.
We implemented a two-parallel packet classifier on a Virtex 7
VC707 evaluation board. The system throughput is 640 Gb/s
for minimum packet size (40 Bytes). For the performance per
memory, the proposed architecture is 2.21 times higher than ex-
isting methods. For the power consumption per performance, the
proposed architecture is 11.95 times lower than existing methods.
Index Terms—Edge-valued decision diagram, field-program-

mable gate array (FPGA), multi-valued decision diagram, packet
classification, LUT cascade.

I. INTRODUCTION
A. Packet Classification

W ITH the rapid growth of the Internet, various network
applications [e.g., firewall, quality of service (QoS), vir-

tual private networks, and network address translation (NAT)]
have been developed. They distinguish incoming packets using
the multiple fields of packet headers. Such a function is called

Manuscript received January 30, 2015; revised May 27, 2015; accepted July
08, 2015. Date of publication February 23, 2016; date of current version March
09, 2016. This research is supported in part by the Grants in Aid for Scientistic
Research of JSPS. This work was presented in part at the 23rd International
Conference on Field Programmable Logic and Applications (FPL2013), Porto,
Portugal, Sep., 2013. This paper was recommended by Guest Editor N. Homma.
H. Nakahara is with the Department of Electrical and Computer Engineering,

EhimeUniversity, Ehime 7900911, Japan (e-mail: nakahara@cs.ehime-u.ac.jp).
T. Sasao is with the Department of Computer Science, Meiji University,

Kanagawa 2148571, Japan (e-mail: sasao@cs.meiji.ac.jp).
H. Iwamoto is with the REVSONIC Corp., Osaka 5320011, Japan (e-mail:

hisashi-iwamoto@revsonic.com).
M. Matsuura is with the Department of Computer Science and Elec-

tronics, Kyushu Institute of Technology, Fukuoka 8208502, Japan (e-mail:
matsuura@aries01.cse.kyutech.ac.jp).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JETCAS.2016.2528638

multi-field packet classification. Traditionally, a packet clas-
sification problem considers the fixed 5-tuple fields consisting
of 32-bit source/destination IP addresses, 16-bit source/desti-
nation port numbers, and an 8-bit transport layer protocol. Re-
cently, multi-match packet classification for the network intru-
sion detection system (NIDS) [68] and 12-tuple packet clas-
sification for the OpenFlow [43] have been considered. Since
packet classification spends a considerable fraction of the total
computation time for these applications, a dedicated hardware
is necessary. Although packet classification hardware has been
widely studied for many years, we must develop novel and ef-
ficient packet classification [69] due to continuous growth of
network bandwidth; ever-increasing complexity of network ap-
plications; and technology innovations of network systems.
Let be the number of the rules and be the number of the

fields. The software-based realization requires either
space and time, or space and
time [44]. Thus, the software-based realization is too slow or
consumes too much memory. The core router employs dedi-
cated hardware for packet classification. Hardware realizations
of packet classification are roughly divided into two: A ternary
content addressable memory (TCAM) based one, and a field
programmable gate array (FPGA) based one. Since the core
routers consume the major part of the total network power
dissipation [61], we cannot use the TCAM-based architecture
that dissipates too much power [48]. Also, unlike static random
access memories (SRAMs), TCAMs are not scalable with
respect to the clock frequency [18]. Thus, the memory-based
IP lookup architectures on the FPGA have been proposed.
They dissipate lower power than the TCAM-based ones [20].
Since the state-of-the-art SRAM-based FPGA devices can
utilize the leading-edge large scale integration (LSI) process, it
achieves a high clock rate, a low-power dissipation and a large
amount of on-chip memory. Since the direct implementation of
the TCAM on the FPGA consumes too much hardware [40],
hash-based and decision diagram based realizations are major
for the FPGA-based packet classifier. Most of the existing
hash-based realizations employ the bloom filter due to
time complexity with small memory size. However, it suffers
from the potential collision that requires additional module to
provide deterministic performance which reduces the system
throughput [16]. Therefore, in the paper, we employ a decision
diagram based architecture.
Rules for the packet classifier are frequently updated. For ex-

ample, the SNORT, which is a kind of the NIDS, recommends

2156-3357 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

74 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016

Fig. 1. Distribution of resources for Xilinx Inc. Virtex FPGA devices [66].

to update the rules in every 15 min [42]. Two types of updates
exist: the on-line update and the off-line update. In the off-line
update, first, the hardware description language (HDL) codes
are regenerated. Then they are converted into the bit-stream, and
finally, it is downloaded it to the FPGA. The off-line update has
two drawbacks. Since the synthesis takes a long time, it cannot
keep up with the update interval. Also, the off-line update re-
quires to suspend the packet classifier. In the paper, we proposed
an on-line update method. Although it requires the additional
hardware, update can be donewithout suspension of packet clas-
sification. The overhead of hardware is small enough.

B. Proposed Method
Since the next generation network transmission requires

400 Gb/s link throughput by IEEE 802.3 working group [14],
a high-speed packet classifier is essential. Since the modern
high-end FPGA operates at most 600 MHz clock frequency1
[66], a parallel processing of packet classification is an effective
method to keep up with the next generation link throughput.
In this case, the throughput per area is an important measure.
Fig. 1 shows the resource distribution of the Xilinx Inc. Virtex
FPGA devices. It shows that a modern FPGA consists of logic
cells, on-chip memories (BRAMs), and arithmetic circuits
(DSP blocks), and their distributions are balanced. Thus, a
balanced usage of hardware resources in FPGAs is the key to
increase parallelization. Since the conventional method repre-
sents packet classification by the multi-terminal multi-valued
decision diagram (MTMDD), it uses logic cells and
BRAMs only. This paper presents a packet classifier using
multiple LUT cascades for edge-valued multi-valued decision
diagrams (EVMDDs). The classifier is designed as follows:
First, a set of rules for a packet classifier is partitioned into
groups by using modified HiCuts [11]. Second, each group
is decomposed into field functions and a Cartesian product
function. Third, they are represented by EVMDDs , and
finally, they are converted to LUT cascades using adders (DSP
blocks). Thus, it can realize highly parallelization (Fig. 2).
In this paper, we proposed an on-line update method for

the LUT cascade based on the EVMDD . To update a rule
without suspension, we appended a small CAM. The CAM is

1The BRAM operates up to 601 MHz and the DSP48E block operates up to
741 MHz for the Virtex 7 FPGA with speed grade. However, these values
are hard to achieve in real designs.

Fig. 2. Comparison of conventional and proposed methods.

used to store an update rule, while the host PC is rewriting the
LUT cascades. After finishing the update, the rule stored in
the CAM is cleared. Although our method requires additional
hardware, it can update without suspending the operations. The
off-line update requires re-synthesizes of the packet classifier.
The experimental result shows that, the area overhead and the
update time are acceptable for practical packet classifiers.
In our previous contributions [38], we note the following.
1) We proposed a compact and high-speed 5-tuple packet

classifier by multiple LUT cascades for EVMDDs .
Conventional methods used only logic cells and BRAMs,
while the proposed architecture uses DSP48E blocks in ad-
dition. To best of our knowledge, only our architecture uti-
lizes all the FPGA resources efficiently.

2) We found the smallest LUT cascade by changing the size
of super variables from one to four. The experimental
results showed that the memory size takes its minimum
when .

The following contributions in this paper are new.
1) We derived an the upper bound on the memory size of

the proposed architecture for a given packet classification
table.

2) We implemented the two-parallel packet classifier using
multiple LUT cascades on an FPGA. Its system throughput
achieved 640 Gb/s, which exceeds the next generation
link speed. For the performance per memory, the proposed
architecture is 2.21 times higher than existing FPGA
realizations. Since this technique can be used for the
12-tuple classification and the multi-match classification
problems, it will accelerate the existing decision diagram
based hardware.

3) We proposed an on-line update method for the LUT cas-
cades. It used an additional small CAM and the host PC.
Compared with the off-line update that requires re-genera-
tion of the HDL codes, it can quickly update the cascades
without suspending the operation. For different numbers
of update rules, we compared the proposed on-line update
method with the off-line one with respect to the area over-
head and the update time. Experimental results showed that
the amount of additional hardware is only 8.5% of the LUT
cascade. Note that, the proposed on-line update requires no
suspension of the operations.

4) We achieved the lowest power consumption for the LUT
cascade by changing . The experimental results shows
that the power consumption takes its minimum when

. Its power consumption is lower than the TCAM-

NAKAHARA et al.: LUT CASCADES BASED ON EDGE-VALUED MULTI-VALUED DECISION DIAGRAMS 75

based ones. For the power consumption per performance,
the proposed architecture is 11.95 times lower than existing
FPGA realizations.

C. Organization of the Paper

The rest of the paper is organized as follows.Section II sur-
veys related works. Section III defines a 5-tuple packet
classification problem. Section IV shows the LUT cascade
for an MTMDD . Section V reviews the LUT cascade
for an EVMDD . Section VI analyzes the upper bound of
the memory size. Section VII proposes an update method for
LUT cascades based on the EVMDD . Section VIII shows
experimental results. Section IX concludes the paper. This
paper is an extension version of the previous publication [38].

II. RELATED WORK

Comprehensive surveys have been done in [13] and [59]. Due
to the page limitation, we only introduce leading researches.
As for the packet classification rule set, theoretical and prac-

tical complexities for the real-life rules have been analyzed in
[69], the access control list (ACL) has been analyzed in [4], and
the fire wall has been analyzed in [9]. The synthesizer for the
packet classification table (ClassBench [60]) is widely used in
the experiment.
Among all existing realizations, we categorize them by 1)

data structure and algorithm; and 2) implementation technique.
As for data structure and algorithm, they are roughly divided
into hashing schemes, rule partition schemes, rule compression
schemes, trie schemes, and decision diagram schemes. Most of
existing works combine these schemes. The works [5], [41],
[45], [22], [68] proposed hash-based architecture to match
a packet to its possible matching rules. The hash tables for
multi-core processor have been proposed [70]. The works
[13], [57] represented the packet classification table by tries.
The outstanding partition algorithms are HSM [71], HiCuts
[10], HyperCuts [55], and EffiCuts [62]. Other existing works
extending above partition algorithms are [28], [46], [65]. In
this paper, we partition the given packet classification table by
a variation of HiCuts [11]. Compression techniques [31], [64]
are based on the specialization of existing logic minimizer,
such as Quine-McClusky method [47] or Espresso [30]. As
for decision diagrams, a binary decision diagram (BDD) [1],
[33] was extended to a multi-valued decision diagram (MDD)
[21]. An edge-valued BDD (EVBDD) [25], [26] was used to
compactly represent the monotone increasing logic function.
The combination of the MDD and the EVBDD was proposed as
an edge-valued multi-valued decision diagram (EVMDD) [34].
Since the memory size of the decision diagram depends on its
variable ordering, the optimization algorithm for the variable
order has been proposed [49]. Representations for the packet
classification table by the decision diagram have been proposed
[12], [55], [62]. Sasao et al. implemented the decision diagram
by the cascade of the memory (an LUT cascade) [51], [54]. We
implemented the dedicated processor based on the EVMDD
for a small network [39]. Also, we analyzed the complexity of
the decision diagram for the given packet classification table
[53], [37].

As for the implementation technique, they are roughly di-
vided into three: a software-based one, an application specific
integrated circuit (ASIC) one, a TCAM-based one, and an
FPGA-based one. Many sophisticated software-based imple-
mentations have been proposed, and its comprehensive survey
was shown in [63]. ASIC implementations have been proposed
for low-power packet classification [11], [23]. Existing works
for optimization of the TCAM-based approach are divided into
three categories; power reduction [72]; circuit modification
[27]; and TCAM memory compression [32]. Recently, to
achieve low-power and high-throughput, many researchers
have developed various FPGA-based architectures: a combina-
tion of TCAM and the bit vector (BV) [56]; the modified HiCut
and HyperCut with a dynamically clock changing [24]; an ex-
tension to distributed crossproducting of field labels (DCFLs)
[15]; a dual-stage bloom filter classification engine (2sBFCE)
[41]; parallel realization of coarse-grained independent rules
and the cross-producting method [18]; the field-split parallel
bit vector (FSBV) [17]; a combination of the cutting-based and
the merging-based architecture [19]; a bit vector based lookup
scheme and a parallel hardware architecture (StrideBV) [7];
a range-point conversion rule partitioning (ParaSplit) [6]; a
combination of multi-bit tries including the expand trie and the
tree bitmap trie to minimize the power consumption [20]; an
improvement of the memory realization for the StrideBV [50];
and a combination of the StrideBV and modularized BV [8]. In
this paper, we also employ the FPGA-based architecture.

III. 5-TUPLE PACKET CLASSIFICATION

A. Problem Statement
A packet classification table consists of a set of rules. Each

rule has five input fields: Source address (SA), destination ad-
dress (DA), source port (SP), destination port (DP), and protocol
number (PRT). Also, it generates a rule number (Rule). A field
has entries. In this paper, since we consider a realization of the
packet classifier for the Internet protocol version 4 (IPv4), we
assume that SA and DA have 32 bits, DP and SP have 16 bits,
and PRT has 8 bits. An entry for SA or DA is specified by an
IP address; that for SP or DP is specified by an interval ,
where and denote a port number; and that for PRT is speci-
fied by a protocol number. SA and DA are detected by a longest
prefix match; SP and DP are detected by a range match; and
PRT is detected by an exact match. A packet classifier detects
matched rules using the packet classification table. In this paper,
we assume that the rule with the largest number has the highest
priority. Note that, any packet matches a default rule whose
rule number is zero. Obviously, the default rule has the lowest
priority. When two or more rules are matched, the rule having
the highest priority is selected.
Example 3.1: Table I shows an example of the packet classi-

fication table, where an asterisk “*” in an entry matches both 0
and 1, while a dash “-” in a field matches any pattern. In Table I,
each field has four bits, rather than the actual number of bits to
simplify the example.
Consider the packet classification table shown in Table I. The

packet header with ,
and matches rule 3, rule 1, and the default rule.

76 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016

Since the rule 3 has the highest priority, the rule 3 is selected.

B. Decomposition of Packet Classification Table by Cartesian
Product Method

Let be the number of rules.When a prefixmatch and a range
match are decompressed into all the exact match patterns, since

, and ,
the direct memory realization storing these decompressed pat-
terns requires bits. It is too large to implement.
We use the Cartesian product method [58] which decomposes
the packet classification table into field functions and a Carte-
sian product function2.
An entry of a rule can be represented by an interval function

[53]:

(1)

where , and are integers. Let
, and . Any

entry for SA is represented by .
Similarly, any entry for DA can be represented by an interval
function. Any entry for PRT is represented by ,
where is a protocol number.
As shown in Example 3.1, multiple rules may match in a

packet classification table. In such a case, we use a vectorized
interval function. Let be the number of rules. A vectorized
interval function is , where
is a unit vector with elements, and only th bit is one and other
bits are zeros.
For each value of , we assign a segment, which is

an interval or a set of intervals. Then, we define a field func-
tion , which generates an unique integer index corre-
sponding to the th segment satisfying .
Note that, to distinguish a segment from an interval, we denote
a segment consisting of an interval as . Next, we
define the Cartesian product function , where

is a set of Cartesian products of indices
generated by field functions. As shown in Fig. 3, the packet clas-
sification table is decomposed into field functions and a Carte-
sian product function.
Wemust assign a different index to a different segment. In this

paper, we assign indices to make an -monotone increasing
function [36] to reduce memory size. Let be a set of integers
including 0. An integer function such that

and is an -monotone
increasing function on .
Example 3.2: Fig. 4 shows examples of segments for SA

and DP shown in Table I. Note that, rules are represented by
intervals.
Example 3.3: Fig. 5 shows decomposition by the Cartesian

product method of the packet classification table shown in
Table I. As for the PRT field, we assigned “0” to ICMP, “1” to
TCP, and “2” to UDP. In this field, for each segment ,
since denotes ICMP, denotes TCP, and

2In [58], Cartesian product was called “cross product”.

Fig. 3. Decomposition of packet classification table by Cartesian product
method.

Fig. 4. Relations among rules, vectorized interval function, segments and field
function.

TABLE I
EXAMPLE OF A PACKET CLASSIFICATION TABLE

Fig. 5. Example of Cartesian product method.

denotes UDP. Note that, we omit a part of the Cartesian
product function due to the space limitations.

NAKAHARA et al.: LUT CASCADES BASED ON EDGE-VALUED MULTI-VALUED DECISION DIAGRAMS 77

Fig. 6. Conversion of an LUT cascade from an MTMDD .

IV. LUT CASCADE FOR MTMDD

A. Cascade Realization of an -Monotone Increasing
Function

A binary decision diagram (BDD) [1], [33] is obtained by
applying Shannon expansions repeatedly to a logic function
. Each nonterminal node labeled with a variable has two

outgoing edges which indicate nodes representing cofactors of
with respect to . A multi-terminal BDD (MTBDD) [3] is an
extension of a BDD and represents an integer-valued function.
In the MTBDD, the terminal nodes are labeled by integers.
Let be a partition of the input

variables, and be the number of binary variables in .
is called a super variable. When the Shannon expan-

sions are performed with respect to super variables , where
, all the nonterminal nodes have edges. In this case,

we have a multi-valued multi-terminal decision diagram
[21]. Note that, an MTMDD(1) corresponds

to an MTBDD. The width of the MDD at the height
is the number of edges crossing the section of the MDD
between super variables and , and denoted by ,
where the edges incident to the same node are counted as one.
An -monotone increasing function can be realized by an

LUT cascade [51] shown in Fig. 6. Connections between
and requires rails. Let be
the number of inputs, and . The LUT cascade has

LUTs. Since a modern FPGA has BRAMs and
distributed RAMs (realized by Slices), LUT cascades are easy to
implement. The amount of memory for for an MTMDD

is . Thus, the total amount of memory for an
LUT cascade is . The number of unique
indices for the -monotone increasing function is equal to
the number of segments. A reduction of also reduces the
amount of memory for an LUT cascade. To reduce the amount
of memory for the LUT cascade, we partition rules into sub rules
that take a minimum number of segments.
Example 4.4: Fig. 7 illustrates the process of conversion from

the field function for SP shown in Fig. 5 into the LUT cascade.

First, the given function is converted to the MTBDD. Then, it
is converted to the MTMDD . Next, by realizing each index
on the MTMDD of the LUT, we have the LUT cascade. In
this example, the amount of memory for the LUT cascade is

bits.

B. Partition of Rules by Greedy Algorithm
Since a field function for rules produces at most

segments (will be shown later), it is compactly realized by an
LUT cascade. However, the Cartesian product function pro-
duces segments [58]. Thus, a direct realization by an LUT
cascade is hard. To reduce the number of segments, we partition
rules into subrules. Then, we realize subrules by circuits shown
in Fig. 8. Since two or more rules may match at the same time,
we attached the maximum selector to the output.
Let be an entry for a field. Then, is the size of

the interval. We use the greedy algorithm to partition rules as
follows.
Algorithm 4.1: (Partition of rules) Let

be the set of rules, be the number of rules,
be the partition of rules, and be the number

of groups of rules.

1. Compute the sum of sizes of intervals for each rule.
Then, sort the rules in decreasing order as

.
2. .
3. .
4. Do Steps 4.1 to 4.4 until .

4.1. For , decompose by the
Cartesian product method, then generate LUT
cascades. And, obtain the amount of memory

for the LUT cascades.
4.2. Decompose by the Cartesian product

method, then generate LUT cascades.
And, obtain the amount of memory
for the LUT cascades.

4.3. If , then .
Otherwise, , and .

4.4. .
5. Terminate.

Algorithm 4.1 partitions the packet classification table effi-
ciently using its property. Real-life packet classification tables
in an inherent data structure are analyzed in [69]. Since many
packet classification tables are maintained by humans, global
controls (wide range port) are used in the global networks, while
detail controls (narrow range port) are used in the local net-
works. Thus, in practice, the number of rails seldom becomes
the worst. A simple partition algorithm can suppress the increase
of segments. As a result, we can reduce the memory size.

V. LUT CASCADE FOR AN EVMDD (K)
To farther reduce the total memory size for an LUT cas-

cade, we introduce an LUT cascade for an edge-valued multi-
valued decision diagram [25], which is an
extension of an EVBDD. An EVBDD consists of one terminal
node representing zero and non-terminal nodes with a weighted

78 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016

Fig. 7. LUT cascade for an MTMDD .

Fig. 8. Packet Classifier by LUT cascades for an MTMDD .

1-edge, where the weight has an integer value . Note that, in
the EVBDD, 0-edges have zero weights.
In an -monotone increasing function, sub-function

is obtained by adding to sub-function . Thus, an EVBDD
may have smaller widths by sharing and with edge
[Fig. 11(a)]. The MTBDD can share only prefixes, while the
EVBDD can share both prefixes and postfixes [Fig. 11(b)].
By rewriting the terminals of the MTBDD for the Cartesian
product function, we have the -monotone increasing func-
tion. Fig. 12 shows an example to obtain an -monotone
increasing function. To recover the original function, we use
a translation memory. The size of the translation memory is
proportional to the number of terminal nodes in the MTBDD.
Experimental results show that its amount memory tends to be
small.
An edge-valued MDD is an extension

of the MDD , and represents a multi-valued input -mono-
tone increasing function. It consists of one terminal node repre-
senting zero and nonterminal nodes with edges having integer
weights, and 0-edges always have zero weights.
An -monotone increasing function is efficiently realized

by an LUT cascade with adders [35] as shown in Fig. 9. In this
case, the rails represent sub-functions in the EVMDD . Each

produces other rails representing the sum of weights

Fig. 9. Conversion of EVMDD into an LUT cascade.

of edges. We call such outputs Arails which consist of
rails. Since the width of the EVMDD for -monotone
increasing function is smaller than that of the MTMDD , we
can reduce the total memory size for the LUT cascade by using
an EVMDD . Since the adders are realized by DSP blocks
(DSP48Es), FPGA resources are efficiently used.
The amount of memory for is .

Let be the number of inputs, and . The LUT
cascade has LUTs. Thus, the LUT cascade for an
EVMDD requires bits of memory
in total. Also, it requires adders. Generally, an increase of
increases the amount of memory, while decreases the number of
adders. Thus, in this paper, we find that minimizes the usage
of FPGA resources.
Example 5.5: Fig. 10 shows the EVBDD obtained from the

MTBDD shown in Fig. 7. At the first level, the width of the
MTBDD is four, while that of the EVBDD is two. First, convert
the EVBDD to the EVMDD . Then, convert it to the LUT
cascade. Its memory size is bits.

NAKAHARA et al.: LUT CASCADES BASED ON EDGE-VALUED MULTI-VALUED DECISION DIAGRAMS 79

Fig. 10. Conversion of an EVBDD into an LUT cascade.

Fig. 11. Principle of reduction of width in an EVBDD.

Fig. 12. Example of deriving to -monotone increasing function.

A single-memory implementation of this function requires
bits. Thus, the LUT cascade can reduce the total memory

size.

VI. ANALYSIS OF MEMORY SIZE
In this section, we derive an upper bound on the memory size

of the LUT cascade for the EVMDD for the given packet
classification table.

A. Upper Bound on the Number of Segments
Example 3.2 shows that, when two interval have a common

element and also neither interval is contained by the other, three
segments are produced. For example, for DP shown in Fig. 4,
intervals and produce three segments ([6:7], [8:8],
and [9:9]). In contrast, for two intervals, when one contains the
other or does not intersect, only two segments are produced. For
example, for SA shown in Fig. 4, intervals and pro-
duce two segments ([0:3] and [4:7]). From above observations,
we have the upper bound on the number of segments for the field
function.

Theorem 6.1: A field function with distinct intervals pro-
duces at most segments.

Proof: We prove it by mathematical induction. When
, the number of segments is at most three. Assume that the
number of segments for intervals is . When we
add an additional interval, at most two new segments increase.
Thus, for intervals, the total number of segments is at
most . (Q.E.D.)
Example 6.6: The DP shown in Fig. 4 has intervals. It

has nine segments.
Theorem 6.2 [52]: A PRT field function with distinct inter-

vals produces at most segments.
Theorem 6.3 [52]: An IP address (SA and DA) field function

with distinct entries produces at most segments.
Example 6.7: Fig. 5 decomposes the packet classification

table shown in Table I by the Cartesian product method. As for
the PRT field, we assigned “0” to ICMP, “1” to TCP, and “2” to
UDP. Note that, we omit a part of the Cartesian product func-
tion due to the space limitations.

B. Upper Bound on the Memory Size
As for an -monotone increasing function, an upper bound

on the number of rails in the LUT cascade has been derived.
Theorem 6.4 [35]: Let be the number of unique indices

for the -monotone increasing function. Then, there exist an
LUT cascade for an EVMDD with at most rails and

Arails.
From Theorems 6.1 and 6.4, we have an upper bound on the

memory size of the LUT cascade for the EVMDD of the
given packet classification table.
Theorem 6.5: Any -input field function with distinct en-

tries can be implemented by an LUT cascade for the EVMDD
. Each LUT has inputs and outputs (rails and Arails),

the total memory size is bits, and
.

Proof: From Theorems 6.1 and 6.4, the number of rails
(Arails) of the LUT cascade is at most . The
number of LUTs is . Since each LUT has inputs
and outputs (rails and Arails), the total memory size of the
LUT cascade for the EVMDD is
bits. Hence, we have the Theorem.
Theorem 6.5 shows that the memory size of the LUT cascade

depends on , and . Since and are given by the packet
classification table, we can find the best value for .

VII. UPDATE METHOD FOR LUT CASCADES

A. Definition
An update for the EVMDD is a change of a constant

value in the function. The update of the LUT cascade is decom-
posed into an addition and a deletion of a vector. The addition
is achieved by rewriting the corresponding index to non-zero,
while the deletion is achieved by rewriting the corresponding
index to zero. Thus, the update requires both an addition and a
deletion.
Two update methods exist: the off-line and the on-line. In

the off-line update, first, the HDL codes for the LUT cascade
including the updated rule are re-generated. Then, the FPGA is

80 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016

Fig. 13. Proposed system supporting on-line update.

Fig. 14. Range-Matching CAM.

re-configured. During re-configuration, the packet classification
must be suspended. On the other hand, in the on-line update,
rules can be updated without suspending the packet classifica-
tion. In this paper, we propose an on-line update for the LUT
cascades.

B. Proposed System
Fig. 13 shows the proposed system for the on-line update.

It consists of LUT cascades, a small range-matching CAM, a
priority encoder, a multiplexer, and the sequencer. It is similar
to Luo's method [29], which uses an SRAM-based architecture
using trie instead of the LUT cascades. The trie based architec-
ture only uses the memory, while the EVMDD based one
uses both the memory and DSP blocks.
The Host PC synthesizes the initial bit stream to con-

figure the FPGA, and updates the LUT cascades. It stores
the EVMDD on the main memory. The FPGA and the
host PC are connected by the JTAG-UART (Joint test action
group universal asynchronous receiver/transmitter) cable. The
range-matching CAM stores only a single rule, and performs
the range-matching defined in Section II. It generates a match
signal and the corresponding rule number. It can be updated
by a single clock. To update of the LUT cascades, first, the
update rule is stored in the range-matching CAM. Then, the
priority encoder and the multiplexer selects the output of the
range-matching CAM. Next, the Host PC updates the LUT
cascade using the sequencer. Finally, the sequencer clears the
update rule from the range-matching CAM. Thus, the LUT
cascades can be updated without suspending the classifica-
tion operation. Although the proposed system requires the
additional hardware, its overhead is 8.5% of the original LUT
cascade. It will be shown later.
Fig. 14 shows the range-matching CAM. It consists of range

detectors and a binary CAM. The range detectors perform range

Fig. 15. LUT cascade based on the EVMDD for the on-line update.

Fig. 16. Conversion rules for EVMDD .

matching for four fields (SA, DA, SP, and DP). Each detector
consists of two comparator, two registers, and an AND gate.
The binary CAM performs exact matching for PRT field. When
all the fields are matched, it generates the match signal (logical
one) and the corresponding rule number. Otherwise, it generates
the miss-match signal (logical zero) and the default rule number
(zero). Thus, the range matching CAM can be quickly updated
by rewriting the corresponding register.
Fig. 15 shows the LUT cascade based on the EVMDD

for the on-line update implemented as the pipelined BRAM ar-
chitcture. The update of the pipelined memory-based lookup ar-
chitecture can be done by write bubbles [2]. It injects the write
data into the pipleline. Since the BRAM for the current FPGA
supports a simple dual port (SDP) mode, we can perform a
write-before-read operation [67]. Thus, the pipelined LUT cas-
cade can perform update (write) before lookup (read). With this
technique, we can guarantee the correct operation during up-
date. When BRAMs on the LUT cascade are updated, the output
of CAM is used to produce the correct rule number. Thus, the
system produces a correct value for the matched rule during
update.

C. Update of the LUT Cascade Based on the EVMDD
To update the LUT cascade based on the EVMDD , first,

we update the EVMDD corresponding to the update vector.
Fig. 16 shows a conversion rule between the MTMDD and
the EVMDD . To update the EVMDD , first, the nodes
for the EVMDD are expanded into nodes for the MTMDD

by traversing from the root node to the terminal node. Then,
the terminal node is rewritten to the corresponding rule number.
Finally, the nodes for the MTMDD are converted into ones
for the EVMDD . An algorithm to update the EVMDD
is as follows:

NAKAHARA et al.: LUT CASCADES BASED ON EDGE-VALUED MULTI-VALUED DECISION DIAGRAMS 81

Algorithm 7.2: (Update EVMDD)

1. Traverse the EVMDD from the root node to the
terminal node corresponding to the update vector by
converting the EVMDD node into the MTMDD

node.
2. When it reaches to the terminal node, rewrite the

terminal value.
3. Return to the root node by converting the MTMDD

node to the EVMDD node.
4. Terminate.

Example 7.8: We show an example of the update for the
EVMDD shown in Fig. 10. Here, the index “0” of the vector

is updated into the index “8”.
First, we traverse the EVMDD (1) corresponding to

the vector [Fig. 17(a)] by converting to the
MTMDD nodes. Then, we rewrite the terminal value into “8”
[Fig. 17(b)]. Finally, we recursively convert into EVMDD
nodes [Fig. 17(c) and (d)].
Then, we modify the memory of the LUT cascade according

to the modified part of the EVMDD . Modification of the
LUT cascade can be done as follows.
Algorithm 7.3: (On-line update for the LUT cascade)

1. Update the range-matching CAM.
2. Generate the update data for the LUT cascade on the

host PC.
2.1. Apply Algorithm 7.2.
2.2. Traverse the modified EVMDD

corresponding to the update vector. Then,
modify the memory of the LUT cascade
corresponding to the modified node on the
EVMDD .

3. Send the update data to the LUT cascade on the FPGA
from the host PC, and update the LUT cascade.

4. Clear the update rule in the range-matching CAM.
5. Terminate.

Algorithm 7.3 allows the update without suspension. The-
orem 6.5 guarantees that an arbitrary pattern can be updated.

VIII. EXPERIMENTAL RESULTS

A. Implementation Setup

Weused theVirtex 7VC707 evaluation board (FPGA:Xilinx,
XC7VX485T-2FFG, 75 900 Slices, 2060 18 Kb BRAMs, and
2800 DSP48E Blocks) and the Xilinx PlanAhead version 14.7
for the synthesis. As for the LUT cascade implementation,

whose size is equal to or greater than 18 Kb was imple-
mented by 18 Kb BRAMs, while whose size is less than
18 Kb was implemented by distributed RAMs using Slices. To
increase the system throughput, we used the dual-port mode to
access the memory. By Algorithm 4.1, we partitioned the set of
9816 ACL rules generated by ClassBench [60] into two: Group
1 (9600 rules) and Group 2 (216 rules). Then, each group is
decomposed into five-field functions and a Cartesian product
function. Finally, each function is realized by an LUT cascade

Fig. 17. Example of the update for the EVMDD .

for an EVMDD . To reduce the widths of an EVMDD ,
we used the shifting method [49].
By using Algorithm 4.1, we implemented the two parallel

packet classifier by the multiple LUT cascades for an EVMDD
shown in Fig. 21, which consumes 5134 Slices (6.7%),

256 18 Kb BRAMs (12.4%), and 210 DSP48E blocks (7.5%).
Since the maximum clock frequency was 511.174 MHz, we
set the system clock frequency to 500 MHz. Thus, the system
throughput is

Gb/s for minimum packet
size (40 Bytes).

B. Comparison of EVMDD With MTMDD to
Implement LUT Cascade
We realized two-parallel packet classifiers by two different

methods.
1) LUT cascades for the MTMDD .
2) LUT cascades for the EVMDD .

To find the smallest LUT cascade, we changed the value of
from one to four. Fig. 18 compares the memory sizes. It shows
that, for all , EVMDDs produced smaller LUT cascades
than MTMDDs . Also, the memory size takes its minimum
when in both methods. As for Cartesian product func-
tions, EVMDDs required smaller memory than MTMDDs

even if the translation memories are used. Fig. 19 shows
the number of adders (DSP48Es) for EVMDD . Although
EVMDD requires DSP48Es, it requires less than 7.5% of
available DSP48Es. Thus, the usage of DSP48Es is negligible.

82 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016

Fig. 18. Comparison of memory sizes [KB]. (a) Memory Size [KB] for Subrule
1 (9600 rules). (b) Memory Size [KB] for Subrule 2 (216 rules).

Fig. 19. Number of adders (DSP48Es) for EVMDD .

As shown in this part, the LUT cascade for EVMDDs effi-
ciently utilizes the resource of an FPGA.
Fig. 20 compares power consumption of the LUT cascade

for the MTMDD with that for the EVMDD . To make
the comparison fair, we tried to make the temperature the same,
and set the system clock frequency to 500 MHz. Fig. 20 shows
that the LUT cascade for the EVMDD (2) dissipates the lowest
power.

Fig. 20. Comparison of power consumption [W].

Fig. 21. Implemented two-parallel packet classifier.

C. Comparison the On-Line Update With Off-Line Update
For different number of updates , we compared the proposed

on-line update with the off-line one.We used the random pattern
as the pseudo update rule.
Fig. 22 compares the update time. As for the host PC, we

used the HP Z800 Workstation (Intel XeonProcessor X5672:
3.20 GHz, 12 MB cache) with 24 GB main memory, Operating
systemwas Ubuntu 12.04 LTS. Also, we connected the worksta-
tion to the FPGA by using the USB2.0 cable as a JTAG-UART.
We assume that the off-line update is the time from the begin-
ning of the regeneration of the HDL codes until rewriting the
FPGA, while the on-line update is the time from sending the
update data until receiving the update done signal. As shown
in Fig. 22, since the on-line update requires no resynthesis of
the HDL code for the packet classifier, its update time is much
shorter than that for the off-line one, and satisfies the required
time (15min) for the practical update time. Note that, the on-line
update method need not suspend the system.
Table III shows the amount of hardware for LUT cascades

supporting on-line update. Note that, in the architecture for the
off-line update, we only implemented LUT cascades based on

NAKAHARA et al.: LUT CASCADES BASED ON EDGE-VALUED MULTI-VALUED DECISION DIAGRAMS 83

TABLE II
COMPARISON OF PERFORMANCE PER MEMORY FOR VARIOUS SYSTEMS

Fig. 22. Comparison of the update time.

TABLE III
HARDWARE RESOURCE FOR THE LUT CASCADES SUPPORTING

ON-LINE UPDATE (10 000 RULES)

the EVMDD . As shown in Table III, the on-line update
system requires additional 440 slices. However, the overhead
is only 8.5% of the LUT cascades.

D. Comparison With Other Implementations

Table II compares the proposed implementation with
other implementations with respect to the performance per
memory: [20]

The proposed architecture implemented 9 816 rules by 576
[KB]memory, and its system throughput is 640.00 [Gb/s]. Thus,
the performance per memory is 10906.7 [Gb/s #rules/KB].
Table II shows that the performance per memory of the pro-
posed architecture is 2.21 times higher than that of StrideBV
method [7] that was the highest among the existing FPGA
realizations. This shows that we implemented a high-speed and
memory efficient system.
We measured the power consumption of our design by using

the XPower Analyzer tool available in the Xilinx PlanAhead
14.7. Table IV compares the proposed method with other
methods with respect to the power consumption per perfor-
mance: [7]

The proposed architecture implemented 9816 rules by 1.346
[W] power consumption, and its system throughput was 640.00
[Gb/s]. Thus, the power consumption per performance is 0.20
[W/(Gb/s #Rule)]. Table IV shows that the power consump-
tion per performance of the proposed architecture is 11.95 times
lower than that of StrideBV method [7] that was the lowest
among the existing FPGA realizations. This shows that we
implemented a high-speed, low-power and memory efficient
system.

IX. CONCLUSION
In this paper, we showed a method to implement the 5-tuple

packet classifier. The design method is as follows: First, the
packet classification rules are decomposed into two groups.
Second, they are decomposed into five-field functions and
a Cartesian product function. And finally, each function is
realized by an LUT cascade for an EVMDD (2). We derived an
upper bound on the memory size for the given packet classifi-
cation table. In this paper, we also proposed an on-line update
method. It can update the LUT cascade without suspending
the operations. We showed a theorem which guarantees the
possibility of update for arbitrary patterns. Although the on-line
update requires an additional hardware, its overhead is 8.5%
of the LUT cascades. Also, its update time is much shorter
than the off-line one, and the proposed update method need
not suspend the operations. We implemented the two-parallel

84 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016

TABLE IV
COMPARISON OF POWER CONSUMPTION PER PERFORMANCE

packet classifier on a Virtex 7 VC707 evaluation board. Ex-
perimental result showed that, the performance per memory
(throughput per normalized area) is 2.21 times higher than any
of existing FPGA realizations, and the power consumption
per performance is 11.95 times lower than any of existing
FPGA realizations. Thus, the proposed packet classifier is a
high-speed, low-power and memory efficient system.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for boolean function manipu-
lation,” IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986.

[2] A. Basu and G. Narlikar, “Fast incremental updates for pipelined
forwarding engines,” IEEE/ACM Trans. Netw., vol. 13, no. 3, pp.
690–703, 2005.

[3] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, “Spec-
tral transforms for large boolean functions with applications to tech-
nology mapping,” in Design Automat. Conf., 1993, pp. 54–60.

[4] Configuring IP ACLs [Online]. Available: http://eee.cisco.com/
en/US/docs/switches/datacenter/sw/4_1/nxos/security/configura-
tion/guide/sec_ipacls.pdf

[5] S. Dharmapurikar, H. Song, J. S. Turner, and J. W. Lockwood, “Fast
packet classification using bloom filters,” in Int. Symp. Archit. Netw.
Commun. Syst., 2006, pp. 61–70.

[6] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, “ParaSplit: A scalable
architecture on FPGA for terabit packet classification,” in Hot Inter-
connects, 2012, pp. 1–8.

[7] T. Ganegedara and V. K. Prasanna, “StrideBV: Single chip 400G+
packet classification,” in Proc. IEEE Int. Conf. High Performance
Switching Routing, 2012, pp. 1–6.

[8] T. Ganegedara, W. Jiang, and V. K. Prasanna, “A scalable and modular
architecture for high-performance packet classification,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 5, pp. 1135–1144, May 2014.

[9] K. Golnabi, R. K. Min, L. L. Khan, and E. Al-Shaer, “Analysis of fire-
wall policy rules using data mining techniques,” in IEEE/IFIP Network
Operat. Manage. Symp., Apr. 2006, pp. 305–315.

[10] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Hot Interconnects, 1999, pp. 34–41.

[11] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
ACM SIGCOMM, pp. 147–160, 1999.

[12] P. Gupta and N. McKeown, “Classifying packets with hierarchical in-
telligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34–41, 2000.

[13] P. Gupta and N. McKeown, “Algorithms for packet classification,”
IEEE/ACM Trans. Netw., vol. 15, no. 2, pp. 24–32, 2001.

[14] “IEEE 802.3: 400 Gbps ethernet study group 2013,” [Online]. Avail-
able: http://www.ieee802.org/3/400GSG/index.html

[15] G. S. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable high
throughput firewall in FPGA,” in Proc. IEEE Int. Symp. Field-Pro-
grammable Custom Comput. Machines, 2008, pp. 43–52.

[16] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classi-
fication on FPGAs,” in ACM/SIGDA Int. Symp. Field-Programmable
Gate Array , 2009, pp. 219–228.

[17] W. Jiang and V. K. Prasanna, “Field-split parallel architecture for high
performance multi-match packet classification using FPGAs,” in 21st
ACM Symp. Parallelism Algorithms Archit., 2009, pp. 188–196.

[18] W. Jiang and V. K. Prasanna, “A FPGA-based parallel architecture
for scalable high-speed packet classification,” in Proc. IEEE Int. Conf.
Application-Specific Syst., Archit. Processors, 2009, pp. 24–31.

[19] W. Jiang and V. K. Prasanna, “Scalable packet classification: Cutting
or merging?,” in Proc. Int. Conf. Comput. Commun. Netw., 2009, pp.
1–6.

[20] W. Jiang and V. K. Prasanna, “Scalable packet classification on
FPGA,” IEEE Trans. Very Large Scale (VLSI) Syst., vol. 20, no. 9, pp.
1668–1680, Sep. 2012.

[21] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Multi-valued decision diagrams: Theory and applications,” Multiple-
Valued Logic, vol. 4, no. 1–2, pp. 9–62, 1998.

[22] Y. Kanizo, D. Hay, and I. Keslassy, “Optimal fast hashing,” in IEEE
INFOCOM, 2009, pp. 2500–2508.

[23] A. Kennedy, X. Wang, Z. Liu, and B. Liu, “Enegy efficient packet clas-
sification hardware accelerator,” in Proc. Int. Symp. Parallel Distrib.
Process., 2008, pp. 1–8.

[24] A. Kennedy, X. Wang, Z. Liu, and B. Liu, “Low power architecture for
high speed packet classification,” in ANCS, 2008, pp. 131–140.

[25] Y.-T. Lai and S. Sastry, “Edge-valued binary decision diagrams for
multi-level hierarchical verification,” in Proc. Design Automat. Conf.,
1992, pp. 608–613.

[26] Y.-T. Lai, M. Pedram, and S. B. Vrudhula, “EVBDD-based algorithms
for linear integer programming, spectral transformation and functional
decomposition,” IEEE Trans. Comput., vol. 13, no. 8, pp. 959–975,
Aug. 1994.

[27] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algo-
rithms for advanced packet classification with ternary CAMs,” in SIG-
COMM, 2005, pp. 193–204.

[28] D. Liu, B. Hua, X. Hu, and X. Tang, “High-performance packet classifi-
cation algorithm for many-core and multithreaded network processor,”
in Proc. IEEE Int. Conf. Compilers, Archit., Synthesis Embedded Syst.,
2006, pp. 334–344.

[29] L. Luo, G. Xie, Y. Xie, L. Mathy, and K. Salamatian, “A hybrid hard-
ware architecture for high-speed IP lookups and fast route updates,”
IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 957–969, 2014.

[30] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincentelli,
“Espresso-signature: A new exact minimizer for logic functions,” IEEE
Trans. Very Large Scale (VLSI) Syst., vol. 1, no. 4, pp. 432–440, 1993.

[31] R. McGeer and P. Yalagandula, “Minimizing classifiers for TCAM im-
plementation,” in INFOCOM, 2009, pp. 1314–1322.

[32] C. R. Meiners, A. Liu, and E. Torng, “TCAM razor: A systematic ap-
proach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490–500, Apr. 2009.

[33] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design: OBDD Foundations and Applications. New York: Springer,
1998.

[34] S. Nagayama and T. Sasao, “Representations of elementary functions
using edge-valued MDDs,” in Proc. IEEE Int. Symp. Multiple-Valued
Logic, 2007, pp. 1–5.

[35] S. Nagayama, T. Sasao, and J. T. Butler, “Design method for numer-
ical function generators using recursive segmentation and EVBDDs,”
IEICE Trans. Fundamentals, vol. E90-A, no. 12, pp. 2752–2761, 2007.

[36] S. Nagayama and T. Sasao, “Complexities of graph-based representa-
tions for elementary functions,” IEEE Trans. Comput., vol. 58, no. 1,
pp. 106–119, Jan. 2009.

[37] H. Nakahara, T. Sasao, and M. Matsuura, “Packet classifier using a
parallel branching program machine,” in Euromicro Conf. Digital Syst.
Design, 2010, pp. 745–752.

NAKAHARA et al.: LUT CASCADES BASED ON EDGE-VALUED MULTI-VALUED DECISION DIAGRAMS 85

[38] H. Nakahara, T. Sasao, and M. Matsuura, “A packet classifier using
LUT cascades based on EVMDDs(k),” in Proc. Int. Conf. Field-Pro-
grammable Logic Appl., 2013, pp. 1–6.

[39] H. Nakahara, T. Sasao, and M. Matsuura, “A packet classifier based
on prefetching EVMDD (k) machines,” IEICE Trans. Info. Syst., vol.
E97-D, no. 9, pp. 2243–2252, 2014.

[40] H. Nakahara, T. Sasao, and M. Matsuura, “An update method for a
CAM emulator using an LUT cascade based on an EVMDD (k),” in
Proc. IEEE Int. Symp. Multiple-Valued Logic, 2014, pp. 1–6.

[41] A. Nikitakis and I. Papaefstathiou, “A memory-efficient FPGA-based
classification engine,” in Proc. IEEE Int. Symp. Field-Programmable
Custom Comput. Mach., 2008, pp. 53–62.

[42] “Oinkcodes: Automatically updating the SNORT rule set,” [Online].
Available: https://www.snort.org/oinkcodes/

[43] OpenFlow Foundation [Online]. Available: http://www.open-
flowswitch.org/

[44] M. H. Overmars and A. F. van der Stappen, “Range searching and point
location among fat objects,” J. Algorithms, vol. 21, no. 3, pp. 629–656,
1996.

[45] I. Papaefstathiou and V. Papaefstathiou, “Memory efficient 5D packet
classification at 40 Gbps,” in INFOCOM, 2007, pp. 1370–1378.

[46] Y. X. Qi et al., “Towards high-performance flow-level packet pro-
cessing on multi-core network processors,” in ACM/IEEE Symp. Ar-
chit. Netw. Commun. Syst., 2007, pp. 17–26.

[47] Quine–McCluskey algorithm [Online]. Available: http://en.wikipedia.
org/wiki/Quine-McCluskey_algorithm

[48] V. C. Ravikumar and R. N. Mahapatra, “TCAM architecture for IP
lookup using prefix properties,” IEEE Micro, vol. 24, no. 2, pp. 60–69,
2004.

[49] R. Rudell, “Dynamic variable ordering for ordered binary decision di-
agrams,” in IEEE/ACM Int. Conf. Comput. Aided Design, 1993, pp.
42–47.

[50] A. Sanny, T. Ganegedara, and V. K. Prasanna, “A comparison of
ruleset feature independent packet classification engines on FPGA,” in
Proc. IEEE Int. Symp. Parallel Distributed Process. Workshops Ph.D.
Forum, 2013, pp. 124–133.

[51] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of mul-
tiple-output function for reconfigurable hardware,” in Proc. Int. Work-
shop Logic Synthesis, 2001, pp. 225–230.

[52] T. Sasao and J. T. Butler, “Implementation of multiple-valued CAM
functions by LUT cascades,” in Proc. IEEE Int. Symp. Multiple-Valued
Logic, 2006, pp. 1–11.

[53] T. Sasao, “On the complexity of classification functions,” in Proc.
IEEE Int. Symp. Multiple-Valued Logic, 2008, pp. 57–63.

[54] T. Sasao, Memory-Based Logic Synthesis. NewYork: Springer, 2011.
[55] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classi-

fication using multidimensional cutting,” in SIGCOMM, 2003, pp.
213–224.

[56] H. Song and J. W. Lockwood, “Efficient packet classification for
network intrusion detection using FPGA,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, 2005, pp. 238–245.

[57] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” Compt. Commun. Rev., vol. 28, pp.
191–202, 1998.

[58] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and scal-
able layer four switching,” in SIGCOMM, 1998, pp. 191–202.

[59] D. E. Taylor, “Survey and taxonomy of packet classification tech-
niques,” ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.

[60] D. E. Taylor and J. S. Turner, “ClassBench: A packet classification
benchmark,” in INFOCOM, 2005, vol. 3, pp. 2068–2079.

[61] R. Tucker, “Optical packet-switched WDM networks: A cost and en-
ergy perspective,” in Optical Fiber Commun./Nat. Fiber Optic Eng.
Conf., 2008, pp. 1–25.

[62] B. Vamanan, G. Voskuilen, and T. N. Viaykumar, “Efficuts: Optimizing
packet classification for memory and throughput,” in SIGCOMM,
2010, pp. 207–218.

[63] G. Varghese, Network Algorithmics: An Interdiscriplinary Approach to
Designing Fast Networked Devices. Burlington, MA: Morgan Kauf-
mann, 2005.

[64] R. Wei, Y. Xu, and H. J. Chao, “Block permutations in boolean space
to minimize TCAM for packet classification,” in INFOCOM, 2012, pp.
2561–2565.

[65] T. Y. C. Woo, “A modular approach to packet classification: Algo-
rithms and results,” in INFOCOM, 2000, vol. 3, pp. 1213–1222.

[66] Xilinx Inc. [Online]. Available: http://www.xilinx.com/
[67] Xilinx Inc., “7 series FPGAs memory resources,” UG473 2014.
[68] Y. Xu, Z. Liu, Z. Zhang, and H. J. Chao, “High-throughput and

memory-efficient multimatch packet classification based on distributed
and pipelined hash tables,” IEEE/ACM Trans. Netw., vol. 22, no. 3,
pp. 982–995, Jun. 2014.

[69] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification algo-
rithms: From theory to practice,” in INFOCOM, 2009, pp. 648–656.

[70] Y. R. Qu and V. K. Prasanna, “Compact hash tables for high-
performance traffic classification on multi-core processors,” in Proc.
Int. Symp. Comput. Archit. High Performance Comput., 2014, pp.
17–24.

[71] B. Xu, D. Jiang, and J. Li, “HSM: A fast packet classification algo-
rithm,” in Proc. Int. Conf. Adv. Inf. Netw. Appl., 2005, vol. 1, pp.
987–992.

[72] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-efficient
TCAMs for forwarding engines,” in INFOCOM, 2003, vol. 1, pp.
42–52.

Hiroki Nakahara (M’05) received the B.E., M.E.,
and Ph.D. degrees in computer science from Kyushu
Institute of Technology, Fukuoka, Japan, in 2003,
2005, and 2007, respectively.
He has held faculty/research positions at

Kyushu Institute of Technology, Iizuka, Japan and
Kagoshima University, Kagoshima, Japan. Now, he
is a Senior Assistant Professor at Ehime University,
Ehime, Japan. His research interests include logic
synthesis, reconfigurable architecture, digital signal
processing and embedded systems.

Dr. Nakahara was the Workshop Chairman for the 23rd International Work-
shop on Post-Binary ULSI Systems (ULSIWS) held in Bremen, Germany in
2014. He received the 8th IEEE/ACM MEMOCODE Design Contest 1st Place
Award in 2010, the SASIMI Outstanding Paper Award in 2010, IPSJ Yamashita
SIG Research Award in 2011, the 11st FIT Funai Best Paper Award in 2012, the
7th IEEE MCSoC-13 Best Paper Award in 2013, and the ISMVL2013 Kenneth
C. Smith Early Career Award in 2014, respectively. He is a member of the ACM
and the IEICE.

Tsutomu Sasao (S’72–M’77–F’94–LF’16) received
the B.E., M.E., and Ph.D. degrees in electronics
engineering from Osaka University, Osaka Japan, in
1972, 1974, and 1977, respectively.

He has held faculty/research positions at Osaka
University, Japan, IBM T. J. Watson Research
Center, Yorktown Heights, NY, USA, and the
Naval Postgraduate School, Monterey, CA, USA.
He has served as the Director of the Center for
Microelectronic Systems at the Kyushu Institute of
Technology, Iizuka, Japan. Now, he is a Professor

at the Department of Computer Science, Meiji University, Kawasaki, Japan.
His research areas include logic design and switching theory, representations
of logic functions, and multiple-valued logic. He has published more than 10
books on logic design including, Logic Synthesis and Optimization, Repre-
sentation of Discrete Functions, Switching Theory for Logic Synthesis, Logic
Synthesis and Verification, and Memory-Based Logic Synthesis, in 1993, 1996,
1999, 2001, and 2011, respectively.
Dr. Sasao has served Program Chairman for the IEEE International Sympo-

sium on Multiple-Valued Logic (ISMVL) many times. Also, he was the Sym-
posium Chairman of the 28th ISMVL held in Fukuoka, Japan in 1998. He re-
ceived the NIWA Memorial Award in 1979, Takeda Techno-Entrepreneurship
Award in 2001, and Distinctive Contribution Awards from IEEE Computer So-
ciety MVL-TC for papers presented at ISMVLs in 1986, 1996, 2003, and 2004.
He has served an Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS.

86 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016

Hisashi Iwamoto received the B.S. and M.S. de-
grees in physics from Kwansei Gakuin University,
Hyogo, Japan in 1987 and 1989, respectively, and
the Ph.D. degree in information and communication
engineering from Osaka City University, Osaka,
Japan, in 2013.

In 1989, he joined the LSI Laboratory, Mitsubishi
Electric Corporation, Hyogo, Japan, where he has
been engaged in the design, development and stan-
dardization of the high-speed synchronous DRAM.
He transferred to Renesas Technology Corp. and

REVSONIC Corp. in 2003 and 2012, respectively. He is currently interested in
system solution for high performance network.
Dr. Iwamoto is a member of the IEICE.

Munehiro Matsuura studied at the Kyushu Institute
of Technology from 1983 to 1989. He received the
B.E. degree in natural sciences from the University
of the Air, Chiba, Japan, in 2003.
He has been working as a Technical Assistant

at the Kyushu Institute of Technology, Fukuoka,
Japan, since 1991. He has implemented several logic
design algorithms under the direction of Prof. T.
Sasao. His interests include decision diagrams and
exclusive-OR based circuit design.

