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Abstract

We give an efficient algorithm for partitioning the domain of a numeric function f into
segments. The function f is realized as a polynomial in each segment, and a lookup table
stores the coefficients of the polynomial. Such an algorithm is an essential part of the
design of lookup table methods [5,8,9,12,14,15] for realizing numeric functions, such as
sin(πx), ln(x), and

√
−ln(x). Our algorithm requires many fewer steps than a previous

algorithm given in [6] and makes tractable the design of numeric function generators based
on table lookup for high-accuracy applications. We show that an estimate of segment
width based on local derivatives greatly reduces the search needed to determine the exact
segment width. We apply the new algorithm to a suite of 15 numeric functions and
show that the estimates are sufficiently accurate to produce a minimum or near-minimum
number of computational steps.
Keywords: piecewise linear approximation; numeric function generators; segmentation
algorithm

1. Introduction

The existence of large logic circuits has led to increased interest in an old problem -
the realization of numeric functions. More than 150 years ago, Babbage designed the
difference engine to automatically compute logarithmic and trigonometric functions [1].
This was intended to replace hand computation which was prone to error.

The availability of circuits to compute quickly functions like sin(x) and log(x) offers
real-time execution of algorithms that can be used in applications such as the rendering
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Figure 1. Architecture of a numerical function generator using a piecewise polynomial ap-
proximation.

of graphics or digital signal processing.
In this paper we give a new, efficient algorithm for partitioning the domain of a numeric

function f into segments. Within each segment, the function f is realized as a polyno-
mial with a lookup table storing the coefficients of the polynomial. We use an estimate
of segment width based on local derivatives to greatly reduce the search needed to deter-
mine the exact optimal segment width. We then apply our new algorithm to a suite of
15 numeric functions, showing that the estimates are sufficiently accurate to produce a
minimum or near-minimum number of steps in the computation.

We note that lookup tables have been used previously to implement a truncated series
expression approximation of the given function. Hassler and Takagi [7] represent the
function by a converging series and replace the single large memory by two or more
smaller lookup tables. Stine and Schulte [16,17] use the Taylor series expansion of a
differentiable function. The first two terms of the expansion are realized by using small
lookup tables. The reciprocal, square root, inverse square root, and certain elementary
functions were realized by Ercegovac, Lang, Muller, and Tisserand [5] using a Taylor
expansion and tables. Lookup tables have been used in the implementation of logarithm
and antilogarithm computations by Paul, Jayakumar, and Khatri [14].

Lee, Luk, Villasenor, and Cheung [8,9] realize trigonometric and logarithmic functions
by table lookup using a non-uniform segmentation method. In their algorithm, narrow
segments are used where the change in the function is large, and wide segments are used
where the change in the function is small.

Sasao, Butler, and Riedel [15] use the Douglas-Peucker [4] algorithm to partition a
given function into segments that are realized by a linear approximation. They show
that a circuit producing a non-uniform segmentation has a tractable realization for com-
mon numeric functions. Unfortunately, the Douglas-Peucker algorithm does not produce
optimum segmentations [6].

Fig. 1 shows the architecture of the numeric function generator (NFG) that realizes a
given function as a piecewise polynomial approximation [11]. It consists of three blocks.
The Segment Number Generator uses the value of x to generate a segment number that
is applied to the address input of the Coefficients Memory. The Coefficients Memory pro-
duces the coefficients in the polynomial expression for the given function. The piecewise
polynomial approximation f(x) ≈ cmxm + · · · + c1x + c0 is computed by the Polynomial
Circuit in Fig. 1 using the coefficients produced by the Coefficients Memory.
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Each segment in the function domain corresponds to a word in the memory which stores
the polynomial coefficients for the function approximation in that segment. For a given
approximation error, we seek a segmentation of the domain that has the fewest segments
possible. This minimizes the memory required for the lookup table.

The algorithm given in this paper efficiently divides the domain of f into segments
so that the the error in polynomial approximation in each segment is no greater than
a specified error. In [6], we presented an algorithm that produced a segmentation with
the fewest segments. However, this algorithm can be computationally intensive, with a
computation time sometimes measured in days or weeks. Although applied only once
in the synthesis of a numeric function generator, the previous algorithm can make high
accuracy applications impractical. Our main result, the new algorithm presented here, is
orders of magnitude faster and still yields the fewest steps.

While the proposed segmentation algorithm applies to any order approximating polyno-
mial, our experimental results focus on linear and quadratic approximations. Nagayama,
Sasao, and Butler [12] show that presently available field programmable gate arrays (FP-
GAs) have insufficient arithmetic elements, such as multipliers, to efficiently implement
third or higher order polynomials. As FPGA technology improves, this may change.

2. Background

Because the variable x and the function’s value f(x) are represented as binary num-
bers with a fixed number of bits, a numeric function generator’s output is inherently an
approximation of the exact function value. While we may view the value of x as exact, it
may not be possible to view f(x) as exact. For example, consider the function f(x) =

√
x.

If x = 2, we can realize 2 exactly. However, the irrationality of
√

2 means that its exact
value cannot be realized in finitely many bits.

3. Estimating the Segment Width

An essential part of the new segmentation algorithm is deriving an estimate of the
segment width. An accurate estimate is essential, because subsequently a search must
be performed for the exact segment width. Later, we analyze the estimate’s accuracy
and show that, in many cases, it is as accurate as it can possibly be. First, we focus on
deriving the estimate.

Let the segment over which we seek an nth-order polynomial approximation span [e, s].
The maximum approximation error ε of a Chebyshev approximation [10] is

ε =
2(e− s)n+1

4n+1(n + 1)!
max
s≤x≤e

|f (n+1)(x)|. (1)

Solving (1) for the segment width, e− s yields

e− s = 4 n+1

√
(n + 1)!ε

2 maxs≤x≤e |f (n+1)(x)| . (2)
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For the two special cases of linear and quadratic approximating polynomials, we have

e− s|linear = 4

√
ε

maxs≤x≤e |f ′′(x)| = 4

√
ε

|f ′′e−s(x∗)|
(3)

and

e− s|quadratic = 4 3

√
3ε

maxs≤x≤e |f ′′′(x)| = 4 3

√
3ε

|f ′′′e−s(x∗)|
, (4)

where e−s|linear and e−s|quadratic are the segment widths for linear and quadratic approxi-
mations, respectively. We have chosen to replace maxs≤x≤e |f (n+1)(x)| and maxs≤x≤e |f ′′′(x)|
by the abbreviations |f ′′e−s(x

∗)| and |f ′′′e−s(x
∗)|, respectively, recognizing that if the appro-

priate derivative is continuous on a closed interval, then the maxima above will each be
attained at some point x∗ within that interval.

4. The Segmentation Algorithm

4.1. Introduction
The algorithm is shown in Table 1. It applies to polynomial approximations of any

order. We assume that the function domain is represented by a vector of N discrete points.
For example, if the interval is [0, 1) and the accuracy is 8 bits, then we may choose N to
be 256, and the points, in binary to be 0.0000 00002, 0.0000 00012, 0.0000 00102, ... , and
0.1111 11112. That is, the domain in this example is the vector [0.000, 0.0039, 0.0078, . . . ,
0.9961]. This assumption is consistent with the algorithm’s implementation in MATLAB
[3]. In MATLAB, we associate this vector with variable x. f(x), in MATLAB, is then a
vector of elements corresponding to the function evaluated at each of the elements in x.
Therefore, f(x) also has N elements.

Definition 1. For a given function, a step in a segmentation algorithm is a computation
of the maximum absolute error between the function and its approximating polynomial on
the proposed segment.

Because so much computation time occurs in the calculation of the maximum absolute
error, a step, as defined in Definition 1, is an appropriate measure of the execution time.
We compare the number of steps needed in the proposed algorithm with the number of
steps needed in a brute force method.

In the brute force segmentation, the beginning point of the first segment is chosen
to be the leftmost point in the interval of approximation; i.e. xlow. Then, the second
point and successive points are chosen as prospective end points, and, for each choice,
the error between the function and its approximating polynomial is computed. When
this error exceeds the approximation error ε, the exact segment width has been found;
it corresponds to the end point just before the end point that resulted in an error that
exceeded ε. In the brute force method, all but the leftmost point in the interval is a
prospective end point at which the error between the function and its approximating
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Table 1
Algorithm to segment a given function based on estimates of the segment length

Algorithm 1: Segment the domain [xlow, xhigh] of a given function f(x), where
f(x) is approximated in each segment by a polynomial cnx

n + · · ·+ c1x + c0.

Input: Function f(x), domain [xlow, xhigh], approximation error ε, and order
of the approximating polynomial, n.
Output: Optimum segmentation, in which the i-th segment is specified as
[si, ei], where si and ei are the beginning and end point, respectively.

1. i ← 1. s1 ← xlow.

ESTIMATE
2. Estimate the current segment width determining end point eest and appro-
ximation error εest. If eest > xhigh, then eest ← xhigh. If eest = xhigh and εest ≤ ε,
then STOP with ei ← eest.

LOCATE
4. If εest < ε, then find upper and lower bounds H and L on the segment end
point with the property

a) εL ≤ ε < εH , where εH and εL are the approximation errors for the seg-
ments [si, H] and [si, L], respectively. Go to Step 5.
b) εH ≤ ε and H = xhigh. STOP with ei ← eest.

If εest ≥ ε, then find upper and lower bounds H and L on the segment end
point.

PINPOINT
5. Using H and L, produce Hpp and Lpp with the property εLpp ≤ ε < εHpp,
where εHpp and εLpp are the approximation errors for the segments [si, Hpp]
and [si, Lpp], respectively that are adjacent points above and below the opti-
mum segment width. Choose the segment end point ei to be Lpp.

6. si+1 ← point above ei. i ← i + 1. Go to Step 2.

polynomial is computed. Therefore, approximately N steps are needed, where N is the
number of points to represent the function in the whole interval of approximation.

The algorithm proceeds from the smallest value in the domain xlow to the largest xhigh.
It establishes the largest segment, starting at xlow, such that the maximum approximation
error is ε. It repeats this process starting at e1, the end point of the first segment, until
it reaches xhigh. Often, the last segment is truncated because xhigh is reached before a
segment end occurs (where the approximation error is ε). As a result, it is not unusual
for the last segment to have a maximum approximation error strictly less than ε.

Fig. 2 shows an example segmentation. The vertical axis plots the function value f(x),
while the horizontal axis plots x. xlow is the left-hand end of the interval over which f(x)
is realized, and xhigh is the right-hand end of the interval.

4.2. Three Parts to the Algorithm
There are three parts to the algorithm.
In the first part, ESTIMATE, the segment width is estimated. The process of estimation
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Figure 2. Example segmentation.

is discussed in the next section. Using the estimated segment width, an end point is found
and the approximation error for the proposed segment is computed. This counts as one
step.

In the second part, LOCATE, two points in the domain are located such that one point
yields a segment whose approximation error is just below (or equal to) ε, and the other
point yields a segment whose approximation error is just above.

This is accomplished as follows: from the estimated segment width computed in ES-
TIMATE, it is known whether the corresponding point is above the optimum segment
width or below (or equal). If above, LOCATE proceeds towards lower values of x search-
ing for two points that straddle the optimum segment width. If below, LOCATE proceeds
towards higher values. Assume the point is below. The algorithm proceeds toward the
optimum segment width by one point initially. It computes the approximation error of
the new segment, adding 1 to the number of steps. If the approximation error exceeds ε,
ESTIMATE stops. It has found two points on each side of the optimum segment width.
Indeed, they are adjacent and the algorithm stops; there is no need to proceed to the next
step, PINPOINT.

However, if the approximation error is still less than (or equal to) ε, the algorithm
advances two points. Again, it computes the approximation error, adding 1 to the number
of steps, and repeats the process above. The is repeated with the algorithm advancing four,
eight, etc. points, until two points are found that are on each side of the optimum segment
width. If a total of m steps are taken, the algorithm has advanced 1+2+4+ . . .+2m−1 =
2m − 1 points. At the end of ESTIMATE, the last two points considered, H and L,
correspond to end points of segments that straddle the exact end point of the segment
Specifically, H is the end point of a segment in which the error achieved is either greater
than ε, and L is the end point of a segment in which the error achieved is less than or
equal to ε.

In the third part, PINPOINT, a bisection method is applied to H and L. That is, the
midpoint A = H+L

2
is computed. Then, a new segment whose end point is A is created,

and its approximation error is computed. If this exceeds ε, then H is replaced by A and
the process is repeated. If this is less than or equal to ε, then L is replaced by A and the
process is repeated. Each time a new approximation error is computed, the number of
steps is increased by 1. The process stops when the H and L are adjacent. The segment
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end point is chosen to be L, since the maximum error in the segment ending in L is less
than or equal to ε, while the maximum error in the segment ending in H exceeds ε.

4.3. Number of Steps
Because of the way Algorithm 1 is constructed, the difference between H and L is 2m.

We have the following lemma.

Lemma 1. Let the number of points between the high and low point H − L be a power
of 2, 2m. For all but the last segment, the average and the worst case number of steps
NPINPOINT(m) required by PINPOINT is m. No steps are required by PINPOINT to
compute the last segment.

Proof The proof is by induction on m. For m = 0, H and L are adjacent, and no further
steps are needed. Assume the hypothesis is true for all m < m′, and consider H−L = 2m′

.
There is one step required to compute the approximation error for a segment that ends
at P = H+L

2
. Either H or L is replaced by P , and the problem is one of determining the

number of steps needed to compute the segment end point between (the new) H and L.
Since H − L = 2m′−1, from the assumption, m′ − 1 steps are needed, for a total of m′

steps.
No steps are required by PINPOINT to compute the last segment because H is xhigh

and the error associated with a segment end point of H is equal to or less than ε.

Similarly, the number of steps required by LOCATE can be calculated, as shown in Lemma
2. We begin with a definition.

Definition 2. A truncated segment is a segment whose estimated end point is greater
than xhigh.

For each segment, the algorithm in Table 1 provides an estimated segment end point that
is used to start the search for the exact end point. A truncated segment has the property
that its estimated end point is greater than xhigh. Often, a truncated segment occurs as
the last (rightmost) segment in a segmentation.

Interestingly, a truncated segment is not necessarily the last segment. For example,
suppose that in a linear approximation of the function, the function is nearly linear
throughout most of the interval, except near the end. In this case, the segment’s proposed
end point may reach the end point of the interval of approximation (especially, if the
segment is near the interval end point). Thus, it may be a truncated segment. However,
when PINPOINT is applied, the exact end point may be found to be an internal point.
Since the next segment might be in a highly non-linear part of the domain, the segment is
necessarily narrow, and its end point may not reach the interval’s end point. Therefore,
subsequently constructed segments may be non-truncated. In the course of generating
the experimental data, our proposed algorithm encountered this phenomena.

Lemma 2. The number of steps required to construct a non-truncated segment in LO-
CATE, NLOCATE(m), is NPINPOINT(m) + 2.
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Proof The proof is by induction on m. For m = 0, H and L are adjacent, and PINPOINT
requires no steps. The approximation error associated with segments whose end points
are H and L require a total of two steps. Therefore, NPINPOINT(0) = 0 and NLOCATE(0) =
2. Assume the hypothesis is true for all m < m′, and consider m′. It follows that
NLOCATE(m′) = NLOCATE(m′ − 1) + 1. The hypothesis follows.

For the last segment, LOCATE requires some number of steps before it is determined that
H = xhigh. At this point, if the approximation error with H as the segment end point is
equal to or less than ε, then it is established that, indeed, this is the last segment. No
steps are needed by PINPOINT.

In the best case, ESTIMATE produces a segment end point that is no more than one
step away from the optimum segment end point. This requires one step. To verify this
and thus terminate the segment construction, another step is required, for a total of two
steps per segment. From the discussion above, a truncated segment may, in the best case,
require only one step. Therefore, we have

Lemma 3. At least 2s− 1 steps are needed to segment a domain, where s is the number
of segments in the segmentation.

Lemma 3 assumes that the estimates of segment length are as accurate as possible.
As N , the number of points in the domain, becomes large, then the percentage of steps
needed compared to the brute force method approaches 0. The program shows a clear
tendency to lower percentage of steps as N increases.

5. Artifacts Associated With the Use of Different Accuracies

5.1. A Conundrum
Intuition suggests that using many points (e.g. 10,000,000) to represent an interval of

approximation [xlow, xhigh] yields a more accurate segmentation than when fewer points
are used (e.g. 256). Thus, one expects the segments to be narrower (or the same) when
fewer points are used. On the contrary, if the segments are wider, the approximation error
will be greater than ε. Therefore, one expects more segments (or the same) are needed
when there are fewer points to represent the interval of approximation.

However, this is not the case. Table 2 shows the number of segments needed to realize
three functions,

√
−ln(x), −(x log2 x + (1 − x) log2(1 − x)), and sin(ex), using 8-bits

of precision and a linear approximation2. There are two cases, N = 256 and N =
10, 000, 000. For all three functions, the number of segments for N = 10, 000, 000 is larger
than for N = 256.
5.2. Resolution

In the algorithm shown in Table 1, the beginning point of a segment is the next point
after the end point of the previous segment (not the same point at which the last segment
ends). This recognizes that each point belongs to exactly one segment. Thus, there is
”space” between segments which need not be realized by a polynomial. This is benign;
there are no input combinations that correspond to values in this space. For example, in
the case of sin(ex), there are 27 segments, and thus, 26 spaces between segments. Since

2
√
−ln(x), −(x log2 x +(1−x) log2(1−x)), and sin(ex) were considered in [8], [6], and [11], respectively.
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Table 2
Three functions which require fewer segments when N = 256 than when N = 10, 000, 000
for a linear piecewise approximation.

Function Inter- No. of Segs.
f(x) val x N = 256 N = 107

√
−ln(x) [ 1

256
, 1

4
) 12 14

−(x log2 x+ (0, 1) 19 20
(1−x) log2(1−x))

sin(ex) [0, 2] 27 28

only 256 points represent the segment, more than 26/256 of the interval is not realized
in the approximation. This effectively shortens the interval by about 10%. In the case
of N = 10, 000, 000, the space between segments is a much smaller fraction of the total
interval width. This effect dominates and is the reason that fewer points yields fewer
segments in Table 1.

6. Experimental Results

6.1. Benefits of Estimates
To analyze the benefit of estimates in the proposed algorithm, we configured a MATLAB

program to apply only LOCATE and PINPOINT in constructing each segment. That
is, estimates were not used in specifying a prospective end point of the next segment.
Instead, the initial end point was chosen to be just beyond the beginning point of the
newly constructed segment. In this case, LOCATE and PINPOINT must search over the
full segment. Table 3 shows how this compares to the brute force method when applied to
a suite of 15 functions for ε = 2−17. Each entry represents the ratio of the number of steps
needed to compute the segmentation using the proposed algorithm to the number of steps
needed by the brute force method. This is expressed as a percentage. The values, shown
in the column labeled # of Estimates = 0, range from 0.7244% for 1

1+e−x to 10.1860%
for sin(ex). This shows that LOCATE and PINPOINT realize a significant reduction over
the brute force method. For 13 of the 15 functions, the ratios are less than 5.0%, which
is a significant reduction in the number of steps.

However, estimates provide still further improvement. Table 3 shows the benefits of 1, 2,
and 3 estimates. The column labeled # of Estimates = 1 shows that, when one estimate
is used, the number of steps is reduced by as much as one-fifth that needed in the case of
one estimate. For example, in the case of the entropy function −(x log2 x+(1−x) log2(1−x))
no estimate yields a percentage of 7.7408%, while one estimate achieves a percentage of
1.3785%, which is 1/5.6 of the number of steps.

In the case of one estimate, the beginning point of the segment is used to determine
an estimate for the segment width. For example, when linear approximation is used, the
second derivative of the new segment beginning point is computed and substituted into
(3) to derive an estimate for the segment width. Then, a proposed end point is obtained
by adding the estimated segment width to the beginning point. The approximation error
is computed and used to determine in which direction from the estimated end point
LOCATE should search.

The next column labeled # of Estimates = 2 shows the benefit of two estimates. In
this case, the estimate of the segment width computed with the first step in the segment
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Table 3
Percentage of steps (compared to brute force) required to segment functions approximated
by linear polynomials using different estimates of segment width for N = 216 and ε = 2−17.

Function Inter- % of Steps Min. # of

f(x) val x vs. Brute Force % Segs

0 1 2 3

2x [0, 1) 2.28 0.46 *0.23 *0.23 0.23 75

1/x [1, 2) 2.34 0.75 *0.23 *0.23 0.23 75
√

x [1, 2) 1.19 0.46 *0.11 *0.11 0.11 35

1/
√

x [1, 2) 1.62 0.62 *0.15 *0.15 0.15 50

log2(x) [1, 2) 2.35 0.67 *0.23 *0.23 0.23 76

ln x [1, 2) 2.00 0.60 *0.19 *0.19 0.19 63

sin(πx) [0, 1
2 ) 3.16 0.71 0.38 0.35 0.33 109

cos(πx) [0, 1
2 ) 3.15 0.70 0.35 *0.33 0.33 109

tan(πx) [0, 1
4 ) 2.25 0.83 0.27 0.25 0.22 73√

−ln(x) [ 1
256 , 1

4 ] 4.87 1.36 *0.63 *0.63 0.63 207

tan2(πx) + 1 [0, 1
4 ) 4.25 0.82 *0.46 *0.46 0.46 152

−(x log2 x+ [ 1
256 , 255

256 ] 7.74 1.38 *0.96 *0.96 0.96 314

(1−x) log2(1−x))
1

1+e−x [0, 1) 0.72 0.37 0.14 0.10 0.06 20
1√
2π

e
−x2

2 [0,
√

2] 2.32 0.84 0.38 0.30 0.23 53

sin(ex) [0, 2) 10.19 2.05 1.43 1.40 1.35 449

* All segments require the fewest steps.

(discussed in the previous paragraph) is averaged with the estimate of the segment width
computed with the segment end point, as estimated from the first step. This approach
is based on the assumption that the average of two estimates, one at the beginning
and one near the end of the proposed segment provides a better estimate of the actual
segment width than one estimate alone. As can be seen in Table 3, two estimates provides
substantial reduction in the number of steps. Indeed, for 9 of the 15 functions, the
minimum number of steps is achieved (where the minimum was not achieved for any of
the 15 function in the case of one estimate). An asterisk indicates that this percentage
is the best that can be obtained, as shown in Lemma 3. The reduction in the number of
steps achieved by using two estimates instead of one ranges from 1/1.4 to 1/4.4.

The next column labeled # of Estimates = 3 shows the benefit of three estimates.
In this case, the final estimate is the average of three estimates, one from the beginning,
one from the end, and one from the middle of the segment whose width is estimated from
the first point in the segment. Now, 10 of the 15 functions achieve the minimum number
of steps.

The column labeled Min % shows a percentage that represents the minimum number
of steps required if the estimates were perfect, as specified by Lemma 3. Comparing this
with the column labeled # of Estimates = 3 shows that, even for the five functions that
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did not achieve a minimum number of steps, the number of steps is close to minimum.
Four of the five functions are within 30%, while one 1

1+e−x is within 72%.
Table 4 shows the detail of a segmentation of the domain of two functions, sin(πx)

and cos(πx) using 8 bit precision with a given approximation error of 2−9. Specifically,
this shows the number of steps in each of the seven segments required to compute the
segment width. It also shows the number of steps per segment if the brute force method
was used. As discussed earlier, this tracks the segment width. Note that the number of
steps per segment in the sin(πx) function is monotone decreasing. This is because the
segment width decreases with increasing x, as sin(πx) becomes increasingly nonlinear.
In a similar way, the number of steps in the cos(πx) function is monotone increasing. It
is interesting that the number of steps to compute the segmentation for sin(πx) is much
greater than for cos(πx). For ε = 2−9, sin(πx) requires 20.4% of the total number of steps
required by the brute force method, while cos(πx), requires only 6.5%. Indeed, most of
the additional steps in sin(πx) over cos(πx) occur in the first segment.

Table 4
Number of steps needed to segment sin(πx) and cos(πx) using linear approximation.*

% Steps
Function of Brute Segment Number

Force 1 2 3 4 5 6 7
sin(πx) 20.4% >16,440 <2,184 <893 <481 <277 <149 >1

# Steps/Seg. 25,133 15,963 13,617 12,451 11,790 11,424 9,622
cos(πx) 6.5% >26 >120 >238 >417 >754 >1,677 >3,265

# Steps/Seg. 11,280 11,463 11,865 12,582 13,858 16,526 22,426

*For 8 bit precision, ε = 2−9 and N = 100, 000. The function is approximated by a piecewise linear
polynomial using a segment width estimate from the beginning of the segment.

The > and < show the direction the algorithm had to go to achieve the optimum seg-
mentation. For example, the entry > 16, 440 in the column Segment Number = 1 and
the row sin(πx) means the estimate was short for the leftmost segment in the segmen-
tation of sin(πx), and it was necessary to increase x to achieve an optimum segment. It
used 16,440 steps in the algorithm.

Both sin(πx) and cos(πx) require the same number of segments, as would be expected.
However, there is a significant difference in the number of steps. This is because the
algorithm begins at lower values of x, where the second derivative of sin(πx) is 0 and
the second derivative of cos(πx) is π2 (a linear approximation is used). When the second
derivative is 0, the estimate of segment width associated with this is infinite. In the al-
gorithm, a large segment width is substituted whose value is computed from the smallest
non-zero value of the second derivative (over the whole interval of approximation). From
the data, it is clear that this estimate is far away from the actual segment width. Con-
sequently, many steps are needed to achieve the optimum segment width. In subsequent
segments, the estimate is more accurate and significantly fewer steps are needed. In the
case of sin(πx), the region of small second derivative occurs after four or five segments
have been established. Indeed, the data indicates that the last segment width for cos(πx)
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is longer than needed, in which case, a segment width that takes the segmentation to the
largest x value is taken, and only one step in needed.

Table 4 shows the total number of points in each segment. For example, for Segment 1
of sin(πx), 25,133 points occur, which means the brute force method would require 25,133
steps. Because of the estimate, however, only 16,440 steps are needed to establish the
segment. Included in this number are 2 steps, one to cross right of the end point, where
it is found that ε has been exceeded, and one to cross back.

Note that the estimate for the width of Segment 1 of cos(πx) is much better. Only 26
steps are needed to find the segment end point. It is tempting to believe that the number
of steps associated with Step i of sin(πx) and Step 8− i of cos(πx) should be the same,
for 1 ≤ i ≤ 7. This is not true because Segment 7 for either sin(πx) or cos(πx) is not
a full segment, while all other segments are full segments. That is, the algorithm moves
from left to right, and does not need a full segment for Segment 7.

We note that N = 100, 000 is much larger than one would normally use when ε = 2−9.
We have chosen an example with a small number of segments, 7, for clarity’s sake and a
number of points more representable of a practical segmentation. Also, the function was
carefully chosen to illustrate how the number of steps in the algorithm depends on where
the function’s second derivative is 0.

Table 5 shows the detail of a segmentation for sin(πx) and cos(πx) using quadratic
approximations. Here, 16 bit precision is achieved with a given approximation error
of 2−17. In the case of quadratic approximation, the same phenomena seen in linear
approximation exists but to a lesser extent. In quadratic approximation, a third derivative
that is 0 makes the estimate inaccurate versus the second derivative in the case of linear
approximation. The roles of the sin(πx) and cos(πx) reverse, as the third derivative of
cos(πx) is 0 at x = 0. Here, more steps are required for the cos(πx) than for the sin(πx),
but not much more.

Table 5
Number of steps needed to segment sin(πx) and cos(πx) using quadratic approximation.

% Steps
Func- of Brute Segment Number
tion Force 1 2 3 4 5 6 7 8 9 10 11 12

sin(πx) 0.2242% >6 <8 <10 <12 <12 <14 >14 <16 >16 >18 <20 >1
# Steps/Seg. 4741 4761 4804 4871 4967 5099 5282 5538 5916 6538 7893 5114

cos(πx) 0.2486% >22 >20 >18 >16 >16 >14 >14 >12 >12 >10 >8 >1
# Steps/Seg. 9654 6997 6157 5691 5388 5176 5022 4911 4831 4778 4747 2172

*For 17 bit precision, ε = 2−17 and N = 65, 535. The function is approximated by a piecewise quadratic
polynomial using a segment width estimate from the beginning of the segment. The Remez Algorithm
was applied once.

6.2. The Benefit of LOCATE and PINPOINT
Table 6 compares the functions sin(πx) and cos(πx) with respect to the number of

steps required in each segment. For both functions, the first row shows the number of
steps required by LOCATE to compute each segment. The second row shows the number
of steps required by PINPOINT. The third row shows the total of these two. The fourth
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row shows the total number of points in each segment, out of a total of N = 5, 000, 000.
We have used many more points to represent the interval of approximation than would
normally be used when ε = 2−9 to illustrate the case of high precision with a tractable
number of segments. The total number of steps in each segment is also the number of
steps the brute force method would take to compute that segment. It is noteworthy that
Algorithm 1 requires only 0.0028% and 0.0025% of the steps needed by the brute force
method for the sin(πx) and cos(πx) functions, respectively. This also shows the merit
of estimates. That is, the use of an estimate reduces the number of steps by roughly
one-half.

Note that when an estimate is used, the sin(πx) function requires more steps than the
cos(πx) function. This is due to the inaccuracy of the estimate when the second derivative
is 0, which occurs in the first (leftmost) segment of sin(πx) and in the last (rightmost)
segment of cos(πx). Because of this, the first segment of the sin(πx) function requires
many more steps, 34, than any other segment. Since the same point occurs as the last
segment of cos(πx), it is a truncated segment, and the inaccuracy has a much less effect
on the number of steps needed 1. It follows that the number of steps required by the
algorithm is dependent where the second derivative is 0.

Table 6
Number of steps needed to segment sin(πx) and cos(πx) using estimates from three
points*.

% Steps
Operation of Brute Segment Number

Force 1 2 3 4 5 6 7
No Estimate sin(πx)
LOCATE 22>. 21> 21> 21> 21> 21> 20>

PINPOINT 20>. 19> 19> 19> 19> 19> 0>
TOTAL 0.0052% 42>. 40> 40> 40> 40> 40> 20>

# Steps/Seg. 1,256,637 798,153 680,848 622,519 589,489 571,189 481,165

No Estimate cos(πx)
LOCATE 21> 21> 21> 21> 21> 21> 22>

PINPOINT 19> 19> 19> 19> 19> 19> 0>
TOTAL 0.0052% 40> 40> 40> 40> 40> 40> 22>

# Steps/Seg. 563,989 573,146 593,248 629,071 692,868 826,274 1,121,404

Three Estimates sin(πx)
LOCATE 18<. 13< 12< 11< 11< 11< 1>

PINPOINT 16<. 11< 10< 9< 9< 9< 0>
TOTAL 0.0028% 34<. 24< 22< 20< 20< 20< 1>

# Steps/Seg. 1,256,637 798,153 680,848 622,519 589,489 571,189 481,165

Three Estimates cos(πx)
LOCATE 11< 11< 11< 11< 12< 12< 1>

PINPOINT 9< 9< 9< 9< 10< 10< 0>
TOTAL 0.0025% 20< 20< 20< 20< 22< 22< 1>

# Steps/Seg. 563,989 573,146 593,248 629,071 692,868 826,274 1,121,404

*For ε = 2−9 and N = 5, 000, 000, and estimates from three points.

There is a nearly linear relationship between the number of steps and the number of
segments. This can be seen in the scatter plot of the percentage of steps compared to
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Figure 3. Percent of the steps by brute force versus the number of segments

brute force versus the number of segments of Fig. 33. A reason for this is the fact
that the estimates for 16-bit precision are close enough that most functions require the
fewest steps per segment, which is 2. For example, the 1√

x
function requires 50 segments,

which is 0.1508% of the steps required by brute force. The total number of steps is 99 (

= 2×49+1), which is the minimum. However, the Gaussian function 1√
2π

e
−x2

2 requires 53

segments, which is 0.2950% of the steps required by brute force, slightly less than twice
that of the 1√

x
function. This is because of extra steps needed near x = 1, where the

function is close to linear, and the estimates are less accurate.

7. Concluding Remarks

We have given a segmentation algorithm that efficiently segments a given numeric func-
tion, such as sin(πx), in such a way that the polynomial approximation error is less than
some given value. The algorithm requires many fewer steps than a previous algorithm [6].
Experimental results show that, in some instances, only the absolute minimum number
of steps is needed. In most instances, it requires close to the minimum number of steps.

3We chose 23 bit precision instead of 24 bit precision because the fraction in the 32-bit single precision
IEEE Floating Point Standard (ANSI/IEEE Std 754-1985) is 23 bits.
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