
A Method to Minimize Variables for Incompletely Specified Index Generation
Functions Using a SAT Solver

Tsutomu Sasao, Ichidou Fumishi, and Yukihiro Iguchi
Department of Computer Science, Meiji University

Kanagawa 214-8571, Japan

Abstract—Incompletely specified index generation functions
can often be represented with fewer variables than original
functions by appropriately assigning values to don’t cares.
The number of variables can further be reduced by using a
linear transformation to the input variables. Minimization of
variables under such conditions was considered to be a very
hard problem. This paper shows a method to minimize the
number of variables by using a SAT solver. With this technique,
we obtained better solutions than existing methods.

Keywords-Incompletely specified function, Index generation
function, Linear transformation, Variable minimization, SAT
solver, Symmetric function

I. INTRODUCTION

Index generation functions [6] are useful for computer
virus scanning engines and packet filters in the internet. An
index generation function can be efficiently implemented by
the index generation unit (IGU) [6] shown in Fig. 1.1.

X1

X2

Linear
circuit

p
Main
memory AUX

memory

ComparatorX2

AND

p

n-p

n-p

n-p

q

f

Figure 1.1. Index Generation Unit (IGU).

In Fig. 1.1, the linear circuit realizes linear functions,
while the main memory realizes an index. When the given
function is defined for only k input combinations, and
k � 2n, p, the number of variables for the main memory
often can be reduced, where n denotes the total number
of inputs to the IGU. When we use the linear transforma-
tion that minimizes p, the size of the main memory can
be reduced drastically. For the fixed linear transformation,
the minimization of variables to the main memory can
be performed by a minimum covering [2], [3]. However,
when the linear transformation can be chosen freely, the
problem becomes very difficult, since the number of the

Table 2.1
REGISTERED VECTOR TABLE

x1 x2 x3 x4 index
1 0 0 0 1
0 1 0 0 2
0 1 1 0 3
1 1 0 1 4

linear transformations to consider is very large. In this paper,
we show a method to find an optimum linear transformation
using a SAT solver.

The rest of this paper is organized as follows: Section
2 defines index generation functions; Section 3 introduces
a method to reduce the number of variables for an incom-
pletely specified function; Section 4 presents a method to
reduce the number of variables using a linear decomposition;
Section 5 formulate the problem using a SAT solver; Section
6 shows a method to reduce the search space for general
functions; Section 7 shows a method to reduce the search
space for symmetric functions; Section 8 shows experimen-
tal results; and finally, Section 9 concludes the paper.

II. INDEX GENERATION FUNCTIONS

Definition 2.1: Consider a set of k distinct vectors of
n bits. These vectors are registered vectors. For each
registered vector, assign a unique integer from 1 to k. A
registered vector table shows the index for each regis-
tered vector. An incompletely specified index generation
function produces the corresponding index when the input
vector equals to a registered vector. Otherwise, the value
of the function is undefined (don’t care). An incompletely
specified index generation function shows a mapping M →
{1, 2, . . . , k}, where M ⊂ Bn represent a set of registered
vectors. k is the weight of the function.

Example 2.1: Table 2.1 shows a registered vector table,
which represents an index generation function with weight
k = 4.

III. NUMBER OF VARIABLES TO REPRESENT AN
INCOMPLETELY SPECIFIED INDEX GENERATION

FUNCTION

An incompletely specified function f can often be rep-
resented with fewer variables than the original function,
when don’t care values are assigned property to 0 or 1.

161

1x

4x

2x

3x

2

3

4

1

Figure 3.1. 4-variable index generation function.

This property is useful to realize functions by look-up tables
(LUTs).

Theorem 3.1: Assume that an incompletely specified
function f is represented by a decomposition chart [4]. If
each column of the decomposition chart has at most one
care element, then the function can be represented by only
column variables.
(Proof) If a column has a care element, then set the values of
the don’t cares to the same value to that of the care element.
In this case, the function depends only on column variables.

�

Example 3.1: Consider the decomposition chart in
Fig. 3.1. x1 and x2 specify columns, while x3 and x4 specify
rows. Also, blank cells denote don’t cares. In Fig. 3.1, each
column has at most one care element. Thus, this function
can be represented with only the column variables x1 and
x2:

F = 1 · x1x̄2 ∨ 2 · x̄1x2 ∨ 3 · x̄1x̄2 ∨ 4 · x1x2.

A lower bound on the number of variables to represent a
function is obtained as follows:

Theorem 3.2: [7] To represent an index generation func-
tion f with weight k, at least LB = �log2(k+1)� variables
are necessary.

In the above theorem, we assume that zero-output is used
to denote non-registered vector.

IV. LINEAR DECOMPOSITION

A linear decomposition can often further reduce the num-
ber of variables to represent incompletely specified index
generation functions. In the linear decomposition shown in
Fig. 4.1, L realizes linear functions, while G realizes indices.
The cost for L is O(np), while the cost for G is O(q2p),
where q ≤ p ≤ n and q = �log2(k+1)�. We assume that L
is implemented by EXOR gates and multiplexers [6], while
G is implemented by a memory.

Definition 4.1: A compound variables has a form y =
c1x1⊕c2x2⊕· · ·⊕cnxn, where ci ∈ {0, 1}. The compound
degree of the variable y is

∑n
i=1 ci, where

∑
denotes an

ordinary integer addition, and ci is treated as an integer. A
primitive variable is a variable with compound degree one.

X L G
n p

Cost: np Cost: 2p

q

Linear
Function

General
Function

Figure 4.1. Linear Decomposition

Definition 4.2: For an incompletely specified index gen-
eration function f , the linear transformation that minimizes
the number of variables to represent f is an optimum
transformation.

If an index generation function with weight k can be
represented with q = �log2(k + 1)� compound variables,
then the transformation is an optimum by Theorem 3.2. As
a method to obtain an optimum transformation, one might
consider the following: First, generate all the compound
variables. Next, minimize the variables using the method
in [2], [3]. Unfortunately, this method requires too much
computation time and excessive memory space.

V. SAT-BASED FORMULATION

Assume that an IGU can implement arbitrary linear trans-
formations. Then, the size of the main memory can be
minimized by using the linear transformation that minimizes
p, the number of the compound variables. To find such a
linear transformation, we need to check if the function can
be represented or not, for all possible linear transformations.
This would be very time consuming. Here, we use the fol-
lowing approach: first obtain a good solution by a heuristic
algorithm [7], and then prove its minimality by a SAT solver
[1].

Theorem 5.1: An incompletely specified index generation
function is represented by p compound variables:

y1 = a1,1x1 ⊕ a1,2x2 ⊕ · · · ⊕ a1,nxn,

y2 = a2,1x1 ⊕ a2,2x2 ⊕ · · · ⊕ a2,nxn,

. . .

yp = ap,1x1 ⊕ ap,2x2 ⊕ · · · ⊕ ap,nxn.

if and only if the values of (y1, y2, . . . , yp) are all distinct
for all registered vectors.

Example 5.1: Consider the 4-variable index generation
function shown in Table 5.1. This function requires at least 4
variables even if any linear transformation is used. To prove
this, assume that this function can be represented with only

162

three compound variables:

y1 = a1,1x1 ⊕ a1,2x2 ⊕ a1,3x3 ⊕ a1,4x4,

y2 = a2,1x1 ⊕ a2,2x2 ⊕ a2,3x3 ⊕ a2,4x4,

y3 = a3,1x1 ⊕ a3,2x2 ⊕ a3,3x3 ⊕ a3,4x4.

The values of (y1, y2, y3) for registered vectors are
1) (a1,1, a2,1, a3,1)
2) (a1,2, a2,2, a3,2)
3) (a1,3, a2,3, a3,3)
4) (a1,4, a2,4, a3,4)
5) (a1,1 ⊕ a1,4, a2,1 ⊕ a2,4, a3,1 ⊕ a3,4)
6) (a1,2 ⊕ a1,3, a2,2 ⊕ a2,3, a3,2 ⊕ a3,3)

Next, we need to check if there exist an assignment for
ai,j that makes the values of these vectors all distinct. The
condition that two vectors (a1, a2, a3) and (b1, b2, b3) are
different is represented by

(a1 ⊕ b1) ∨ (a2 ⊕ b2) ∨ (a3 ⊕ b3) = 1.

There are k = 6 registered vectors. So the number of
constraints is

(
6
2

)
= 15. The number of unknown coefficients

is np = 12. By using a SAT solver, we can show that no
assignment satisfies these conditions at the same time.

To check the existence of the solutions by using Theo-
rem 5.1, we have to search 2np space. Especially, when the
result is UNSAT (i.e., there is no assignment that satisfies
the constraints), the computation time would be very long.
Thus, we need other constraints to reduce the search space.

In this paper, we use m-out-of-n code to index converters
for benchmark functions, since

1) Various functions can be generated for different values
of m and n, where m ≤ n.

2) The necessary number of variables reduces with the
increase of the compound degree.

3) They have mathematical property that can be analyzed
easily.

Definition 5.1: The m-out-of-n code consists of k =
(
n
m

)
binary codes with weight m. The m-out-of-n code to index
converter realizes an index generation function with weight
k =

(
n
m

)
, and has n inputs and �log2

(
n
m

)
+ 1� outputs.

When the number of 1’s in the input is not m, the circuit
generates the code with all 0’s. The m-out-of-n code is
produced in ascending order. That is, the minimum index
corresponds to (0, 0, . . . , 0, 1, 1, . . . , 1), while the maximum
index corresponds to (1, 1, . . . 1, 0, 0, . . . , 0).

Table 5.1
REGISTERED VECTOR TABLE

x1 x2 x3 x4 index
1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4
1 0 0 1 5
0 1 1 0 6

Table 5.2
2-OUT-OF-6 CODE TO INDEX CONVERTER.

2-out-of-6 code Index After
Linear Transform

x6 x5 x4 x3 x2 x1 y4 y3 y2 y1
0 0 0 0 1 1 1 0 0 0 1
0 0 0 1 0 1 2 0 0 1 1
0 0 0 1 1 0 3 0 0 1 0
0 0 1 0 0 1 4 0 1 1 0
0 0 1 0 1 0 5 0 1 1 1
0 0 1 1 0 0 6 0 1 0 1
0 1 0 0 0 1 7 1 1 0 0
0 1 0 0 1 0 8 1 1 0 1
0 1 0 1 0 0 9 1 1 1 1
0 1 1 0 0 0 10 1 0 1 0
1 0 0 0 0 1 11 1 0 0 0
1 0 0 0 1 0 12 1 0 0 1
1 0 0 1 0 0 13 1 0 1 1
1 0 1 0 0 0 14 1 1 1 0
1 1 0 0 0 0 15 0 1 0 0

Example 5.2: Consider the 2-out-of-6 code to index con-
verter shown in Table 5.2. We can reduce the number of
variables by using the following linear transformation:

y4 = x6 ⊕ x5,

y3 = x5 ⊕ x4,

y2 = x4 ⊕ x3,

y1 = x3 ⊕ x2.

The right four columns in Table 5.2 show the values of
the compound variables yi. All the possible 4-bit non-zero
patterns appear in the right columns, and all the patterns
are distinct. By Theorem 5.1, (y4, y3, y2, y1) represents
the index generation function. Also, by Theorem 3.2, this
function requires at least four compound variables. Thus,
this is an optimum linear transformation.

Example 5.3: Consider the 2-out-of-8 code to index con-
verter. A heuristic algorithm [7] obtained a solution with
6 compound variables. The weight of this function is k =(
8
2

)
= 28. Theorem 3.2 shows that to represent this function,

at least five variables are necessary. Thus, if we can show
that there is no solution with five compound variables, then
the solution obtained by the algorithm in [7] is optimum.
Assume that this function can be represented with five
compound variables (y1, y2, y3, y4, y5). In this case, we have
n = 8, p = 5, and the number of unknown coefficients is
np = 40. The condition that the values for (y1, y2, y3, y4, y5)
are all distinct for all registered vectors, produces

(
28
2

)
= 378

constraints.
Example 5.4: Consider the design of the 2-out-of-20 code

to index converter. The weight of this function is k =
(
20
2

)
=

190. A heuristic program [7] obtained a solution with 9
compound variables. Theorem 3.2 shows that this function
requires at least 8 variables to represent it. If there is no
assignment that satisfies the constraints of Theorem 5.1, then
the solution obtained by [7] is optimum.

Assume that this function can be represented with 8

163

compound variables:

y1 = a1,1x1 ⊕ a1,2x2 ⊕ · · · ⊕ a1,19x19 ⊕ a1,20x20

y2 = a2,1x1 ⊕ a2,2x2 ⊕ · · · ⊕ a2,19x19 ⊕ a2,20x20

· · · · · ·
y8 = a8,1x1 ⊕ a8,2x2 ⊕ · · · ⊕ a8,19x19 ⊕ a8,20x20.

The values of vectors (y1, y2, . . . , y8) for the registered
vectors are
1) (a1,1 ⊕ a1,2, a2,1 ⊕ a2,2, . . . , a7,1 ⊕ a7,2, a8,1 ⊕ a8,2)
2) (a1,1 ⊕ a1,3, a2,1 ⊕ a2,3, . . . , a7,1 ⊕ a7,3, a8,1 ⊕ a8,3)

. . .
190) (a1,19 ⊕ a1,20, a2,19 ⊕ a2,20, . . . , a7,19 ⊕ a7,20, a8,19 ⊕
a8,20)

We need to check if there is an assignment for ai,j that
makes the values of these vectors distinct. Since the number
of registered vectors is k =

(
20
2

)
= 190, the number of

constraint is
(
190
2

)
= 17955. The total number of unknown

coefficient is np = 20× 8 = 160, and the computation time
would be too long. Thus, we need some methods to reduce
the search space.

VI. REDUCTION OF SEARCH SPACE FOR GENERAL
FUNCTIONS

In Section V, we showed a method to decide if a given
n-variable incompletely specified index generation function
can be represented by p compound variables or not. This
method uses np unknown coefficients. When the value of
np is large, the computation time would be very large. This
section shows some methods to reduce the search space.

Theorem 6.1: Consider the problem to check if an index
generation function f can be represented with p compound
variables in Theorem 5.1. Then, we need only to check the
combinations such that A1 > A2 > . . . > Ap, where Ai =∑n

j=1 2
n−jai,j .

(Proof) Assume that an index generation function can be
represented by p compound variables yi (i = 1, 2, . . . , p). It
is clear that any permutation of compound variable yi does
not change the number of variables necessary to represent
the function. Thus, when (ai,1, ai,2 . . . ai,p) represent an
integer, we can assume that the compound variables are in
the descending order of their values. �

When we check if the function can be represented with p
compound variables or not, Theorem 6.1 reduces the search
space by p!.

Example 6.1: Consider the problem in Example 5.1. We
need only to consider the case

A1 > A2 > A3,

where

A1 = 8a1,1 + 4a1,2 + 2a1,3 + a1,4

A2 = 8a2,1 + 4a2,2 + 2a2,3 + a2,4

A3 = 8a3,1 + 4a3,2 + 2a3,3 + a3,4.

Theorem 6.2: Let {y1, y2, . . . yp} be a minimal set of
compound variables to represent an incompletely specified
index generation function f . Then, y1, y2, . . . yp is linearly
independent.

Theorem 6.3: Assume that p compound variables
y1, y2, . . . , yp in Theorem 5.1 are linearly independent.
Then, the number of different tuples (y1, y2, . . . , yp) is

λ(n, p) =

p−1∏
i=0

(2n − 2i).

Example 6.2: Consider the case of n = 4 and p = 3. The
number of unknown coefficients is np = 12. Thus, there
are 212 = 4096 combinations to consider. With the linear
independence, by Theorem 6.3 the number of combinations
to consider is reduced to

(16− 20)(16− 21)(16− 22) = 15× 14× 12 = 2880.

Furthermore, by Theorem 6.1, the number of combinations
to consider is reduced by p!. Thus, we need to consider for
only

2880

3!
= 480

combinations.
To generate the constraints for the linear independence is

not easy. However, we can easily generate the conditions
for:

1) All the compound variables are distinct.
2) Among any triple of compound variables, there is no

dependence.

VII. REDUCTION OF SEARCH SPACE FOR SYMMETRIC
FUNCTIONS

Definition 7.1: Consider an incompletely specified index
generation function of n variables:

F : M → {1, 2, . . . , k},M ⊂ {0, 1}n.
The corresponding characteristic logic function is

χ : {0, 1}n → {0, 1},
where

χ(�x) =

{
1 (�x ∈ M)
0 (Otherwise).

A symmetric index generation function is an index gen-
eration function whose characteristic function is symmetric.

Note that m-out-of-n to index converters represent sym-
metric index generation functions. In a symmetric index gen-
eration function, any permutation of the primitive variables
xi does not change the number of variables necessary to
represent the function.

Theorem 7.1: Consider the problem to represent a sym-
metric index generation function f with p compound vari-
ables. Let Sn be the set of all the permutations of n elements.

164

Then, Sn is a symmetric group with degree n, and has
n! permutations. Assume that i-th permutation of Sn maps
the element j into π(i, j), where i ∈ {1, 2, . . . , n!} and
j ∈ {1, 2, . . . , n}. To check if f can be represented by p
compound variables, we need only consider the case

C(1) > C(2) > · · · > C(n!),

where

C(i) =

n∑
j=1

2p(n−j)B(i, j),

B(i, j) = 2p−1a1,π(i,j) + 2p−2a2,π(i,j) + . . .+ 20ap,π(i,j),

and ai,j are unknown coefficients defined in Theorem 6.1
Example 7.1: Consider the case of n = p = 3. Assume

that the compound variables

y1 = x1 ⊕ x3

y2 = x2 ⊕ x3

y3 = x3

gives a minimum solution. In this case, the coefficient matrix
of the linear transformation is⎛

⎝ 1 0 1
0 1 1
0 0 1

⎞
⎠

When the index generation function is symmetric, the ma-
trices whose columns are permutated⎛

⎝ 1 1 0
0 1 1
0 1 0

⎞
⎠

⎛
⎝ 0 1 1

1 0 1
0 0 1

⎞
⎠

⎛
⎝ 0 1 1

1 1 0
0 1 0

⎞
⎠

⎛
⎝ 1 0 1

1 1 0
1 0 0

⎞
⎠

⎛
⎝ 1 1 0

1 0 1
1 0 0

⎞
⎠

also produce minimum solutions. In Theorem 6.1, when the
n2 = 9 bit vector

(a1,1, a2,1, a3,1, a1,2, a2,2, a3,2, a1,3, a2,3, a3,3)

is considered as an integer, we need only to consider the
matrix that has the maximal value (i.e., the last matrix).

For an n variable symmetric index generation function,
the search space is reduced by n! using Theorem 6.1.

Definition 7.2: [9] Let f(X) be an incompletely specified
index generation function, where X = {x1, x2, . . . , xn}
denotes the set of variables for f . Let X1 be a proper subset
of X , and let �X1 be an ordered set of X1. In this case,
�X1 is a partial vector X . When the value of �X1 is set
to �a = (a1, a2, . . . , at), ai ∈ B, the number of registered
vectors that make the value of f non-zero is denoted by
N(f, �X1,�a), where B = {0, 1}. Let �X1 be a partial vector
of X . Then,

CD(f : X1) = max
�a∈Bt

{
N(f : �X1,�a)

}

is the collision degree, where t denotes the number of
variables in X1.

Example 7.2: Consider the index generation function f
shown in Table 2.1.

CD(f : {x1, x2}) = max{|φ|, |{2, 3}|, |{1}|, |{4}|} = 2,

CD(f : {x3, x4}) = max{|{1, 2}|, |{4}|, |{3}|, |φ|} = 2,

CD(f : x1) = max{|{2, 3}|, |{1, 4}|} = 2,

CD(f : x2) = max{|{1}|, |{2, 3, 4}|} = 3,

CD(f : x3) = max{|{1, 2, 4}|, |{3}|} = 3,

CD(f : x4) = max{|{1, 2, 3}|, |{4}|} = 3.

Theorem 7.2: [9] Let f(X) be an incompletely specified
index generation function, and let X1 be a proper subset of
X . Then, to represent f , at least �log2 CD(f : X1)� (com-
pound) variables are necessary to represent f , in addition to
the variables in X1.

Corollary 7.1: Let f(X) be an incompletely specified
index generation function, and let xi be a variable in X .
Then, to represent f , at least �log2 CD(f : xi)� (compound)
variables are necessary in addition to the variable xi.

Example 7.3: To represent the 2-out-of-8 code to index
converter f with five variables, the compound degree of
each variable must be at least two. On the contrary, assume
that the minimum solution contained a variable x1 with the
compound degree one. In this case, CD(f : x1) = 21. Thus,
to represent f , at least 1 + �log2 21� = 1 + 5 = 6 variables
are necessary to represent the function by Corollary 7.1.

Example 7.4: In order to represent the 2-out-of-20 code
to index converter f by 8 variables, the compound degrees
of each variable must be at least four. Let the variable with
the compound degree 1 be y1 = x1. Let the variable with
the compound degree 2 be y2 = x1 ⊕ x2. Let the variable
with the compound degree 3 be y3 = x1 ⊕ x2 ⊕ x3.

1) When the solution contains y1, CD(f : y1) = 171.
2) When the solution contains y2, CD(f : y2) = 153.
3) When the solution contains y3, CD(f : y3) = 136.

Assume that the solution contained either y1, y2, or y3. Then,
Corollary 7.1 shows that at least 1 + �log2 CD(f : yi)� =
1 + 8 = 9 variables are necessary to represent f . Thus, to
represent the function with 8 variables, the degrees of the
compound variables must be greater than three.

Theorem 7.3: To represent an m-out-of-n code to index
converter, we need only to consider the compound variables
of degrees with at most �n

2 �.
Example 7.5: To represent the 2-out-of-8 code to index

converter using 8 compound variables, we need only to
consider the variables of compound degree with at most
four. Also, from Example 7.3, the compound degrees of the
variables are at least two. Thus, we can reduce the search

165

Table 8.1
NUMBER OF VARIABLES TO REPRESENT RANDOMLY GENERATED

FUNCTIONS BY ASPDAC2012 METHOD[7] AND SAT-BASED METHOD.

Heuristic SAT-Based
k n = 16 n = 20 n = 24 n = 16 n = 20 n = 24
7 ∗3.00 ∗3.00 ∗3.00 ∗3.00 ∗3.00 ∗3.00

15 4.66 4.53 4.33 ∗4.00 ∗4.00 ∗4.00
31 6.08 6.00 6.01 6.00 5.99 6.00
63 8.06 8.02 7.90 7.94 7.94 7.78

127 10.13 9.89 9.77 9.88 9.79 9.70
255 12.15 11.86 11.71 11.99 11.83 11.70
511 14.52 14.02 13.60 14.00 13.96 13.60

space by the constraints

2 ≤
8∑

j=1

ai,j ≤ 4.

Example 7.6: To represent the 2-out-of-20 code to index
converter, we need only to consider the variables of the
compound degrees with at most 10. Also, by Example 7.4,
the degrees of the variables are at least four. Thus, we can
use the constraint

4 ≤
20∑
j=1

ai,j ≤ 10

to reduce the search space.

VIII. EXPERIMENTAL RESULTS

A. Minimization System

A minimization system for index generation functions was
developed on the top of SUGAR [10] (a SAT-based constraint
solver), MiniSat [1] and GlueMiniSat [11] (SAT solvers). A
tool to convert an index generation function into the data for
SUGAR was developed by ourselves.

We used a workstation with CPU:E5-2698 v3 (2.3GHz 16
cores)×2, 128 GB memory, 1TB HDD, and CentOS 6.5.

When the result is SAT, the CPU time is short (less than
5 minutes), while when the result is UNSAT, the CPU time
is very long. So, we aborted the computation after a fixed
CPU time (10 minutes). For small problems, we can prove
the exact minimality of the solutions.

B. Randomly Generated Functions

The numbers of variables to represent randomly generated
n-variable functions with weight k were investigated for
different values of n and k, when t = 2, i.e., when we
used variables with compound degree two.

Table 8.1 compares results by a heuristic method [7] with
the SAT-based method. They are average of 100 randomly
generated functions. The SAT-based method obtained exact
minimum solutions for k = 7 and k = 15 (* marks). For k ≥
31, the SAT-based method could not finish the computation
for UNSAT within the allocated time, so the results may not
be exact minimum. As for the SAT solver, used MiniSat.

Table 8.2
NUMBER OF VARIABLES TO REPRESENT m-OUT-OF-16 CODE TO INDEX

CONVERTERS OBTAINED BY ASPDAC2012 METHOD[7].

Function Compound degree
m k t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
1 16 15 11 8 6 5 5
2 120 15 12 9 8 8 8
3 560 15 14 11 10 10 10
4 1820 15 14 13 13 13 13

Table 8.3
NUMBER OF VARIABLES TO REPRESENT m-OUT-OF-16 CODE TO INDEX

CONVERTERS OBTAINED BY SAT-BASED METHOD.

Function Compound degree
m k t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
1 16 ∗15 10 8 6 ∗5 ∗5
2 120 ∗15 11 9 ∗8 8 8
3 560 ∗15 13 11 ∗10 ∗10 ∗10
4 1820 ∗15 13 13 13 13 13

C. m-out-of-n Code to Index Converters

The numbers of variables to represent m-out-of-16 code
to index converters were investigated for different values of
t and m, where t denotes the maximum compound degree.
The number of registered vectors is k =

(
16
m

)
. Thus, by

Theorem 3.2, the function requires at least q = �log2(k+1)�
variables. Table 8.2 shows the results by a heuristic method
[7], while Table 8.3 shows the results by the SAT-based
method. In Table 8.3, the figures shown in bold face denote
better solutions than the heuristic method, and entries with
* marks denote exact minimum: For t = 1, they are proved
by the property of one-hot codes; for m = 1 and m = 3,
they are proved by Theorem 3.2; and for m = 2, it is proved
by Theorem 7.2. As for the SAT solver, used GlueMiniSat.

IX. CONCLUSION AND COMMENTS

In this paper, we
• Showed an exact method to minimize the number of

variables for incompletely specified index generation
functions, when the linear transformations can be freely
chosen.

• Showed methods to reduce search space for general
index generation functions and symmetric index gener-
ation functions.

• Derived solutions for m-out-of-16 code to index con-
verters. For some cases, we found better solutions than
a heuristic program.

Although the presented exact minimizer is quite time and
memory consuming and is applicable to only small prob-
lems, it can evaluate the quality of heuristic minimization
programs such as [7].

In the program [7], if we limit the compound degree t
to two or three, then the computation time and memory
requirement would be much smaller. In this case, the cost
of the linear circuit is also reduced.

The best strategy is first use a heuristic minimizer to find
an initial solution, and then use the SAT-based minimizer to

166

find a better solution. In many cases, the heuristic minimizer
obtains exact minimum solutions. Proving the minimality
(UNSAT) takes longer time than finding a solution (SAT).
So, we can abort the computation after a fixed CPU time.

For the applications where frequent changes are necessary,
a heuristic algorithm rather than the presented one should
be used.

ACKNOWLEDGMENTS

This research is supported in part by the Grant in Aid for
Scientific Research of the Japan Society for the Promotion
of Science (JSPS).

REFERENCES

[1] N. Een and N. Sorensson,“An extensible SAT-solver,” Proc.
6th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT-2003), pp.502-518, 2003.

[2] C. Halatsis and N. Gaitanis, “Irredundant normal forms and
minimal dependence sets of a Boolean functions,” IEEE
Trans. on Computers, vol. C-27, no. 11, Nov. 1978, pp. 1064-
1068.

[3] Y. Kambayashi, “Logic design of programmable logic arrays,”
IEEE Trans. on Computers, vol. C-28, no. 9, Sept. l979,
pp. 609-617.

[4] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[5] T. Sasao, “On the number of variables to represent sparse
logic functions,”ICCAD-2008, San Jose, California, USA,
Nov. 10-13, 2008, pp. 45-51.

[6] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[7] T. Sasao, “Linear decomposition of index generation func-

tions,” 17th Asia and South Pacific Design Automation Con-
ference (ASPDAC-2012), Jan. 30- Feb. 2, 2012, Sydney,
Australia, pp. 781-788.

[8] T. Sasao, “Index generation functions: Tutorial,”Journal of
Multiple-Valued Logic and Soft Computing, Vol. 23, No. 3-4,
pp. 235-263, 2014.

[9] T. Sasao, “A reduction method for the number of variables
to represent index generation functions: s-Min method,” 45th
International Symposium on Multiple-Valued Logic (ISMVL-
2015), May 18-20, 2015, Waterloo, Canada, (to appear).

[10] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, “Compil-
ing finite linear CSP into SAT,”Constraints, Vol. 14, No. 2,
pp. 254-272, June, 2009.

[11] https://sites.google.com/a/nabelab.org/glueminisat/

167

