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Abstract—Ternary content addressable memories (TCAMs) are
special memories which are used in high-speed network applica-
tions such as routers, firewalls, and network address translators.
In high-reliability network applications such as aerospace and
defense systems, soft-error tolerant TCAMs are indispensable
to prevent data corruption or faults caused by radiation. This
paper proposes a novel soft-error tolerant TCAM for multiple-
bit-flip errors using partial don’t-care keys (X-keys), called k-
TX. k-TX corrects up to k-bit flip errors and significantly
enhances the tolerance of the TCAM against soft errors, where
k is the maximum number of bit flips in a TCAM word. k-
TX consists of a TCAM, a preprocessed don’t-care-bit index
look-up memory (X look-up), and an ECC-SRAM. First, k-TX
randomly selects a search key. After that, k-TX detects multiple-
bit-flip errors by the generated X-keys using X look-up. If the
keys match the different locations, then a soft error is detected
and k-TX refreshes the TCAM words by using a backup ECC-
SRAM. Experimental results demonstrate the advantages of k-TX.
Moreover, the hardware overhead of k-TX is small due to the use
of only a single TCAM. k-TX can be easily implemented and is
useful for fault-tolerant packet classifiers.

I. INTRODUCTION

A ternary content addressable memory (TCAM) is a special
memory with three values i.e., 0, 1, and ∗ (don’t-care). It
simultaneously compares the input vector with the entire list of
registered vectors [1]. TCAM is a de facto standard in routers
and devices for packet classification in high-speed network
applications [2]. Fig. 1 shows a TCAM cell. The search bits
(SL1, SL0) are compared with the stored bits (D1, D0). When
there is a match, the match line (ML) sends a signal to the
priority encoder to produce the match address.
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Fig. 1: NOR-type ternary cell [1]
TABLE I: TCAM Encoding

Value D1 D0 SL1 SL0

0 0 1 0 1
1 1 0 1 0
* 1 1 0 0

A soft error is typically caused by radioactive atoms, alpha
particles, cosmic rays or high-energy neutrons [3]. Several
works investigated the effects of scaling down the size of
transistors [4], [5]. A work in [5] shows that moving from
the 130 nm process to the 22 nm process increases soft error
rates up to 7 times. Furthermore, soft errors tend to cause more
serious problems in low-power devices [3].

One of the troubling effects of soft errors in memories is that
they hit memory cells and may change the values of some cells.
Changes of the values of TCAM cells may lead to errors or
data corruption. A soft error will not damage hardware; it only
changes the data that is being processed, and it can result in
faulty data [6]. TCAMs are more vulnerable to soft errors than
RAMs since TCAMs are more complicated than RAMs. The
bit storage of TCAMs uses SRAM cells which are susceptible
to soft errors [7]. Furthermore, high-speed memories with
smaller transistor sizes will make it more vulnerable to soft
errors [8]. Thus, in applications that require high-reliability
such as finance, aerospace, and defense networks, soft-error
tolerant TCAMs are indispensable. Unfortunately, in TCAM,
conventional ECC (Error Checking and Correction) techniques
used in RAM are difficult to apply [9].

In previous works, hardware and software methods were
developed to mitigate soft errors [6], [10]–[13]. In [12], modi-
fication of hardware by using XOR-based conditional keepers
are used to overcome noises including soft errors. In [13],
a system using bloom filters detects errors in TCAMs. Fur-
thermore, in [6], a parallel system using two TCAMs detects
and corrects TCAM words that are attacked by soft errors.
However, previous hardware and software methods still suffer
from severe drawbacks. Firstly, hardware methods are very
costly to implement since they modify the circuits of TCAMs.
Secondly, for software methods, researchers are still looking for
more efficient way to tackle the soft-error problem in TCAMs.
In [11], a TCAM with an optimized scrubbing interval is
proposed against soft errors. However, this scheme does not
consider that some keys are more popular (frequent) than others
in the TCAM which can lead to more faults when the frequent
keys hit the upset word caused by soft error. In [6], a TCAM
checker is proposed that takes into consideration frequent keys
through comparing the matched words caused by a soft error.
However, this scheme uses two TCAMs, which doubles the
hardware overhead and the power dissipation.

Table I shows the TCAM encoding. The stored bits are
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Fig. 2: A soft error in a TCAM

represented by D1 and D0. Note that the values of D1 and
D0 are not necessarily complementary. The don’t-care value
(∗) is represented by (D1, D0) = (1, 1). While the stored
bits represent the value of the TCAM cell, the search lines
represent a search key bit. Interestingly, when the search
lines represent the don’t-care value (∗), the search lines value
are (SL1, SL0) = (0, 0). If we refer to the transistor-level
representation of a TCAM cell in Fig. 1, then this condition
allows transistors M3 and M4 to be off, forcing a match of the
bits regardless of the stored bits D1 and D0. This observation
inspires us to propose our method in this paper.

Fig. 2 shows an example of a soft error. A false match is
a match that would be a mismatch if no soft error occurred.
In term of packet classification, a false match is referred to as
a misclassification. Fig. 2(b) shows a misclassification which
matches the third word of the TCAM, but should match the
second word of the TCAM (Fig. 2(a)). The soft error occurs
at the third bit of the second word. If we change the search
key to 10*0, then the TCAM will match the correct word (i.e.,
second word). We call this search key as a partial don’t-care
key (X-key) which will be explained later.

The major contributions of this paper are as follows: 1)
A novel scheme, called k-TX, is proposed that can detect and
correct multiple-bit-flip soft errors in a TCAM. 2) The k-TX
requires no modifications to the TCAM. 3) The k-TX uses only
one TCAM. 4) The soft-error tolerance of k-TX outperforms
existing schemes.

The rest of the paper is organized as follows: Section II
shows definitions and basic properties; Section III-A explains a
soft-error tolerant TCAM for single-bit-flip errors using partial
don’t-care keys, TX; Section III-B describes the proposed
scheme for multiple-bit-flip errors, k-TX; Section IV shows
experimental results; and Section V concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

A TCAM word, that represents a packet classifier rule,
consists of several fields. In addition, each field is represented
by a prefix sum-of-products.

A. Prefix Sum-of-Products
Definition 2.1. xi

ai denotes xi when ai = 1, and x̄i when
ai = 0. xi and x̄i are literals of a variable xi. The AND of

literals is a product. The OR of products is a sum-of-products
expression (SOP).

Definition 2.2. A prefix SOP (PreSOP) is an SOP consisting
of products having the form x∗

n−1x
∗
n−2 . . . x

∗
m+1x

∗
m, where x∗

i

is xi or x̄i and m ≤ n− 1. [14]

Example 2.1. f(x1, x0) = x̄1x0 ∨ x1 is a PreSOP. And,
f(x1, x0) = x0 ∨ x1 is an SOP, for the same function, but
is not a PreSOP.

In high-speed network applications, PreSOPs are used in-
stead of SOPs. This is because PreSOPs can be quickly
generated from the binary decision trees of the functions.

B. Classification Functions
A classification function is defined as a mapping of fields

specified by a set of rules. Each rule is a conjunction of fields
that can be represented by PreSOPs.

Definition 2.3. A classification function with k fields is a
mapping F : P1 × P2 × · · · × Ps → {0, 1, 2, · · · , r}, where
Pi = {0, 1, · · · , 2ti − 1} (i = 1, 2, · · · , s). F is specified by
a set of r rules. A rule consists of s fields, and each field is
specified by an interval of ti bits.

In the Internet, a packet classifier is specified by source and
destination addresses, source and destination ports, and protocol
types. The source and the destination ports are represented by
intervals. Some works on the representation of classification
functions can be found in [15], [16].

C. Soft Errors in TCAM Cells
Definition 2.4. A soft error in a TCAM cell is a non-permanent
error that changes cell values and can cause misclassification.

Definition 2.5. A single-bit-flip error or multiple-bit-flip errors
are a change of a cell or several cells values of a TCAM word
caused by a soft error, where the fault model is 0 → {1, ∗},
1 → {0, ∗}, or ∗ → {0, 1}. The probability of bit-flip errors is
Pe =

u
w , where u is the number of bit-flip words and w is the

number of words in a TCAM.

III. TX: A TCAM USING PARTIAL DON’T-CARE KEYS

This section describes our proposed method, TX: a TCAM
using partial don’t-care keys. T stands for TCAM and X stands
for partial don’t-care keys (X-keys).

A. TX: TCAM for Single-Bit-Flip Errors
1) Overview of TX: The TX is a scheme that enhances the

tolerance of a TCAM against soft errors.The TX consists of
a TCAM, an ECC-SRAM as a back-up, a multiplexer and a
controller as shown in Fig. 3. In TX, no modification to the
TCAM is required. The TX has two modes: normal mode and
test mode. In normal mode, the TCAM looks up a search key
in parallel. In test mode, the TX generates up to 2d partial
don’t-care keys (X-keys) and detects soft errors, where d is
the tolerance degree. It works sequentially as follows: First,
the TX starts from the tolerance degree 1 and if any soft error
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is detected, it will increase the degree until the desired degree.
Don’t-care bits are inserted in the X-keys and they are expected
to match the words that contain soft errors. The TX applies X-
keys to the TCAM and records all the returned indices. After
that, if the indices are equal, then no soft error is detected in
the operation; otherwise a soft error is detected.

Whenever a soft error is detected, the iteration count is
checked. If the iteration is less than the desired degree, the
TX will access refresh bits of TCAM words. If the value is 0,
then the word has not refreshed yet and the TX will refresh the
word with the current index by the back-up ECC-SRAM. We
use this refresh bit to avoid refreshing a word more than once.
This will significantly save power, since the refresh operation
dissipates high power. If the word is refreshed, then we increase
the degree and generate X-keys with a fewer inserted don’t-
cares. And, the operation is stopped when the indices are equal
or the iteration count reaches the desired degree value. Fig. 5
illustrates the method to generate X-keys.

2) Tolerance Degree (d):

Definition 3.1. Tolerance degree d is a parameter that controls
the tolerance of the TCAM. The higher the degree, the more
tolerant the TCAM is. The maximum degree is ⌈log2 n⌉, where
n is the number of bits in a TCAM word.

The maximum tolerance degree shows the highest level of
TCAM tolerance enhancement by the TX.

3) Partial Don’t-Care Keys (X-keys):

Definition 3.2. A partial don’t-care key (X-key) is a search key
with inserted don’t-care bits. The key is used to find a soft error
in TCAM words.

Lemma 3.1. Assume that don’t-care bits are inserted consec-
utively in TX. Then, the number of don’t-cares inserted into an
X-key is at most q = ⌈n/2d⌉, where d is the tolerance degree
and n is the number of bits in a word.

The number of don’t-cares inserted in an X-key depends on
the required tolerance degree. The smallest number of don’t-
cares that can be inserted in X-keys is one.
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Fig. 3: TX: A soft-error tolerant TCAM using partial X-keys
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Fig. 4: Generation of partial don’t-care keys for single-bit-flip
errors

Lemma 3.2. The number of partial don’t-care keys (X-keys) is

p = 2d − ⌊2
dq − n

q
⌋,

where d is the tolerance degree, n is the number of bits in a
word, and q = ⌈n/2d⌉.

Proof: If n is a multiple of 2d, then the number of X-keys
is p = 2d. Otherwise, bit difference is 2dq − n, where q is the
number of don’t-cares in the X-keys. Since the number of bits
in a word is n, we exclude the X-keys that cover the bits with
index more than n.

Algorithm 1 shows the procedure for generating X-keys. The
number of don’t-care bits in X-keys is q (Line 1). First, the
search key is copied to the X-key (Line 5). We start from index
i = 0. If n− i is greater than q, then q consecutive don’t-care
bits are inserted in the X-key (Line 6 and 7). Otherwise, only
the remaining n− i consecutive don’t-care bits are inserted in
the X-key (Line 10).

4) Refresh Bits of TCAM Words:

Definition 3.3. A refresh bit of a TCAM word has a value 1,
when the TCAM word has been refreshed by the ECC-SRAM.
Otherwise, it has a value 0. Every word in the TCAM has a
refresh bit to indicate the status of refreshing of the word. The
total number of refresh bits of TCAM words is w.

Algorithm 2 shows the method for checking indices. If all
the indices are equal, it will return 0, which shows the matched
index is correct. Otherwise, it will return 1, which means a soft
error is detected.
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Algorithm 1 Generation of X-keys (XKeyGen())

/∗ Input: Search Key (searchKey) and degree (d). ∗/
1: q ⇐ ⌈n/2d⌉
2: i ⇐ 0
3: numKey ⇐ 0
4: while i < n do
5: XKeys[numKey] ⇐ searchKey
6: if n− i ≥ q then
7: XKeys[numKey][i..i+ q] ⇐ {∗}
8: i ⇐ i+ q
9: else

10: XKeys[numKey][i..n] ⇐ {∗}
11: i ⇐ n
12: end if
13: numKey ++
14: end while
15: Return XKeys

5) Algorithm and Time Complexity of TX: A merit of using a
TCAM is matching the search key simultaneously. However, in
test mode, the TX uses a sequential TCAM look-up. Since the
operation time of TX is significantly impacted by the TCAM
look-up time, we briefly describe it.
Algorithm 2 Check of indices (CheckIdx())

/∗ Input: Indices (Idx) and number of keys (numKey). ∗/
1: i ⇐ 0
2: while (Idx[i] == Idx[i+ 1]) ∧ (i < numKey − 1) do
3: i++
4: end while
5: if i == numKey − 1 then
6: Return 0 /∗ Correct match ∗/
7: else
8: Return 1 /∗ An error is detected ∗/
9: end if

Lemma 3.3. A sequential TCAM look-up runs in O(wn) time,
where n is the number of bits in a word and w is the number
of words in the TCAM.

Proof: To check the TCAM sequentially, it requires n steps
to check for each word and there are w words.

Algorithm 5 shows the details of the TX scheme. TX uses a
TCAM with wn bits and an ECC-SRAM for refresh operations.
Pc shows the probability of the TX being used for the given
search keys. If the randomized Prob is smaller than Pc, the TX
runs; otherwise, a normal TCAM look-up runs. First, the indices
are assumed to be different (difIdx = 1, Line 4). Next, it starts
to generate X-keys with degree 1 (iterations + 1 = 1, Line 7).
Then, the X-keys are applied sequentially to the TCAM (Lines
8 to 10). If the indices are different (Line 11), then it checks
the refresh bit of the TCAM word (r[Idx[i]]). If the refresh bit
is 0, then the TX refreshes the TCAM word with index Idx[i]
by that of the equal index of the ECC-SRAM and does another
TCAM look-up by the corresponding X-key. After that, the TX

Algorithm 3 TX: Testing TCAM using partial don’t-care keys
for single-bit-flip errors

/∗ Input: A TCAM with w words and n bits each word, a
search key (searchKey), an ECC-SRAM as a back-up of
the TCAM for refresh operation, and the degree d. ∗/

1: Prob ⇐ rand()
2: if Pc ≥ Prob then
3: r ⇐ {0}
4: difIdx ⇐ 1
5: iterations ⇐ 0
6: while (difIdx) ∧ (iterations < d) do
7: XKeys ⇐ XKeyGen(searchKey, iterations + 1)
8: for i = (0, · · · , numKey − 1) do
9: Idx[i] ⇐ TCAM(XKeys[i])

10: end for
11: difIdx ⇐ CheckIdx(Idx, numKey)
12: if difIdx then
13: for i = (0, · · · , numKey − 1) do
14: if r[Idx[i]] == 0 then
15: Refresh the TCAM word with index Idx[i]
16: r[Idx[i]] ⇐ 1
17: Idx[i] ⇐ TCAM(XKeys[i])
18: end if
19: end for
20: difIdx ⇐ CheckIdx(Idx, numKey)
21: end if
22: iterations + +
23: end while
24: end if
25: Return TCAM(searchKey)

checks the indices again. If the indices are equal (difIdx = 0),
then it moves out the while loop. Otherwise, the TX increases
the degree and iterates the same routine.

Lemma 3.4. The number of partial don’t-care keys (X-keys)
generated by the TX is at most 2d+1 − 2.

Proof: The TX iterates d times. It starts detecting and
correcting the errors from degree 1 to d. Thus, by Lemma
3.2, the total number of X-keys generated by TX is at most∑d

i=1 2
i. To obtain an upper bound, we omit the right term of

the equation in Lemma 3.2. Thus, the lemma is proved.

Theorem 3.1. The TX, which uses sequential TCAM look-up,
requires O(wn2) time, where n denotes the number of bits in
a word and w denotes the number of words in the TCAM.

Proof: Since d = ⌈log2 n⌉ is the maximum tolerance
degree, we have 2d ≥ n ≥ 2d−1. From Lemma 3.4, the total
number of X-keys generated by TX is 2d+1−2. By substituting
them, we have:

4n− 2 ≥ 2d+1 − 2.

This indicates that to generate the X-keys, the TX requires
O(n) steps. Moreover, each X-key must be applied to the
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Fig. 5: Generation of partial don’t-care keys for k-TX

TCAM. If we use sequential TCAM look-up, then by Lemma
3.3, the total time complexity of the TX is O(wn2).

B. k-TX: A TX for Multiple-Bit-Flip Errors
This section extends the work of TX in Section III-A. k-

TX consists of a preprocessing X-Keys look-up table in the
controller as shown in Fig. 6, a TCAM, and an ECC-SRAM
for handling refresh operation.

1) Generating X-Keys Look-Up Table: Detection of
multiple-bit-flip errors (k-flip) requires more than k fields in
a word of the TCAM.

Lemma 3.5. The number of X-Keys in look-up table for
multiple-bit-flip errors is:

p =

(
s

l

)
=

s!

l!(s− l)!
,

where s is the number of fields in a TCAM word and l is the
number of don’t care groups in the X-Keys.
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Fig. 6: Controller Illustration
Alg. 4 shows the algorithm to generate perfect match indices

which are stored in the X look-up memory. The perfect match
generator is a preprocess routine, and can be set based on the
prediction of the maximum number of bit flips in a word in a
TCAM.

2) Partitioning of TCAM Word: Consider the case, we use
the case of s = 5 fields classification function: 32-bit source
and destination addresses, 16-bit source and destination ports,

Algorithm 4 Perfect Match Generator (PerfectXKeyGen())

/∗ Input: Search Key (searchKey), n, s, and l, where n is the
number of bit, s is the number of fields in a TCAM word,
and l is the number of don’t care groups in the X-Keys. ∗/

1: Generate combinations of indices with the number of X-
Keys p =

(s
l

)
.

2: If s mod l ̸= 0, g = s, else g = 1.
3: Find perfect matches with the number of perfect covering

of X-Keys is u = p
g×l .

4: while c ̸= u do
5: while CoveringVector[Idx]! = g do
6: Invoke the combinations of indices and find the perfect

match. Every combination of indices can be used only
once in order to compact the XLookUp memory.

7: if Contradict then
8: Backtrack by subtracting the previous addition op-

eration in CoveringVector.
9: else

10: Write the perfect match pairs in the XLookUp
memory.

11: end if
12: end while
13: end while
14: Return XLookUp

and 8-bit protocol, and the total number of bits in the TCAM
is n = 104 bits. Fig. 7 shows the partitioning of the TCAM
word.!1819!181:!181;!181<!181=!181>

Fig. 7: Partitioning TCAM words
For example, if we have k-bit flips in a word, it requires

s > l ≥ k to cover all the errors. Let k = 4, and we choose
s = 7 and l = 4. Thus, we have p = 35 X-Keys to detect
the errors. However, based on our observation, if the condition
l/s > 0.57 holds, the X-Keys cannot detect the soft errors
effectively, because the numbers of don’t cares in the X-Keys
are too large. In this case, the X-Keys will likely to match only
the upper part of TCAM.

Fig. 8 shows the example of perfect match covering in the
TCAM. In this case, for the best detection of soft errors, the
index of an X-Key generated by combination can be only used
once. Thus, when it contradicts, we have to reorder the X-Keys.

3) Scrubbing Interval: To reduce the time overhead, we can
only use the small value of s and l. Thus, a short scrubbing
interval is used in k-TX for improving the tolerance of k-TX
against soft errors. First, k-TX compares the lowest and the
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Algorithm 5 Multiple-bit-flip detection and correction using
partial don’t-care keys

/∗ Input: A TCAM with w words and n bits each word, a
search key (searchKey), an ECC-SRAM as a back-up of
the TCAM for refresh operation, the number of partition
s, and the number of groups of don’t-care l. ∗/

1: Determine the prediction of the maximum number of
multiple-bit-flip in a word of TCAM.

2: Preprocess XLookUp ⇐ PerfectXKeyGen(n, s, l).
3: Prob ⇐ rand()
4: if Pc ≥ Prob then
5: r ⇐ {0}
6: difIdx ⇐ 1
7: iterations ⇐ 0
8: while (difIdx) ∧ (iterations < u) do
9: XKeys ⇐ XLookUp(searchKey, iterations + 1)

10: for i = (0, · · · , numKey − 1) do
11: Idx[i] ⇐ TCAM(XKeys[i])
12: Store the lowest and the highest matched indices in

temporary bits.
13: end for
14: Choose the smaller interval of lowest and highest

matched indices with the temporary one.
15: difIdx ⇐ CheckIdx(Idx, numKey)
16: if difIdx then
17: for i = (0, · · · , numKey − 1) do
18: if r[Idx[i]] == 0 then
19: Refresh the TCAM word with index Idx[i]
20: r[Idx[i]] ⇐ 1
21: Idx[i] ⇐ TCAM(XKeys[i])
22: end if
23: end for
24: difIdx ⇐ CheckIdx(Idx, numKey)
25: end if
26: iterations ++
27: end while
28: end if
29: if difIdx then
30: If the difference between the lowest and the highest

matched indices is less than 100, refresh the scrubbing
interval .

31: end if
32: Return TCAM(searchKey)

highest indices of matched X-Keys. If the difference between
the lowest matched index and the highest matched index is less
than the previous stored scrubbing interval, k-TX will store
the scrubbing interval. Finally, if the X-Keys match different
indices at the end of the routine, the TCAM will be refreshed
based on the stored scrubbing interval.

Example 3.1. Consider the TCAM in Fig. 9 and assume that
the search key is 0111, where n = 4, s = 4 and l = 2. Perform
detection and correction of a soft error using X-keys. First, X

! " # $ % & ' ( )
" # $ & ' ( )%!

# $ & ' )%! " (

!"#"$
%"&"'()*+,-.%"&"/()*+,-.%"&"0

" # $ & ' )%! ('"/"1
Fig. 8: Example of perfect matching in TCAM word

look-up memory is filled by perfect match pairs of indices. The
number of generated X-keys is p =

(
s
l

)
= 6. The X-keys are

01**, **11, 0*1*, *1*1, *11* and 0**1. The X-keys are applied
to the TCAM sequentially and the TCAM returns the matched
indices. The 1st, 2nd, 3rd, 5th and 6th X-keys match the 1st
TCAM word and only the 4th X-key matches the 2nd TCAM
word. After that, Algorithm 2 checks the indices and returns 1
which means the indices have different values (a soft error is
detected). Next, the refresh bits of TCAM words are checked
with the corresponding indices (Line 19, Alg. 5. If the refresh
bit is 0, then a refresh operation for the corresponding TCAM
word is performed using the ECC-SRAM. In this case, the 1st
and 2nd TCAM words are refreshed. Finally, the search key is
applied to the TCAM and matches the 3rd TCAM word.

When the TCAM has entries with smaller Hamming distance,
the TX may suspect that there is a soft error in the TCAM by
the X-keys. However, the TX will check the refresh bits and re-
fresh all the unrefreshed TCAM words with the corresponding
X-key matched indices. Thus, the TCAM words are updated,
regardless there is a soft error or not. In this case, it implies
that the X-keys may matched the words where no soft error in
there. And finally, the TX applies the original search key to the
corrected TCAM.

Theorem 3.2. The k-TX, which uses sequential TCAM look-
up, requires O(pwn) time, where p =

(s
l

)
, s is the number of

fields in a TCAM word, l is the number of don’t care groups
in the X-keys, n is the number of bits in a word, and w is the
number of words in the TCAM.

Proof: The maximum number of iterations is p =
(
s
l

)
.

Moreover, each X-key must be applied to the TCAM. If we
use sequential TCAM look-up, then by Lemma 3.3, the total
time complexity of the TX is O(pwn).

Theorem 3.3. Soft errors can be found by X-keys that covers
all bits of the search key. If all the X-keys match the same word,
then the matched word is correct.

Proof: The correct match is represented by the intersection
of all matched X-keys:

f =
p∧

i=1

gi,
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Fig. 9: Detection of Multi-Bit-Flip Errors (k = 2) using X-keys

where p is the number of X-keys, f is a correct match and gi
is an X-key with relations f ⊂ gi and gi ̸⊂ gj , i ̸= j.

Fig. 10 illustrates the covering of X-keys to a correct match
for various numbers of bits n and various numbers of don’t-care
bits inserted in the X-keys q.
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Fig. 10: Illustration of X-key covering

IV. EXPERIMENTAL RESULTS

For evaluation, we used packet classification benchmarks
generated by ClassBench [17]. First, we generated about 1000
rules and 100000 search keys for each ACL1, ACL2, ACL3,
ACL4 and ACL5 filter by ClassBench. Then, we used these
benchmarks and evaluated by the computer program in OSX
with i7 Intel machine and 8 GB memory. In this case, we com-
pared our proposed scheme with two representative schemes
from recent works: TCAM scrubbing (TS) [11] and TCAM
checker (TC) [6] by implementing them in the same evaluation
environment. Table II shows the numbers of rules and the
numbers of search keys.

TABLE II: ACL filters and their search keys

Type ACL1 ACL2 ACL3 ACL4 ACL5
# Rules 950 972 991 988 838

# Search Keys 95001 97288 99684 99741 83828

Table III compares misclassifications for TS, TC, TX, and
k-TX, where the probability of bit flips in a word Pe = 0.1
and the probability of a scheme being used is Pc = 0.1. In this
experiments, we use tolerance degree d = 5 for TX. As shown
in Table III, we can see the significant tolerance improvement

for our proposed method k-TX. We can see also, TX cannot
handle multiple-bit-flip errors. Bold integers in the table show
the minimum of numbers of misclassifications.

Table IV compares the total times for TS, TC, TX, and k-
TX for all ACL filters in seconds. In TX, we can choose the
degree d to solve single-bit-flip errors. In k-TX, we can choose
the trade-off between time and performance by selecting s and
l in our proposed method k-TX. k-TX requires more time,
since it has combinatorial complexity and performs in a short
scrubbing interval. As shown in Table III, in term of tolerance
performance, k-TX with s = 7 and l = 4 is the best. However,
if we consider the time complexity, we can choose k-TX with
s = 5 and l = 2.

V. CONCLUSION

This paper proposes a novel soft-error tolerant TCAM for
multiple-bit-flip errors using partial don’t-care keys (X-keys),
called k-TX. k-TX corrects up to k-bit flip errors and signifi-
cantly enhances the tolerance of the TCAM against soft errors,
where k is the maximum number of bit flips in a word of
TCAM. k-TX consists of a TCAM, a preprocessed don’t-care-
bit index look-up memory (X look-up), and an ECC-SRAM.
First, k-TX randomly selects a search key. After that, k-TX
detects multiple-bit-flip errors using the generated X-keys by
X look-up. If the keys match the different locations, then a
soft error is detected and k-TX refreshes the TCAM words by
using a backup ECC-SRAM. Experimental results demonstrate
the advantages of k-TX. Moreover, the hardware overhead of
k-TX is small due to the use of only a single TCAM. k-TX
can be easily implemented and is useful for fault-tolerant packet
classifiers.

In the future, we are going to optimize the scrubbing interval
of k-TX and the refresh operation of the scrubbing interval.
Thus, we can improve the time performance of k-TX.
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TABLE III: Comparison of misclassifications for multiple-bit-flip errors for ACL5 filter

k-flip TS TC TX k-TX
(d = 5) (s = 4) (s = 5) (s = 5) (s = 6) (s = 6) (s = 7) (s = 7) (s = 7) (s = 7)

(l = 2) (l = 2) (l = 3) (l = 2) (l = 3) (l = 2) (l = 3) (l = 4) (l = 5)
ACL1

1 837 168 101 622 35 682 650 630 646 633 643 673
2 956 195 220 647 20 766 684 680 86 58 74 112
3 369 249 316 50 38 183 98 84 101 73 83 162
4 525 236 386 59 67 193 177 98 175 123 93 187
5 272 236 396 85 36 173 178 124 189 85 100 175

ACL2
1 21 48 30 17 27 11 31 25 32 8 5 5
2 9 36 20 20 12 21 11 13 17 10 3 6
3 32 95 72 31 31 40 25 19 25 27 22 29
4 19 18 68 15 17 14 11 6 11 16 13 14
5 17 41 150 18 18 14 18 13 31 8 5 1

ACL3
1 237 264 190 59 79 88 168 99 148 74 45 87
2 458 436 1342 83 128 105 287 137 264 82 49 261
3 453 561 1053 138 144 357 540 124 521 92 128 328
4 580 466 1024 128 158 377 566 198 522 324 105 430
5 542 513 968 128 189 204 529 264 439 170 117 259

ACL4
1 588 506 235 69 99 378 130 92 120 91 71 429
2 600 674 900 107 114 118 231 111 152 72 94 193
3 1164 603 1288 134 134 951 278 192 248 811 157 942
4 1301 528 849 685 250 278 320 152 236 105 118 317
5 1189 851 1708 155 163 495 605 186 284 107 120 639

ACL5
1 1167 375 258 79 180 437 131 89 151 109 74 468
2 941 622 729 110 271 404 312 164 278 187 92 569
3 4943 3314 1293 153 187 154 262 120 223 127 96 861
4 1488 720 1727 327 324 541 702 397 377 195 97 823
5 3186 686 3644 241 555 1057 742 364 674 424 176 1366

TABLE IV: Comparison of total detection and correction time for multiple-bit-flip errors in seconds

TS TC TX k-TX
(d = 5) (s = 4) (s = 5) (s = 5) (s = 6) (s = 6) (s = 7) (s = 7) (s = 7) (s = 7)

(l = 2) (l = 2) (l = 3) (l = 2) (l = 3) (l = 2) (l = 3) (l = 4) (l = 5)
ACL 1 to 5 13.156 28.291 45.245 26.471 30.879 34.293 32.493 39.402 40.995 68.041 81.296 56.506

Scientific Research on Innovative Areas #24650022, and JST-
NSC Grant-in-Aid for Japan-Taiwan Joint Research on the
Testing of Nano Devices.
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