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Abstract—This paper considers a method to realize index
generation functions. The parallel sieve method developed by
the authors efficiently implements an index generation function.
Unfortunately, it requires many Index Generation Units (IGUs)
with different sizes. This paper shows a design method that
requires only four IGUs with the same size. The presented
architecture can be used as a low-power content addressable
memory (CAM).

I. INTRODUCTION

One of the important operations in information processing
is to efficiently find desired data from a large data set. For
example, consider a network router. In the case of IPv4, IP
addresses are represented by 32 bits. A network router stores
about 40,000 of the 232 possible combinations of inputs, and
checks if an input pattern matches a stored pattern [2], [3].

A content addressable memory (CAM) is a device that
performs this operation directly [7]. CAMs are also used for
virus scanning and spam-mail filters. An index generation
function can be represented by a registered vector table such
as shown in Table II. It can be implemented by a CAM [7],
or FPGA [14], or a combination of memories and logic [1],
[6].

In a previous paper, the authors describe the parallel sieve
method [5]. It consists of basic pattern matching modules
called IGUs (Index Generation Units). Since an IGU uses
ordinary memory and some logic, the cost and the power
dissipation are much lower than CAM-based implementations.
We implemented a virus scanning system for 500,000 patterns
by using SRAMs and an FPGA. Due to high cost and power
dissipation1, implementation of such virus scanning circuit by
conventional CAMs is difficult. Unfortunately, the standard
parallel sieve method uses many IGUs with different sizes. So,
the update of the data is complicated. In this paper, we prove
that most index generation functions can be implemented by
four IGUs of uniform size. Thus, the implementation and
update of the data are much simpler than in the previous
method. The presented architecture can be used as a low-power
content addressable memory (CAM).

II. INDEX GENERATION FUNCTION

In this part, we introduce index generation functions.

1In a CAM, all the cells operate in parallel: The power dissipation of a
CAM cell per bit can be 150 times higher than SRAM [15]. Also, since the
CAM circuit is more complicated than memory, the cost of the CAM chip
can be 30 times higher than DDR SRAM [15].

TABLE 2.1
REGISTERED VECTOR TABLE.

Vector Index
x1 x2 x3 x4

0 0 1 0 1
0 1 1 1 2
1 1 0 0 3
1 1 1 1 4

TABLE 2.2
INDEX GENERATION FUNCTION.

Input Output
x1 x2 x3 x4 y1 y2 y3

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 1 0
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 0 1 1
1 1 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 1 1 0 0

Definition 2.1: Consider a set of k different binary vectors
of n bits. These vectors are registered vectors. For each
registered vector, assign a unique integer from 1 to k. A
registered vector table shows the index of each registered
vector. An index generation function represents a mapping:
{0, 1}n → {0, 1, 2, . . . , k}. It produces the corresponding
index if the input matches a registered vector, and produces 0
otherwise. k is the weight of the index generation function.

Example 2.1: Table II shows a registered vector table with
weight k = 4, and n = 4. The corresponding index generation
function is shown in Table 2.1.
Here, we assume that k is much smaller than 2n, the total
number of possible input combinations. Index generation
functions are used in address tables in the Internet, terminal
access controller for local area networks, databases, memory
patch circuits, dictionaries, password lists, etc.[9].

III. INDEX GENERATION UNIT (IGU)

In this section, we show an efficient method to implement
index generation functions. With this method, the number of
variables to the memory can be reduced. Fig. 3.1 shows the
Index Generation Unit (IGU). The programmable hash cir-
cuit has n inputs and p outputs, where p < n. The set of inputs
to the programmable hash circuit is X = (X1, X2), and the

201



Fig. 3.1. Index generation unit (IGU).
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Fig. 3.2. Double-input hash circuit.
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Fig. 3.3. Single-input hash circuit.

output is Y1 = (y1, y2, . . . , yp). It is used to rearrange the non-
zero elements. We consider two types of programmable hash
circuits. The first type is the double-input hash circuit shown
in Fig. 3.2. It performs a linear transformation yi = xi⊕xj
or yi = xi, where xi ∈ X1 and xj ∈ X2. It uses a pair
of multiplexers for each variable yi. The upper multiplexers
have the inputs x1, x2, . . . , xn. The register with �log2 n� bits
specifies which variable to select by the multiplexer. The lower
multiplexers have the inputs x1, x2, . . . , xn, except for xi. For
the i-th input, the constant input 0 is connected instead of xi.
By setting yi = xi⊕0, we can implement yi = xi. The second
type of a programmable hash circuit is the single-input hash
circuit shown in Fig. 3.3. It consists of only p multiplexers,
and selects p variables from n input variables. Note that
both types of ha circuits produce only specific kinds of hash
functions. We have found that these functions are suitable for
our application. For more discussion on this, see Section X.
The main memory has p inputs and q = �log2(k+1)� outputs.
The main memory produces correct outputs for registered
vectors. However, it may produce incorrect outputs for non-
registered vectors, because the number of input variables is
reduced to p. In an index generation function, if the input
vector is non-registered, then it should produce 0 outputs. To
check whether the main memory produces the correct output
or not, we use the AUX memory. The AUX memory has
q inputs and (n − p) outputs: It stores the X2 part of the
registered vectors for each index. The comparator checks if
the inputs are the same as the registered vector or not. If they
are the same, the main memory produces a correct output.

Fig. 3.4. When the input vector is registered.

Otherwise, the main memory produces a wrong output, and
the input vector is non-registered. Thus, the output AND
gates produce 0 outputs, showing that the input vector is non-
registered. Note that the main memory produces the correct
outputs only for the registered vectors.

Example 3.1: Consider the registered vectors in Table II.
The number of variables is four, but only two variables x1 and
x4 are necessary to distinguish these four registered vectors.
Fig. 3.4 shows the IGU. In this case, the programmable hash
circuit produces Y1 = (x1, x4) from X = (x1, x2, x3, x4).
The main memory stores the indices for X1 = Y1 = (x1, x4),
and the AUX memory stores the values of X2 = (x2, x3) for
the corresponding registered vector.
When the input vector is registered
Suppose that a registered vector (x1, x2, x3, x4) = (1, 1, 0, 0)
is applied to the IGU in Fig. 3.4. First, the programmable hash
circuit selects two variables, x1 and x4, and produces the value
X1 = (x1, x4) = (1, 0). Second, the main memory produces
the corresponding index (0, 1, 1). Third, the AUX memory
produces the values of X2 = (x2, x3) = (1, 0) corresponding
registered vector (1, 1, 0, 0). Fourth, the comparator confirms
that the values of X2 = (x2, x3) of the input vector is equal
to the output of the AUX memory. And, finally, the AND gate
produces the index for the input vector.
When the input vector is not registered
Suppose that a non-registered vector (x1, x2, x3, x4) =
(1, 0, 1, 0) is applied to the IGU in Fig. 3.5. Also in this
case, the main memory produces the vector (0, 1, 1), and the
AUX memory produces the values of X2 = (x2, x3) for the
corresponding registered vector (1, 1, 0, 0). However, in this
case, the comparator shows that X2 = (x2, x3) = (0, 1) is
different from the output X2 = (x2, x3) of the AUX memory.
Thus, the AND gate produces zero output, which indicates
that the input vector is not registered.
Unfortunately, not all index generation functions have the
nice properties of Example 3.1. So, we decompose the given
function into two:

1) A function that is implemented by an IGU.
2) The remaining part.

Given an index generation function f(X1, X2), where X1 =
(x1, x2, . . . , xp) and X2 = (xp+1, xp+2, . . . , xn), we decom-
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Fig. 3.5. When the input vector is not registered.

pose it into two disjoint sub-functions:

f(X1, X2) = f̂1(Y1, X2) ∨ f2(X1, X2),

where each column of the decomposition chart [8] for
f̂1(Y1, X2) has at most one non-zero element. In this case,
f̂1(Y1, X2) can be implemented by an IGU, where the inputs to
the main memory is Y1 = (y1, y2, . . . , yp). Since f2(X1, X2)
has fewer non-zero elements than the original function, it is
simpler to implement.

Theorem 3.1: Consider the IGU in Fig. 3.1. Assume that
Y1 = (y1, y2, . . . , yp), where yi = xi ⊕ xj for j ∈ {p +
1, p + 2, . . . , n}, or yi = xi, are applied to the input to the
main memory. If the main memory of an IGU implements the
function g̃(Y1), where g̃(Y1) produces the non-zero value if
the column Y1 of the decomposition chart for f̂1(Y1, X2) has a
non-zero value, and g̃(Y1) = 0 otherwise, then only the values
for X2 must be stored in the AUX memory.
(Proof) Consider the decomposition chart of the function
f̂1(Y1, X2). By the assumption of the construction, each
column of the decomposition chart has at most one non-zero
element. When a registered vector is applied to the IGU, the
main memory produces a non-zero output. In this case, the
X2 part of the input vector is equal to the output of the AUX
memory, indicating that the vector is registered. Thus, the IGU
produces the correct non-zero output.

Assume that the input vector is not registered, but the output
of the AUX memory is equal to the X2 part of the input vector.
We have two cases:

1) The main memory produces the zero-output.
In this case, even if the X2 part of the input vector is
equal to the output of the AUX memory, the output of
the main memory is zero. Thus, the IGU produces the
correct output.

2) The main memory produces a non-zero output.
Due to the construction of the IGU, the input vector is
registered. However, this contradicts the assumption. So,
such a case never happens.

�

IV. NUMBER OF VECTORS REALIZED BY IGU

In this section, we derive the expected number of registered
vectors implemented by an IGU.

TABLE 4.1
DECOMPOSITION CHART FOR f(X1, X2).

0 0 0 0 1 1 1 1 x3

0 0 1 1 0 0 1 1 x2

0 1 0 1 0 1 0 1 x1

0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 2 0 0
0 1 1 0 3 0 0 0 0 0 0
1 0 0 0 4 0 0 0 0 5 0
1 0 1 0 0 0 0 6 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 1 7 0 0 0 0 0 0 0
x6 x5 x4

Lemma 4.1: When 0 < α << 1, 1−α can be approximated
by e−α.

Lemma 4.2: Let f(X) be a uniformly distributed index
function of n variables with weight k, where k << 2n.
Consider a decomposition chart, and let p be the number of
bound variables. Then, the probability that a column of the
decomposition chart has all-zero elements is approximately
e−ξ, where ξ = k

2p .
(Proof) The probability that a function takes a non-zero value
is α = k

2n . The probability that a function takes a zero value
is β = 1 − α. Since the decomposition chart has 2n−p rows,
the probability that a column of the chart has all zero elements
is

β2n−p

= (1 − α)2
n−p

Since 0 < α << 1, by Lemma 4.1, 1−α is approximated by
e−α, we have

β2n−p � e−α·2
n−p

= e−
k
2p = e−ξ

�

Theorem 4.1: Consider a set of uniformly distributed index
generation functions f(x1, x2, . . . , xn) with weight k. Con-
sider an IGU whose inputs to the main memory are x1, x2, . . . ,
and xp. Then, the expected number of registered vectors of f
that can be realized by the IGU is 2p(1−e−ξ), where ξ = k

2p .
(Proof) Let (X1, X2) be a partition of the input vari-
ables X , where X1 = (x1, x2, . . . , xp) and X2 =
(xp+1, xp+2, . . . , xn). Consider the decomposition chart for
f(X1, X2), where X1 labels the column variables and X2

labels the row variables. If a column has at least one non-zero
element, then the IGU can realize an element of the column.
From Lemma 4.2, the probability that each column has at least
one non-zero element is 1 − e−ξ, where ξ = k

2p . Since there
are 2p columns, the expected number of registered vectors
realized by the IGU is 2p(1 − e−ξ). �

Example 4.1: Table 4.1 shows the decomposition chart for
a 6-variable index generation function with weight k = 7.
Note that X1 = (x1, x2, x3) denotes the bound variables, and
X2 = (x4, x5, x6) denotes the free variables. In this case, three
columns (x1, x2, x3) = (0, 1, 0), (0, 1, 1), and (1, 1, 1) have
all zero elements. In the other words, the fraction of columns
that have all zero elements is 3

8 = 0.375. In Lemma 4.2, we
have n = 6, p = 3, and ξ = k

2p = 0.875. It shows that the
probability that a column has all zero element is e−ξ = 0.4169.
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Fig. 5.1. Index generator implemented by hybrid method.

Fig. 5.2. Index generator implemented by super hybrid method.

In Theorem 4.1, the expected number of vectors realized by
the IGU is

2p(1 − e−ξ) = 8 × 0.583 = 4.665.

In Table 4.1, five vectors for 7, 3, 1, 2, 5 can be realized by
an IGU. The vectors for 4 and 6 should be realized by other
parts of the circuit.

Corollary 4.1: Consider a set of uniformly distributed index
generation functions f(x1, x2, . . . , xn) with weight k. Con-
sider an IGU whose inputs to the main memory are x1, x2, . . . ,
and xp. Then, the fraction of registered vectors of f that can
be realized by the IGU is

δ =
1 − e−ξ

ξ
,

where ξ = k
2p .

For example, when ξ = 1
4 , we have δ � 0.8848, when

ξ = 1
2 , we have δ � 0.7869, and when ξ = 1, we have

δ � 0.63212.
In [12], it is shown that when p = 2q − 1, where q =

�log2(k + 1)�, the IGU implements most of the registered
vectors. However, when k is large, the IGU requires a huge
main memory, since the main memory has 2q − 1 inputs and
q = �log2(k+1)� outputs. For example, when k = 500, 0000,
the size of the main memory is q2p = 19 × 237 = 2.375
terabits. Thus, we need a more efficient method.

V. PARALLEL SIEVE METHOD

The hybrid method shown in Fig. 5.1 uses one IGU and
a rewritable PLA [10]. In this method, the main memory has
p = q + 2 inputs, and realizes 88% of the registered vectors,
where q = �log2(k + 1)�. The rest of the registered vectors
are implemented by the rewritable PLA. The super hybrid
method shown in Fig. 5.2 uses two IGUs and a rewritable

IGU1

IGU2

IGU3

IGUr

Fig. 5.3. Index generator implemented by parallel sieve method.

PLA [11]. In this method, the main memory in IGU1 has
p = q + 1 inputs, and realizes 79% of the registered vectors.
The main memory in IGU2 has p = q inputs, and realizes
16.6% of registered vectors. The rest of the registered vectors
are implemented by the rewritable PLA.

By increasing the number of IGU’s, we have the parallel
sieve method shown in Fig. 5.3. This method is especially
useful when the number of the registered vectors is very large
[5].

Definition 5.1: The parallel sieve method is an implemen-
tation of an index generation function using multiple IGUs as
shown in Fig. 5.3. IGUi+1 is used to realize a part of the
registered vectors not realized by IGU1, IGU2, . . ., or IGUi.
The OR gate in the output combines the indices to form a
single output. In the standard parallel sieve method, the
number of inputs to the main memory is chosen as

pi = �log2(ki + 1)�,
where ki denotes the number of registered vectors to be
realized by IGUj , (j ≥ i).

Example 5.1: (Standard Parallel Sieve Method)
By using the standard parallel sieve method, realize an index
generation function with n = 40 and k1 = 49151.

1) In IGU1, the number of inputs for the main memory is
p1 = q1 = �log2(k1 + 1)� = 16. By Theorem 4.1, the
number of the vectors realized by IGU1 is 2p1(1−e−ξ1),
where ξ1 = k1

2p1 , that is 65536×0.527626 = 34578. The
number of the remaining vectors is k2 = k1 − 34578 =
14573.

2) In IGU2, since q2 = �log2(14573 + 1)� = 14, we have
p2 = q2 = 14. The number of the vectors realized
by IGU2 is 2p2(1 − e−ξ2), where ξ2 = k2

2p2 , that
is 16384 × 0.5891246 = 9652. The number of the
remaining vectors is k3 = k2 − 9652 = 4921.

3) In IGU3, since q3 = �log2(4921 + 1)� = 13, we
have p3 = q3 = 13. The number of vectors realized
by IGU3 is 2p3(1 − e−ξ3), where ξ3 = k3

2p3 , that is
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8192×0.4515768 = 3699. The number of the remaining
vectors is k4 = k3 − 3699 = 1222.

4) In IGU4, since q4 = �log2(1222 + 1)� = 11, we
have p4 = q4 = 11. The number of vectors realized
by IGU4 is 2p4(1 − e−ξ4), where ξ4 = k4

2p4 , that is
2048× 0.4493631 = 920. The number of the remaining
vectors is k5 = k4 − 920 = 302.

5) In IGU5, since q5 = �log2(302 + 1)� = 9, we have
p5 = q5 = 9. The number of vectors realized by
IGU5 is 2p5(1 − e−ξ5), where ξ5 = k5

2p5 , that is
512 × 0.4455861 = 228. The number of the remaining
vectors is k6 = k5 − 228 = 74.

6) In IGU6, since q6 = �log2(74 + 1)� = 7, we have
p6 = q6 = 7. The number of vectors realized by
IGU6 is 2p6(1 − e−ξ6), where ξ6 = k6

2p6 , that is
128 × 0.4390509 = 56. The number of the remaining
vectors is k7 = k6 − 56 = 18.

7) In IGU7, since the number of the remaining vectors is
only k7 = 18, they can be implemented by an IGU [12],
or rewritable PLA or an LUT cascade.

Note that, in IGUi, the main memory has pi inputs and pi
outputs, while the AUX memory has pi inputs and (n − pi)
outputs. Thus, the total amount of memory for IGUi is

pi2pi + (n − pi)2pi = n2pi.

Let u be the number of the IGUs. Then, the total memory for
the standard parallel sieve method is

n
u∑
i=1

2pi .

VI. PARALLEL SIEVE METHOD USING UNIFORM SIZES OF

IGUS

The standard parallel sieve method efficiently implements
index generation functions. Unfortunately, it requires many
IGUs with different sizes. This is inconvenient for the update
of registered vectors. In this section, we show that most index
generation functions can be realized with only four IGUs with
the same size.

Theorem 6.1: Consider an index generation function with
weight k. Then, more than 99.98% of the registered vectors
can be realized by the architecture shown in Fig. 6.1, where
the number of input variables to the main memory for each
IGU is p = �log2((k + 1)/3)�+1.
(Proof) Let k1 = k. We assume that for each IGU, the distri-
bution of the vectors is uniform. This can be accomplished by
careful design of programmable hash circuits.

1) In IGU1: Let ξ1 = k1
2p .

The number of realized vectors is 2p(1 − e−ξ1).
The number of remaining vectors is
k2 = k1 − 2p(1 − e−ξ1) = k1 + 2p(e−ξ1 − 1).

2) In IGU2: Let ξ2 = k2
2p = k1

2p + (e−ξ1 − 1).
The number of realized vectors is 2p(1 − e−ξ2).
The number of remaining vectors is

k3 = k1 − 2p(1 − e−ξ1) − 2p(1 − e−ξ2)
= k1 + 2p(e−ξ1 + e−ξ2 − 2).

Fig. 6.1. Realization of an index generation function using 4 IGUs.

3) In IGU3: Let ξ3 = k3
2p = k

2p + (e−ξ1 + e−ξ2 − 2).
The number of realized vectors is 2p(1 − e−ξ3).
The number of remaining vectors is

k4 = k1 + 2p(e−ξ1 + e−ξ2 − 2) − 2p(1 − e−ξ3)
= k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 − 3).

4) In IGU4: Let ξ4 = k1
2p + (e−ξ1 + e−ξ2 + e−ξ3 − 3).

The number of realized vectors is 2p(1 − e−ξ4).
The number of remaining vectors is

k5 = k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 − 3) − 2p(1 − e−ξ3)
= k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 + e−ξ4 − 4).

5) The fraction of remaining vectors is
k5
2p = k1

2p + (e−ξ1 + e−ξ2 + e−ξ3 + e−ξ4 − 4).
When k1 = 2p+2p−1, the fraction is about 1.42×10−4,
and is sufficiently small. �

Example 6.1: (Parallel Sieve Method with Uniform IGU
sizes)
Consider an index generation function with n = 40 and
k = 49151. Let us realize the function by the architecture
shown in Fig. 6.1. Suppose that the number of inputs to the
main memory in each IGU is p = 15. We assume that for
each IGU, the distribution of the vectors is uniform. This can
be accomplished by tuning the programmable hash circuit.

1) In IGU1: Let ξ1 = k
2p = 49151

215 = 1.5. By Theorem 4.1,
it realizes 2p(1 − e−ξ1) = 32768 × 0.776863 � 25, 456
registered vectors. The number of remaining vectors is
k2 = 23695.

2) In IGU2: Let ξ2 = k2
2p = 23695

215 = 0.723114. By
Theorem 4.1, it realizes 2p(1 − e−ξ2) = 32768 ×
0.5147611 � 16867 registered vectors. The number of
remaining vectors is k3 = 6828.

3) In IGU3: Let ξ3 = k3
2p = 6828

215 = 0.208374. By Theorem
4.1, it realizes 2p(1 − e−ξ3) = 32768 × 0.1880967 �
6163 registered vectors. The number of remaining vec-
tors is k4 = 665.

4) In IGU4: Let ξ4 = k4
2p = 665

215 = 0.0202942. By Theorem
4.1, it realizes 2p(1−e−ξ4) = 32768×0.0202942 � 658
registered vectors. The number of remaining vectors is
only k5 = 7.
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TABLE 7.1
REGISTERED VECTOR TABLE FOR 6-VARIABLE FUNCTION .

Vector Index
x1 x2 x3 x4 x5 x6

1 0 0 0 0 0 1
0 1 0 0 0 0 2
0 0 1 0 0 0 3
0 0 0 1 0 0 4
0 0 0 0 1 0 5
0 0 0 0 0 1 6
0 0 0 0 0 0 7

The above example shows that almost all the vectors can be
implemented by four IGUs. In the next section, we show a
method to implement all the vectors on four IGUs.

VII. DESIGN OF PROGRAMMABLE HASH CIRCUITS

To realize index generation functions by the parallel sieve
method, the design of the programmable hash circuits is vitally
important. Consider the following:

Example 7.1: In the index table in Table 7.1, the number of
0’s is much larger than that of 1’s. In this case, all the variables
are necessary to represent the function, since any change of
each variable from (0, 0, 0, 0, 0, 0) will change the value of the
function.

1) A single-input hash circuit is used.
Since all the variables are essential, the main memory
requires 6 variables.

2) A double-input hash circuit is used.
Consider the transform:

y1 = x1 ⊕ x5

y2 = x2 ⊕ x5

y3 = x3 ⊕ x6

y4 = x4 ⊕ x6

Table 7.2 shows the transformed function. In this case,
all the patterns are different. This means that these four
variables are sufficient to represent the function. In fact,
this is a minimum solution when a double-input hash
circuit is used.

3) A triple-input hash circuit is used.
Consider the transform:

z1 = x1 ⊕ x5 ⊕ x6

z2 = x2 ⊕ x4 ⊕ x6

z3 = x3 ⊕ x4 ⊕ x5

Table 7.3 shows the transformed function. In this case,
all the patterns are different. This means that three
variables are sufficient to represent the function. In fact,
this is a minimum solution when a hash circuit with any
number of inputs is used.

We use the following strategy to design the programmable
hash circuits:

• Use both single and double input hash circuits.
• In each IGU, maximize the number of vectors imple-

mented by the IGU.

TABLE 7.2
INDEX TABLE FOR IGU WITH DOUBLE-INPUT HASH CIRCUIT.

Vector Index
y1 y2 y3 y4

1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4
1 1 0 0 5
0 0 1 1 6
0 0 0 0 7

TABLE 7.3
INDEX TABLE FOR IGU WITH TRIPLE-INPUT HASH CIRCUIT.

Vector Index
z1 z2 z3

1 0 0 1
0 1 0 2
0 0 1 3
0 1 1 4
1 0 1 5
1 1 0 6
0 0 0 7

From here, we present a method to design programmable hash
circuits. To find the optimum setting of the programmable hash
circuits, we use the following:

Algorithm 7.1: 1) Let f be the index generation function
of n variables with weight k. Let p = �log2((k +
1)/3)�+ 1 be the number of the bound variables in the
decomposition chart.

2) Let the bound set {X1} be the initial set of essential
variables.

3) While |X1| ≤ p, find the non-essential variables xi that
makes the following value minimum:

|(# of vectors with xi = 0)− (# of vectors with xi = 1)|.
{X1} ← {X1} ∪ {xi}.

4) Let X1 = (x1, x2, . . . , xp) be the bound variables, and
let X2 = (xp+1, xp+2, . . . , xn) be the free variables.

5) For each pair of variables (xi, xj), where xi is a bound
variable, and xj is a free variable, if the exchange of
xi with xj increases the column multiplicity, then do it,
otherwise discard it.

6) For each pair of variables (xi, xj), where xi is a bound
variable, and xj is a free variable, if the replacement of
xi with yi = xi ⊕ xj increases the column multiplicity,
then do it, otherwise discard it.

VIII. UPDATE OF REGISTERED VECTORS

In some applications, the registered vectors must be updated
frequently. In our architecture, only memory data must be
updated, since interconnections are fixed.

An update of registered vectors can be performed by a series
of two operations: Deletion of a vector, and addition of a
vector [4]. A deletion of a vector is simple: just remove the
corresponding elements from the main memory and the AUX
memory. An addition of a vector is more complicated. If the
vector can be put into a vacant column of the decomposition
chart of any of the IGUs, then we can add the vector to the
main memory and the AUX memory. Otherwise, we have to re-
design all the IGUs, which requires longer time. The frequency
of the re-design can be reduced by adding a small rewritable
PLA as the fifth IGU.
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TABLE 9.1
NUMBERS OF REALIZED VECTORS BY IGUS (RANDOM FUNCTIONS WITH

WEIGHT 49151)

Estimated Experimental
IGU ki Realized ki Realized

Vectors Vectors
1 49151 25456 49151.00 25633.91
2 23695 16867 23517.09 16929.49
3 6828 6163 6587.60 6530.77
4 665 658 556.83 556.82

Total 49144 49150.99

TABLE 9.2
NUMBERS OF REALIZED VECTORS BY IGUS (IP ADDRESS TABLE)

Estimated Experimental
IGU ki Realized ki Realized

Vectors Vectors
1 7903 5070 7903 5267
2 2833 2395 2636 2329
3 438 426 307 307
4 12 11 0 0

Total 7902 7903

IX. EXPERIMENTAL RESULTS

We used two types of data to show the usefulness of the
approach experimentally.

A. Randomly Generated Functions

We generated uniformly distributed index generation func-
tions of n = 32 variables, and implemented functions by a
parallel sieve method of uniform IGU sizes. Table 9.1 shows
the numbers of vectors realized by four IGUs. One hundred
index generation functions with k = 49151 registered vectors
were generated. For the other combinations, the outputs are set
to zeros. The column headed Estimated denotes ones that were
obtained by Theorem 4.1. The column headed Experimental
denotes the average of 100 randomly generated functions.
In the experiment, only single-input hash circuits were used.
In the experiment, more vectors could be implemented than
estimated values. This is because hash functions are selected
to realize more vectors in IGU1, IGU2, and IGU3. Out of
100 functions, 99 functions were implemented by 4 IGUs. If
we use both single and double-input hash circuits, then all
the vectors can be implemented. We did similar experiments
for k = 1536, 3971, 6143, 12287, and 24575, and obtained
similar results. In these cases, only single-input hash circuits
were used. The tables are omitted due to the space limitation.

B. IP Address Table

We also used IP addresses of computers that accessed our
WEB site in a certain period. The table contains 7903 unique
addresses. The number of inputs is n = 32, and the number
of outputs is 13. Estimation required four IGUs, while the
experiment required only three IGUs using both single-input
and double-input hash circuits. In the case of IP address table,
the distribution of vectors were not uniform, and double-input
hash circuits were necessary.
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Fig. 9.1. Virus scanning circuit.

C. Virus Scanning System

We have developed a system that detects viruses [5]. A
complete system using only hardware is too complex, so we
used two-stage method: In the first stage, suspicious patterns
are detected by hardware, and in the second stage, a complete
match is performed by software only for the patterns detected
in the first stage. Here, we consider the hardware part in the
first stage. We check the text using a window of four charac-
ters, and the number of suspicious patterns is k = 497, 172.
Fig. 9.1 shows the circuit to detect the suspicious patterns.
Eight 4-stage shift registers are used to store four characters.
These registers works as a window. Note that the number of in-
puts to the memory is 4×8 = 32, and the number of outputs is
�log2(k+1)� = 19. A straightforward implementation requires
a memory with impractical size: �log2(k + 1)�232 = 76G
bits. If we use parallel sieve method shown in Section VI, we
need only 64M bits. In this case, single-input hash was not
sufficient; a double-input hash circuit was necessary to store
all the patterns into four IGUs.

X. CONCLUSION AND COMMENTS

In this paper, we presented a method to implement index
generation functions. We show that most index functions can
be realized with four IGU of equal sizes, where the number
of inputs to the main memory of each IGU is p = �log((k +
1)/3)� + 1. Experimental results using randomly generated
functions, IP address, and virus detection system confirmed
the validity of the approach.

In the programmable hash circuits, we use only single-input
and double-input hash circuits. However, we can use hash
circuits with more inputs. We considered the usefulness of
triple-input hash circuits in [13]. A heuristic method to find
a good linear transformation has been developed. In fact, the
use of triple-input hash was effective when the given functions
have a very large skew as shown in Example 7.1. However,
triple-input hash circuits are rather expensive to implement.
In the current applications, we consider that two-input hash
circuits are sufficient.
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