
A Design Method of Address Generators Using Hash Memories

Tsutomu Sasao
Department of Computer Science and Electronics,

Kyushu Institute of Technology,
Iizuka 820-8502, Japan

Abstract
An address generator produces a unique address from 1 to k
when the input that matches one of k registered vectors, and
produces 0 for other inputs. This paper presents a method
to design an address generator using a hash memory and an
LUT cascade. The hash memory realizes about 90% of the
registered vectors, while the LUT cascade realizes the re-
maining 10% of the registered vectors. This method uses
a non-disjoint functional decomposition to reduce the size
of memory. The experimental results using lists of English
words show that the usefulness of the approach. The to-
tal amount of memory is only 20% to 25% of the memory
necessary to implement the function by using an LUT cas-
cade alone. Theoretical analysis supports the experimental
results.

1 Introduction
Consider a set of k distinct binary vectors of n bits. An ad-
dress generation function produces a unique address from 1
to k for the input that matches a vector in the set, and pro-
duces 0 for vectors outside the set [12]. Address generation
functions are used in hardware for the internet [1], memory
patching circuits [7], etc. In this paper, we assume that the
number of vectors k in the set is much smaller than that of
the maximal possible input combinations 2n.
For example, consider an address generation function with
n = 32 and k = 40,000. The straightforward way to imple-
ment this address generation function is to store the truth
table into a memory. However, this method require a mem-
ory with unrealistic size, since the size of the memory is
proportional to 2n. Another method to implement the func-
tion is a two-level logic circuit or a Programmable Logic
Array (PLA). Unfortunately, this method still requires large
chip area.
The third method is a content addressable memory
(CAM)[6]. It requires a special circuit that cannot be im-
plemented by ordinary logic gates or memory. Recently,
we developed a method that uses an LUT cascade [13].
The LUT cascade is realized by a series connection of or-
dinary memories. It realizes address generation functions

efficiently when k is up to k = 1000. However, when k is
larger, an LUT cascade requires cells with �log2(k+1)�+1
inputs. So, it can be too large for the available resource in
an embedded system.
In this paper, we present an efficient method to implement
an address generation function by a hybrid method that uses
a hash memory and an LUT cascade. The hash memory im-
plements about 90% of the vectors, while the LUT cascade
realizes remaining 10% of the vectors. The hybrid method
requires only 20 to 25% of the memory necessary to imple-
ment the function by an LUT cascade alone. Theoretical
analysis is also done, which supports the experimental re-
sults.
Besides address generation functions, this design method
can implement an n-variable function, where the number of
non-zero outputs k is much smaller than 2n.

2 Address Generation Function

Definition 2.1 Consider a set of k binary vectors of n bits.
Denote these vectors as registered vectors. For each regis-
tered vector, assign unique integer from 1 to k. A registered
vector table shows the relation of registered vectors and
corresponding integers. An address generation function
produces the corresponding integer if the input matches to a
registered vector, and produces 0 otherwise. k is the weight
of the address generation function.

In this paper, we assume that k is much smaller than 2n, the
total number of input combinations.

Example 2.1 Table 2.1 shows a registered vector table
consisting of 7 vectors. The corresponding address gen-
eration function is shown in Table 2.2, where only non-zero
outputs are shown. It produces a 3-bit number (e.g., 001)
corresponding to the integer of the matched vector. When
no entry matches to the input vector, the function produces
000. (End of Example)

Table 2.1: Registered vector table
Address Vector

1 000010
2 010010
3 001010
4 001110
5 000001
6 111011
7 010111

Table 2.2: Address generation function
x1 x2 x3 x4 x5 x6 f2 f1 f0
0 0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1 1
0 0 1 1 1 0 1 0 0
0 0 0 0 0 1 1 0 1
1 1 1 0 1 1 1 1 0
0 1 0 1 1 1 1 1 1

3 Realization Using LUT Cascade
An address generation function can be directly imple-
mented by an ordinary memory. For example, the address
generation function shown in Table 2.2 can be directly im-
plemented by a 64-word memory, where each word consists
of 3 bits. In the case of an address generation function of
n variables, the size of the memory is proportional to 2n

even if the registered vector table contains only a few ele-
ments. For such a case, the LUT cascade realization greatly
reduces the necessary amount of memory.

Definition 3.1 Given a function f (X) : Bn → {0,1, . . . ,k},
where B = {0,1} and X = (x1,x2, . . . ,xn). Let (X1,X2) be
a partition of X. Let n1 be the number of variables in X1,
and let n2 be the number of variables in X2 (n1 + n2 = n).
The decomposition chart of f is a two-dimensional matrix
with 2n1 columns and 2n2 rows. The column labels corre-
spond to all possible binary numbers of n1 bits, and the row
labels correspond to all possible binary numbers of n2 bits.
And the corresponding matrix value is equal to f (X1,X2).
Among the decomposition charts for the function f , one
with X1 = (x1,x2, . . . ,xn1) and X2 = (xn1+1,xn1+2, . . . ,xn) is
the standard decomposition chart. The number of differ-
ent column patterns in a decomposition chart is the column
multiplicity. As a special case of a decomposition chart,
we also consider the case where X1 = X.

Definition 3.2 Let (x1,x2, . . . ,xn) be the ordering of the in-
put variables. The C-measure of f is the maximum column
multiplicity over all the standard decomposition charts for
the function f .

X

X

1

2
G

H

Figure 3.1: Realization of logic function by decomposition.

Figure 3.2: LUT cascade with intermediate outputs

Example 3.1 The C-measure of f1 = x1x2 ∨ x3x4 ∨ x5x6 is
3, while the C-measure of f2 = x1x5 ∨ x2x6 ∨ x3x4 is 8.

(End of Example)

Lemma 3.1 The C-measure of a logic function f with
weight k is at most k + 1.

Theorem 3.1 [2] For a given function f , let X1 be the vari-
ables corresponding to the columns, and let X2 be the vari-
ables corresponding to the rows of the decomposition chart.
Let µ be the column multiplicity of the decomposition chart.
Then, the function f is realized by the circuit shown in
Fig. 3.1. In this case, the number of connections that con-
nect two blocks H and G is �log2 µ�.

When the number of connections that connect two blocks
is smaller than the number of variables in X1, we have a
chance to reduce the amount of memory to realize the func-
tion. The decomposition shown in Fig. 3.1 is a disjoint
decomposition, since X1 and X2 do not have a common
element. By decomposing the given function iteratively,
we have an LUT cascade[9] shown in Fig. 3.2. An LUT
cascade consists of cells connected to each other by rails.
A function with a small C-measure can be realized with a
compact LUT cascade.

Theorem 3.2 [11] A logic function with C-measure µ can
be realized by an LUT cascade consisting of cells with at
most q+1 inputs and at most q outputs, where q = �log2 µ�.

A function with a small C-measure can be efficiently real-
ized by an LUT cascade. Thus, the C-measure can be used
to predict the complexity of the LUT cascade.

Theorem 3.3 [11] Consider an LUT cascade that realizes
a function f . Let n be the number of primary inputs; let
s be the number of cells; let q be the maximum number of
rails (i.e., the number of signal line between adjacent cells);
let p be the maximum number of inputs to cells; and let µ
be the C-measure of the function f . When p ≥ �log2 µ�+1,

there exists an LUT cascade for f that satisfies the following
relation:

s ≤
⌈

n−q
p−q

⌉

An address generation function with weight k is realized
by an LUT cascade with �log2(k+1)� rails. However, when
the value of k is large, the single LUT cascade requires cells
with many inputs, and this results in a large circuit. For ex-
ample, when k = 40,000, a cascade requires cells with 17
inputs and 16 outputs. In such a case, we can partition the
set of vectors into several groups, and realize each group by
a separate LUT cascade to reduce the total amount of mem-
ory. Such a method requires a special encoder to combine
the outputs of cascades[8].

4 Hash-Based Design

4.1 Basic Idea
For an address generation function f (X1,X2) with weight
k, we transform the input variable (X1,X2) into (Y1,X2) to
hash the address space. Let f̂ (Y1,X2) be the function af-
ter hashing, and consider its decomposition chart (Fig.4.1).
Let p be the number of variables in Y1. If the non-zero ele-
ments are uniformly distributed in the decomposition chart,
then each column of the decomposition chart has at most
one non-zero element when 2p > k. For simplicity, let us
assume that each column of the decomposition chart has at
most one non-zero element. Next, let

ĥ(Y1) = max
�b∈Bn2

f̂ (Y1,�b)

and realize ĥ(Y1) by a hash memory.
Note that the function f̂ depends on (Y1,X2). On the other
hand, the function ĥ(Y1) depends only on Y1. Thus, the out-
put of ĥ(Y1) may not be equal to f̂ (Y1,X2). We will check
the equality of the functions by the auxiliary (AUX) mem-
ory shown in Fig. 4.2. Note that the auxiliary memory has
q = �log2(k + 1)� inputs and r = n− p outputs. The auxil-
iary memory stores the X2 part of the registered vector in the
corresponding address. When the values of X2 are equal to
the values produced by the AUX memory, the output of the
hash memory f̂ (Y1,X2) is correct, and it is is sent to the OR
gates. Otherwise, the hash memory produces an incorrect
output, and the zero vector is sent to the OR gates. When
a column has more than one non-zero element, we decom-
pose f (X1,X2) into two: f (X1,X2)= f̂1(Y1,X2)∨ f2(X1,X2),
where f̂1(Y1,X2) has at most one non-zero element in each
column of the decomposition chart. On the other hand
f2(X1,X2) is the remaining address generation function with
smaller weights. Thus, f2(X1,X2) can be realized by a
smaller LUT cascade.
The features of the realization method are as follows: The
hash memory is efficient, but it realizes a limited class of

Y1

X2

Figure 4.1: Decomposition chart for the hashed function
f̂ (Y1,X2).

X2

X1
LUT Cascade

Hash
AUX AND

OR

Hash
Circuit Memory Memory

Comparator

X1

X2

X2

Y1

Yes

p

p

q

q q
q

r

r

p

r

r

Figure 4.2: Realization of address generation function by
the hybrid method.

address generation functions. On the other hand, the LUT
cascade realizes any address generation function, but it is
not so efficient when k is large. The hybrid method shown
in Fig.4.2 combines these two methods to implement an ad-
dress generation function efficiently.
The hybrid method is effective for the address generation
function, where k < 2p. In this method, the hash memory
and the auxiliary memory realize about 90% of the non-
zero elements, while the LUT cascade realizes the remain-
ing 10% of non-zero elements. This fact is confirmed by
the the theoretical analysis in Section 5, and the experimen-
tal results in Section 6. Note that in Fig. 4.2, the upper part
(i.e., the LUT cascade) uses a disjoint decomposition, while
the lower part, uses a non-disjoint decomposition.

4.2 A Method to Generate A Hash Function

A hash function is used to scatter the non-zero elements of
the address generation function uniformly in the decompo-
sition chart. In this paper, we use the following function
Y1 = (y1,y2, . . . ,yp), where yi = xi ⊕ x j and x j ∈ {X2}.
Generation of the hash function
In an address generation function f (X1,X2), let X1 =
(x1,x2, . . . ,xp) be the bound variables, and let X2 =

(xp+1,xp+2, . . . ,xn) be the free variable. Let f̂ (Y1,X2) be
the function which is obtained by replacing the bound vari-
ables X1 with Y1 = (y1,y2, . . . ,yp). Let w the number of
columns that have at least one non-zero element. To store
more registered vectors in the hash memory, we choose a Y1
that maximizes w. We use the following heuristic:

Algorithm 4.1 For each element xi (i = 1,2, . . . , p) in X1,
let yi = xi ⊕ x j. Select x j ∈ {X2} that makes w maximum.
Continue this operation while w increases.

The hash function is obtained by using Y1.

4.3 Design of Address Generator
For an address generation function f (X1,X2) with weight k,
let f̂ (Y1,X2) be the function that is obtained by replacing the
the bound variables X1 = (x1,x2, . . . ,xp) with (y1⊕x j1 ,y2⊕
x j2 , . . . ,yp ⊕ x jp), where, p > �log2(k + 1)�. For each �a ∈
Bp, when f̂ (�a,X2) has more than one non-zero output, re-
place the non-zero elements except for the minimum value
by 0, to obtain the function f̂1(Y1,X2). Next, let f̂2(Y1,X2) =
f̂ (Y1,X2)⊕ f̂1(Y1,X2). Since f̂1(Y1,X2) · f̂2(Y1,X2) = 0, we
have the relation: f̂ (Y1,X2) = f̂1(Y1,X2)∨ f̂2(Y1,X2). Note
that in the decomposition chart for f̂1(Y1,X2), each column
has at most one non-zero element. Next, let

ĥ(Y1) = max
�b∈Bn2

f̂1(Y1,�b),

and realize ĥ(Y1) by the hash memory. Since the value
of ĥ(Y1) can be different from the value of f̂1(Y1,X2), we
check if it is correct or not by using the auxiliary memory.
Also, by transforming xi = yi⊕x j, we generate the function
f2(X1,X2) from f̂2(Y1,X2). Finally, realize f2(X1,X2) by an
LUT cascade.

Example 4.1 Table 4.1 is a decomposition chart of the
6 variable function f (X1,X2) with weight k = 7 that ap-
peared in Table 2.2. In this function, transform the bound
variables X1 = (x1,x2,x3) into Y1 = (y1,y2,y3) = (x1 ⊕
x6,x2 ⊕ x5,x3 ⊕ x4). The decomposition chart of the hashed
function f̂ (Y1,X2) is shown in Table 4.2. In the hashed
function, the columns of the original decomposition tables
are permutated. Also, each row has a different permuta-
tion. In the original table, three columns for (x1,x2,x3) =
(0,0,0),(0,1,0),(0,0,1) have two non-zero elements. On
the other hand, in the decomposition table in Table 4.2 for
the hashed function ĥ(Y1,X2), only one column (y1,y2,y3)=
(0,1,0) has two non-zero elements. Let f̂1(Y1,X2) be the
function where the non-zero element 4 is replaced by 0.
The decomposition chart is shown in Table 4.3. Table 4.4
shows the decomposition chart of the function f̂2(Y1,X2)
that is realized by the cascade. In this case, the func-
tion has only one non-zero element. f̂1(Y1,X2) is imple-
mented by the hash memory shown in Table 4.5 and the

z 3

z 2

z 1

f1
f 2

f 3

x2
x1

x4x5x6
x3

y1

y2

y3

x1

x6

x6

x2

x3

x4

x4

x5

x5

Hash
Memory

AUX

Comparator

Memory

Figure 4.3: Realization of a 6-variable function by the hy-
brid method.

Table 4.1: Decomposition chart for f (X1,X2).

0 0 0 0 1 1 1 1 x3
0 0 1 1 0 0 1 1 x2
0 1 0 1 0 1 0 1 x1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 1 0 2 0 3 0 0 0
011 0 0 0 0 4 0 0 0
100 5 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 6
111 0 0 7 0 0 0 0 0

x6x5x4

auxiliary memory shown in Table 4.6. The output of the
hash memory ĥ(Y1) shows the non-zero value of the func-
tion f̂1 for the column Y1 = (y1,y2,y3). The auxiliary mem-
ory shown in Table 4.6 decides if the output is zero or not.
The function that is implemented by the LUT cascade has
non-zero output 4. The corresponding input values are
(x1,x2,x3,x4,x5,x6) = (0,0,1,1,1,0). Fig. 4.3 shows the
whole network for function f . The AUX memory and com-
parator check if (x4,x5,x6) is the input that produces the
non-zero output. The LUT cascade consists of AND gates.
The non-zero output is 4, and its binary representation is
(1,0,0). This is implemented by ORing the most significant
bit of the AND gates and the output of the cascade.

(End of Example)

Theorem 4.1 When Y1 = (y1,y2, . . . ,yp), where yi = xi ⊕
x j, for x j ∈ {X2}, is used as the hash function, only the
outputs for X2 are necessary in the auxiliary memory and
the comparator in Fig.4.2.

Table 4.2: Decomposition chart for f̂ (Y1,X2) (hashed func-
tion).

0 0 0 0 1 1 1 1 y3
0 0 1 1 0 0 1 1 y2
0 1 0 1 0 1 0 1 y1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 2 0 1 0 0 0 3 0
011 0 0 4 0 0 0 0 0
100 0 5 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 6 0 0 0
111 0 0 0 0 0 7 0 0

x6x5x4

Table 4.3: Decomposition chart for f̂1(Y1,X2).

0 0 0 0 1 1 1 1 y3
0 0 1 1 0 0 1 1 y2
0 1 0 1 0 1 0 1 y1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 2 0 1 0 0 0 3 0
011 0 0 0 0 0 0 0 0
100 0 5 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 6 0 0 0
111 0 0 0 0 0 7 0 0

x6x5x4

(Proof) The hash memory realizes the function ĥ(Y1). The
output value is derived using the outputs of the hash mem-
ory and the output of the auxiliary memory. In the decom-
position chart of the hashed function, the row elements of
the original decomposition chart are permuted. To verify
the correctness of the outputs of the hash memory, we need

Table 4.4: Decomposition chart for f̂2(Y1,X2)

0 0 0 0 1 1 1 1 y3
0 0 1 1 0 0 1 1 y2
0 1 0 1 0 1 0 1 y1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
011 0 0 4 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0

x6x5x4

Table 4.5: Function ĥ(Y1) realized by the hash memory.

y3 0 0 0 0 1 1 1 1
y2 0 0 1 1 0 0 1 1
y1 0 1 0 1 0 1 0 1

ĥ(Y1) 2 5 1 0 6 7 3 0

Table 4.6: Contents of the auxiliary memory

z1z2z3 x4 x5 x6
000 0 0 0
001 0 1 0
010 0 1 0
011 0 1 0
100 0 0 0
101 0 0 1
110 0 1 1
111 1 1 1

only to check the value of X2.
That is, if the output values of the auxiliary memory and
the values of X2 are the same, the values for X1 are also the
same, which is shown to be true by the relation yi = xi ⊕
x j. Thus, the outputs of the hash memory are equal to the
outputs. If the output values of the auxiliary memory and
the value of X2 are different, the output value is 0. (Q.E.D.)

Example 4.2 For the network shown in Fig. 4.3, we need
to check only X2 = (x4,x5,x6) in the output of the auxiliary
memory to see if the input produces the non-zero output.

(End of Example)

5 Number of Registered Vectors Re-
alized by Hash Memory

In this part, we assume that the non-zero elements are uni-
formly distributed in the decomposition chart, and obtain
the fraction of registered vectors realized by the hash mem-
ory.

Theorem 5.1 Let f be an n-variable address generation
function with weight k, and the non-zero elements be uni-
formly distributed in the decomposition chart. Then, the
fraction of registered vectors realized by the hash memory
shown in Fig. 4.2 is given by

δ 	 1− 1
2
(

k
2p)+

1
6
(

k
2p)2,

where q = �log2(k + 1)�, and p = |Y1| denotes the number
of bound variables in the decomposition chart for f (Y1,X2),
and k < 2p.

(Proof) Let k be the total number of non-zero elements in
the decomposition chart. Then, α = k

2n denotes the fraction
of the non-zero elements in the decomposition chart. Also,
β = 1−α denotes the fraction of the zero elements in the
decomposition chart. And, r = n − p = |X2| denotes the
number of free variables in the decomposition chart. In this
case, we have the following:

1. The probability that a column has only 0 elements is
β2r

.

2. The probability that a column has at least one non-zero
element is 1−β2r

.

In total, there are 2p columns, and the total number of non-
zero elements is k. For the column with more than one non-
zero element, the hash memory realizes only one non-zero
element. In this case, the fraction of registered vectors real-
ized by the hash memory is given by

δ = (1−β2r
) · 2p

k

= (1− (1−α)2r
) · 2p

k

= (1− (
2r

∑
i=0

(−1)i
(

2r

i

)
αi)) · 2p

k

= (
2r

∑
i=1

(−1)i+1
(

2r

i

)
αi) · 2p

k
.

Note that when 2p > k, the absolute value of the each term
of the above expression decreases with the increase of i.
Next, by approximating δ by using first three terms of the
above expression, we have

δ 	 [2rα− 22rα2

2
+

23rα3

6
] · 2p

k

	 [2r(
k
2n)− 1

2
22r(

k
2n)2 +

1
6

23r(
k
2n)3] · 2p

k

	 1− 1
2
(

k
2p)+

1
6
(

k
2p)2

(Q.E.D.)
For example, when k

2p = 1
4 , we have δ 	 0.8854.

Example 5.1 Consider the case of n = 40 and k = 1730
in Theorem 3.2. Since q = �log2(k + 1)� = �log2(1730 +
1)� = 11, the number of bound variables is p = 13.

1. When the function is realized by an LUT cascade
alone.
Let p = 13 be the number of inputs for cells. Then,
from Theorem 3.3, the number of levels of the cascade
is given by

� n−q
p−q

� = �40−11
13−11

� = �29
2
� = 15.

For each cell, the size of the memory is 2p ×q = 213 ×
11 (bits). Thus, the total amount of memory is 213 ×
11×15 = 1,351,680 (bits).

2. When the function is realized by the hybrid
method.
Since k < 2p, the assumption for the approximation in
Theorem 5.1 is valid. From Theorem 5.1, we have

δ 	 1− 1
2
(

k
2p)+

1
6
(

k
2p)2

= 1− 1
2
(

1730
213)+

1
6
(

1730
213)2 	 0.901.

The hash memory has p = 13 inputs and q = 11 out-
puts. The auxiliary memory has q = 11 inputs and
r = n− p = 27 outputs. The LUT cascade realizes the
address generation function with weight 1730× (1−
0.901) = 170. In this case, each cell in the cascade
has �log2(170 + 1)� = 8 outputs. Let the number of
inputs of cells be 10, then the number of levels in the
LUT cascade is

� n−q
p−q

� = �40−8
10−8

� = �32
2
� = 16

Note that the size of a cell except for the last stage is
210 × 8 (bits). The size of the cell in the last stage is
210 × 11 (bits). Thus, the total amount of memory for
the cascade is 210×8×15+210×11 = 134,144 (bits).
The size of the hash memory is 213 × 11 = 90,112
(bits). The size of the auxiliary memory is 211 × 27 =
55,296 (bits). Thus, the total amount of memory is
279,552 (bits), which is 20.7% of the total memory for
the LUT cascade-only realization.

In this example, the hybrid method requires smaller amount
of memory than the LUT cascade alone. (End of Example)

6 Experimental Results

6.1 Realization of English Word Lists
As for examples of address generators, we realized lists of
frequently used English words. Here, we use three kinds of
English word lists: List 1, List 2, and List 3. The number
of letters in the each word is at most 13, but we only con-
sider the first 8 letters. For the English words consisting of
fewer than 8 letters, we append blanks to the end of words
to make them 8-letter words. Each English alphabet letter
is represented by 5 bits. Thus, each English word is rep-
resented by 40 bits. The number of words in the lists are
1730, 3366, and 4705, respectively. In each word list, each
English word has a unique index, or an integer from 1 to k,
where k = 1730 or 3360 or 4705. The numbers of bits for
these indices are 11, 12, and 13, respectively.

Table 6.1: Realization of English word Lists.
List 1 List 2 List 3

of words: k 1730 3366 4705
of inputs: n 40 40 40
of outputs: q 11 12 13
of inputs for the hash
function: p 13 14 15
of columns with only one
non-zero element 1389 2752 4000
of columns with two or
more non-zero elements 165 293 342
of registered vectors not
realized by hash memory 176 321 363

Table 6.2: Memory sizes for English word lists.
Realization by an LUT Cascade alone

List 1 List 2 List 3
of inputs n 40 40 40
of outputs q 11 12 13
of inputs of cells p 13 14 15
of levels s 15 14 14
Total amount of
memory (bits) sq2p 1,351,680 2,752,512 5,963,776
Realization by the hybrid method

List 1 List 2 List 3
Size of hash memory q2p 90,112 196,608 425,984
Size of auxiliary
memory r2q 55,296 110,592 221,189
Size of cascade 134,144 301,056 304,104
Total amount of
memory (bits) 279,552 608,256 951,277

Next, generate the function realized by the hash memory.
The number of inputs for the hash function is �log2(k +
1)�+ 2.

List 1 consists of k = 1730 words. The number of bits for
the index is q = �log2(1+k)�= �log2(1+1730)�= 11. The
number of bound variables is p = q + 2 = 13. The number
of columns in the decomposition chart is 2p = 213 = 8192.
The number of columns that has only one non-zero element
is 1389. The number of columns that has two or more non-
zero elements is 165. The number of registered vectors that
are not realized by the hash table is 176. In other words,
about 90% of the registered vectors are realized by the hash
memory, and the remaining 10% of the registered vectors
are realized by the LUT cascade. Table 6.1 shows the ex-
perimental results for three English word lists.

Table 6.2 compares memory sizes. It shows that the hybrid
method requires much smaller amount of memory than the
LUT cascade alone.

Table 6.3: Realization of address generation functions pro-
duced by pseudo-random numbers (average of 100 func-
tions).

Function 1 Function 2 Function 3
of words: k 1730 3366 4705
of inputs: n 40 40 40
of outputs: q 11 12 13
of inputs for the hash
function: p 13 14 15
of columns with only one
non-zero element 1398.4 2737.7 4075.1
of columns with two or more
non-zero elements 160.0 302.7 307.0
of registered vectors not
realized by hash memory 171.6 325.6 322.9
of registered vectors not
realized by hash memory
(obtained by Theorem 5.1) 169.8 322.1 321.6

6.2 Realization of Randomly Generated
Functions

Next, we generated address generations functions with the
same sizes by pseudo-random numbers. Table 6.3 shows
the average of 100 randomly generated functions. In this
case, the average number of columns with only one non-
zero element is 1398.4, the average number of columns with
two or more non-zero elements is 160.0, and the average
number of registered vectors not realized by the hash mem-
ory is 171.6. We did similar experiments for List 2 and List
3.
These results show that the experimental results using real
word lists and the randomly generated functions do not have
much difference with the theoretical results obtained in Sec-
tion 5. This shows that the hash function generated by Al-
gorithm 4.1 effectively scatters the non-zero elements in the
decomposition charts.

7 Conclusions and Comments

In this paper, we presented a method to realize an ad-
dress generation function using a hash memory and an
LUT cascade. It uses both disjoint and non-disjoint func-
tional decompositions. The basic idea is as follows: First
decompose the address generation function f into two
non-overlapping address generation functions: f (X1,X2) =
f̂1(Y1,X2)∨ f2(X1,X2). In this case, f̂1(Y1,X2) is decom-
posed as f̂1(Y1,X2) = g(ĥ(Y1),X2), and each column of the
decomposition chart has at most one non-zero element. The
function g is realized by the comparator and the auxiliary
memory. Since f2 is also an address generation function
having smaller weight than f1, it can be implemented by

an LUT cascade, or further decomposed by using the same
technique.
This method is only useful for the functions with k << 2n.
Unfortunately, for most of the MCNC benchmark functions,
this method is not useful. In a typical MCNC benchmark
function, the number of non-zero outputs k is not so small
compared with the total number of the input combinations
2n.
Recent FPGAs contain embedded memories in addition to
the LUTs with 4 or 5 inputs. If we implement the address
generation function by using only LUTs with 4 or 5 inputs,
the resulting circuit will be too large to fit into the FPGA.
On the other hand, the method presented in this paper uses
the embedded memories in FPGAs, so we have a compact
and fast circuit.

Acknowledgments
This research is supported in part by the Grants in Aid for
Scientific Research of JSPS, and the grant of Kitakyushu
Innovative Cluster Project. Discussion with Prof. Jon T.
Butler improved English presentation. Mr. M. Matsuura
did experiments.

References
[1] ALTERA, “Designing switches and routers with APPEX

CAM,” White Paper, Oct. 2000, Altera Corporation.
[2] H. A. Curtis, A New Approach to the Design of Switching

Circuits, Van Nostrand, Princeton, N.J., 1962.
[3] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor,

“Longest prefix matching using Bloom filters,” ACM SIG-
COMM’03, August 25-29, 2003, Karlsruhe, Germany.

[4] T. Kohonen, Content-Addressable Memories, Springer Se-
ries in Information Sciences, Vol. 1, Springer Berlin Heidel-
berg 1987.

[5] V. N. Kravets and K. A. Sakallah. “Constructive library-
aware synthesis using symmetries”, Proc. DATE ’00, pp.
208-216, 2000.

[6] P-F. Lin and J. B. Kuo, “A 1-V 128-kb four-way
set-associative CMOS cache memory using wordline-
oriented tag-compare (WLOTC) structure with the content-
addressable-memory (CAM) 10-transistor tag cell,” IEEE
Journal of Solid-State Circuits, Vol. 36, pp. 666 - 675, April
2001.

[7] J. C. Moran, “Memory patching circuit,” US Patent
4028678.

[8] H. Qin and T. Sasao, “Design of address generators us-
ing multiple LUT cascade on FPGA,” SASIMI 2006, April
2006, pp.146-152.

[9] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization
of multiple-output function for reconfigurable hardware,”
International Workshop on Logic and Synthesis (IWLS01),
Lake Tahoe, CA, June 12-15, 2001, pp. 225-230.

[10] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[11] T. Sasao, Y. Iguchi, M. Matsuura, “LUT cascades and emu-
lators for realizations of logic functions,” RM2005, Tokyo,
Japan, Sept. 5 - Sept. 6, 2005, pp.63-70.

[12] T. Sasao, “Design methods for multiple-valued input ad-
dress generators,”(invited paper) International Symposium
on Multiple-Valued Logic, Singapore, May 2006.

[13] T. Sasao and J. T. Butler, ”Implementation of multiple-
valued CAM functions by LUT cascades,” International
Symposium on Multiple-Valued Logic, Singapore, May 17-
20, 2006 (accepted).

[14] H. Vandierendonck and K. D. Bosschere, “XOR-Based hash
functions,” IEEE Transactions on Computers, Vol. 54, No.
7, July 2005, pp.800-812.

