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Abstract

A weighted-sum (WS) function computes the sum of se-
lected integers. This paper considers a design method for
WS functions by LUT cascades. In particular, it derives
upper bounds on the column multiplicities of decomposi-
tion charts for WS functions. From these, we can estimate
the size of LUT cascades that realize WS functions. These
bounds are useful to realize WS functions, since they show
strategies to partition the outputs into groups.

1 Introduction

A weighted-sum function (WS function) computes sum of
selected integers: WS(x0, x1, . . . , xn−1) =

∑n−1
i=0 wixi,

where wi are integer weights and xi are binary variables.
The WS function is a mathematical model of various com-
putations: bit counting circuits, radix converters and dis-
tributed arithmetic for convolution operation, etc.

The LUT cascade has a regular structure and is easy to
design and modify. It efficiently implements the function
whose column multiplicity of the decomposition chart is
small [6, 2].

In this paper, we derive upper bounds on the column
multiplicities of decomposition charts for WS functions.
With these bounds, we can estimate the size of a circuit for
the consecutive outputs of the WS function, and we can ef-
ficiently realize WS functions with LUT cascades.

2 WS Functions

A WS function is a mathematical model of bit counting cir-
cuits, code converters, and distributed arithmetic, etc.

Definition 2.1 An n-input WS function �F ( �X) computes

WS( �X) =
n−1∑

i=0

wi · xi. (2.1)

Here, �X = (x0, x1, . . . , xn−1) is the input vector, �W =
(w0, w1, . . . , wn−1) is the weight vector, where wi (i =
0, 1, . . . , n−1) is an integer. Let �F = (fq−1, fq−2, . . . , f0)
be the binary representation of the WS function. Then

WS( �X) =
q−1∑

i=0

fi( �X) · 2i. (2.2)

Definition 2.2 [8] Consider a function �F ( �X) : Bn →
Bq, whereB = {0, 1}. Let ( �XL, �XH) be a partition
of �X , where �XL = (x0, x1 . . . , xnL−1) and �XH =
(xnL

, xnL+1, . . . , xn−1). The decomposition chart for f
is a two-dimensional matrix, where the column labels have
all possible assignments of values to variables in �XL, the
row labels have all possible assignments of values to vari-
ables in B to �XH , and the corresponding matrix value is
equal to �F ( �XL, �XH). Among the decomposition charts for
�F , the one whose column label values and row label values
increase when the label moves from the left to the right, and
from the top to the bottom, is the standard decomposition
chart. The number of different column patterns in the de-
composition chart is the column multiplicity. �XL denotes
bound variables, while �XH denotes free variables.

Note that, in an ordinary decomposition chart, the parti-
tions of variables and the order of labels in the columns and
rows are arbitrary. However, in the standard decomposition
chart, the labels of the columns are in increasing order of
�XL = (x0, x1, . . . , xnL−1), and the labels of the rows are
in increasing order of �XH = (xnL

, xnL+1, . . . , xn−1).

Example 2.1 Table 2.1 shows an example of a decompo-
sition chart for n = 5, where �XL = (x0, x1, x2) and
�XH = (x3, x4). Suppose that q = 2, that is, only two least
significant bits are considered. Note that each element is a
binary vector of two bits. In this case, only four different
vectors can exist. So, in the first row of the decomposition
chart, that is the row for (x3, x4) = (0, 0), at least two ele-
ments are equal. Suppose that the values for the columns



(x0, x1, x2) = (0, 1, 1) and (x0, x1, x2) = (1, 0, 0) are
equal: w1 + w2 = w0. This implies that in the sec-
ond row of the decomposition chart, that is in the row
for (x3, x4) = (0, 1), the corresponding two elements are
equal: w1 + w2 + w4 = w0 + w4. This is obvious since the
same numbers are added to the both elements. In similar
ways, we can show that in the remaining rows, the entries
for the columns (x0, x1, x2) = (0, 1, 1) and (x0, x1, x2) =
(1, 0, 0) are equal. That is, if the two elements in the first
row are equal, then the patterns of the two columns are
the same. Hence, we can see that the column patterns for
(x0, x1, x2) = (0, 1, 1) and (x0, x1, x2) = (1, 0, 0) are the
same. (End of Example)

Lemma 2.1 Let �F (x0, x1, . . . , xn−1) be an n-input q-
output WS function. Let ( �XL, �XH) be a partition of �X =
(x0, x1, . . . , xn−1), where �XL = (x0, x1, . . . , xnL−1) and
�XH = (xnL

, xnl+1, . . . , xn−1). Consider the decomposi-
tion chart of �F , where �XL denotes the bound variables and
�XH denotes the free variables. In this case, the column
multiplicity of the decomposition chart is at most 2q.

(Proof) When nL ≤ q, there can be no more than 2q

columns, and the lemma follows. Consider nL > q. In
the first row of the decomposition chart, i.e., the row for
�XH = (0, 0, . . . , 0), the number of different elements is at
most 2q , since each element of the decomposition chart is
a vector of q bits. Thus, there exist two different vectors �a,
�b ∈ {0, 1}nL , such that �F (�a,�0) = �F (�b,�0).

Next, consider the j-th row (j > 0). Let �c be the value of
�XH = (xnL

, xnL+1, . . . , xn−1). Then, by Definition 2.1,
�F satisfies the relations:

�F (�a,�c) = �F (�a,�0) + �F (�0,�c)
�F (�b,�c) = �F (�b,�0) + �F (�0,�c),

where the symbol + denotes the vector addition of binary
numbers that allows the carry propagations. Therefore, we
have the relation: �F (�a,�c) = �F (�b,�c). Since this relation
holds for all j > 0, two column patterns that correspond to
vectors �a and�b are the same.

From above, we can conclude that the column multiplic-
ity of the decomposition chart is at most 2q. (Q.E.D.)

Theorem 2.1 Let �F ( �X) be a WS function. Let ( �XL, �XH)
be a partition of �X = (x0, x1, . . . , xn−1), where �XL =
(x0, x1, . . . , xnL−1) and �XH = (xnL

, xnL+1, . . . , xn−1).
Consider the decomposition chart of �F , where �XL denotes
the bound variables and �XH denotes the free variables.
Let �W = (w0, w1, . . . , wn−1) be weight vector. Then, the
column multiplicity of the decomposition chart is at most
UB1 = 1 +

∑nL−1
j=0 |wj |.

(Proof) Consider the decomposition chart for WS( �XL,
�XH). In the the first row of the decomposition chart, �XH =
(0, 0, . . . , 0). Note that the column multiplicity is equal to
the number of different values in the first row.

Consider the case where all the weights are positive. In
this case, the number of different values is at most UB1,
since WS takes values from 0 to

∑nL−1
j=0 wj .

Consider the case where some of the weights are neg-
ative. Assume that w0, w1, . . . , wt−1 are negative, and
wt, wt+1, . . . , wnL−1 are positive. Then, the WS takes val-
ues from

∑t−1
j=0 wj to

∑nL−1
j=t wj . In this case, the number

of different values is at most 1+
∑t−1

j=0 |wj |+
∑nL−1

j=t wj =
1 +

∑nnL−1

j=0 |wj |. From these, we can conclude that the
column multiplicity of the decomposition chart is at most
UB1. (Q.E.D.)

A WS function usually has many outputs. When it is
implemented as a monolithic circuit, it can be very large.
However, if we partition the outputs into groups, and imple-
ment each group separately, then the whole circuit may be
smaller. The next two theorems give upper bounds on the
column multiplicity for the block for the least significant
i bits (LSBLOCK), and the block for the most significant
(q − i) bits (MSBLOCK). These bounds estimate the sizes
of component circuits.

Theorem 2.2 Let �FLSB( �X) be the logic function that rep-
resents the least significant i bits of a WS function. Then,
the column multiplicity of the standard decomposition chart
for �FLSB( �X) is at most UB2 = 2i.

(Proof) The least significant i bits represent the function

�FLSB( �X) = WS( �X) (mod 2i).

Since the column is computed in mod 2i, we can omit the
most significant (q − i) bits, and leave only the least sig-
nificant i bits. From Lemma 2.1, the number of different
column patterns is at most 2i. Hence, the column multi-
plicity of the standard decomposition chart is at most 2i.

(Q.E.D.)

Definition 2.3 Let α be a real number. The largest integer
that is not greater than α is denoted by �α�, and the smallest
integer that is equal to or greater than α is denoted by �α�.
Theorem 2.3 Let �FMSB( �X) be the function that repre-
sents from the i-th to the most significant bits of a WS func-
tion. Then, the column multiplicity of the standard decom-
position chart for �FMSB( �X) is at most

UB3 =
n−1
max
nL=1

[min{2nL , (�
∑nL−1

j=0 |wj |
2i

� + 1)2n−nL}],
(2.3)

where �W = (w0, w1, . . . , wn−1) is the weight vector. Here,
the least significant bit is the 0-th bit.



Table 2.1: Decomposition Chart for a WS function.

�XL = (x0, x1, x2)
000 001 010 011 100 101 110 111

00 0 w2 w1 w1 + w2 w0 w0 + w2 w0 + w1 w0 + w1 + w2

01 w2+ w1+ w1 + w2+ w0+ w0 + w2+ w0 + w1+ w0 + w1 + w2+
�XH = (x3, x4) w4 w4 w4 w4 w4 w4 w4 w4

10 w2+ w1+ w1 + w2+ w0+ w0 + w2+ w0 + w1+ w0 + w1 + w2+
w3 w3 w3 w3 w3 w3 w3 w3

11 w2+ w1+ w1 + w2+ w0+ w0 + w2+ w0 + w1+ w0 + w1 + w2+
w3 + w4 w3 + w4 w3 + w4 w3 + w4 w3 + w4 w3 + w4 w3 + w4 w3 + w4

(Proof) Let �XL = (x0, x1, . . . , xnL−1) be the bound
variables, and let �XH = (xnL

, xnL+1, . . . , xn−1) be the
free variables of the standard decomposition chart. Let nL

be the number of bound variables, and nH be the number
of free variables. It is clear that the column multiplicity is
at most 2nL , the total number of the columns. The maximal
number represented from the i-th bit to the most significant

bit is p = �
∑nL−1

j=0 |wj |
2i

�. So, we can regard it as a (p + 1)

valued function g : Bn → {0, 1, . . . , p}. Reorder the bound
variables so that moving from the left to right in the decom-
position chart will not decrease the value of the function g.
In this case, the number of changes of the columns in a row
is at most p+1. Since there are 2nH rows, the column mul-
tiplicity is at most 2nH · (p + 1), where nH = n − nL.
Hence, we have the theorem. (Q.E.D.)

3 LUT Cascade

An arbitrary logic function can be implemented by a single
memory. However, with the increase of the number of input
variables, the size of the memory increases exponentially.

In general, practical functions often have decomposition
charts with small column multiplicities.

Theorem 3.1 For a given function f , let �XL be the vari-
ables for the columns, and let �XH be the variables for the
rows, and let µ be the column multiplicity of the decom-
position chart. Then, the function f is realizable with the
network shown in Fig. 3.1. In this case, the number of
(two-valued) signal lines that connect two blocks H and G
is �log2 µ�.

When the number of signal lines that connect two blocks
is smaller than the number of variables in �XL, we can often
reduce the size of memory to implement the function. This
technique is functional decomposition.

By applying functional decomposition repeatedly to the
given function, we have the LUT cascade shown in Fig. 3.2.
The cascade consists cells, and the wires connecting adja-
cent cells are rails. Functions with small column multi-

xL
ya

xH
ybG

H

Figure 3.1: Realization of logic functions by decomposi-
tion.

Figure 3.2: LUT cascade with intermediate outputs.

plicities have compact LUT cascade realizations. To de-
rive column multiplicities, we need not use decomposition
charts. We can efficiently obtain the column multiplicity
by a binary decision diagram (BDD for CF) that represents
the characteristic function for the multiple-output function
[7, 10].

Theorem 3.2 [6] Let µ be the maximum width of the BDD
for the function f . Then, f can be implemented by the LUT
cascade consisting of cells with at most �log2 µ�+1 inputs.

Corollary 3.1 Let �FLSB( �X) be the logic function that rep-
resents the least significant i bits of a WS function. Then,
�FLSB( �X) can be realized with the LUT cascade consisting
of cells with at most q + 1 inputs and at most q outputs.

Corollary 3.2 Let the number of outputs of a WS function
be q. Then, the WS function can be realized with the LUT
cascade consisting of cells with at most q + 1 inputs and at
most q outputs.

Theorem 3.3 Consider an LUT cascade for a function f .
Let n be the number of primary inputs, s be the number of
cells, r be the maximum number of rails (i.e., the number
of lines between cells), k be the maximum number of inputs



of a cell, µ be the maximum width of the BDD for f , and
k ≥ �log2 µ�+ 1. Then, there is an LUT cascade for f that
satisfies the relation:

s ≤ �n − r

k − r
� (3.1)

(Proof) From the design method of the LUT cascade, we
have

k + (k − r)(s − 1) ≤ n.

Here, k in the left-hand side of the inequality denotes the
number of inputs of the left-most LUT, and (k − r)(s − 1)
denotes the sum of inputs for the remaining (s − 1) LUTs.
When the actual number of rails is smaller than r, we ap-
pend dummy rails to make the number of rails r. From this,
we have

s − 1 ≤ n − k

k − r
, and s ≤ n − r

k − r
.

Since s is an integer, we have (3.1). When this inequality
holds, we can realize an LUT cascade for f having cells
with at most k inputs. (Q.E.D.)

4 Applications of WS Functions

In this part, we consider design of bit counting circuits,
ternary-to-binary converters, decimal-to-binary converters,
and FIR filter. We also show the application to threshold
functions.

4.1 Bit Counting Circuit

The bit counting function WGT n [5]. is the simplest ex-
ample of an n-input WS function. It counts the number of
1′s in the inputs, and represent it by a binary number.

Example 4.1 Assume that n = 16. Then, we have
�W = (w0, w1, . . . , w15) = (1, 1, . . . , 1). Let �F =
(f4, f3, f2, f1, f0) be the outputs of the WS function, then
we can show that [5]:

f4 = x0 · x1 · · ·x15

f3 =
∑
⊕

i1<i2<···<i8

xi1 · xi2 · xi3 · · ·xi8

f2 =
∑
⊕

i1<i2<i3<i4

xi1 · xi2 · xi3 · xi4

f1 =
∑
⊕

i1<i2

xi1 · xi2

f0 = x0 ⊕ x1 ⊕ · · · ⊕ x15,

where i1, i2, . . . , i8 ∈ {0, 1, 2, . . . , 15}. By Theorem 2.1,
we can see that the column multiplicity of the decomposi-
tion chart is at most 16. By Theorem 3.1, this function can

Table 4.1: Truth table for a ternary-to-binary converter.

Binary − Coded Ternary Binary Decimal
Ternary

x3 x2 x1 x0 t1 t0 f3 f2 f1 f0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 1
0 0 1 0 0 2 0 0 1 0 2
0 1 0 0 1 0 0 0 1 1 3
0 1 0 1 1 1 0 1 0 0 4
0 1 1 0 1 2 0 1 0 1 5
1 0 0 0 2 0 0 1 1 0 6
1 0 0 1 2 1 0 1 1 1 7
1 0 1 0 2 2 1 0 0 0 8

be realized by a cascade with 5-input 4-output cells. If the
outputs is partitioned into (f1, f0) and (f4, f3, f2), and re-
alize them by the LSBLOCK and the MSBLOCK, respec-
tively, then the column multiplicities for them are 4 and 14,
respectively (see Table 4.2.) (End of Example)

4.2 Ternary-to-Binary Converter

Let �F = (fq−1, fq−2, . . . , f0) be the output of a ternary-
to-binary converter. Then, in general, fi depends on all the
inputs xj (j = 0, 1, . . . , n − 1). For ternary-to-binary con-
verters, we use the binary-coded-ternary code to represent
a ternary digit. That is 0 is represented by (00); 1 is rep-
resented by (01); and 2 is represented by (10). (11) is an
unused code. In the decomposition chart, the input variables
are grouped into pairs. The truth table of the 2-digit ternary
to 4-bit binary converter is shown in Table 4.1. In this case,
(11) is an undefined input, and the corresponding outputs
are don’t cares. In Table 4.1, the binary-coded-ternary rep-
resentation is denoted by �X = (x0, x1, x2, x3), the ternary
representation is denoted by �T = (t1, t0), and the binary
representation is denoted by �F = (f3, f2, f1, f0). When we
implement this converter by a WS function, the weight vec-
tor is �W = (w0, w1, w2, w3) = (1, 2, 3, 6). In this case, the
function is completely specified. For example, for the input
(x0, x1, x2, x3) = (1, 1, 1, 1), the output is (1, 1, 0, 0) since
WS = 1 + 2 + 3 + 6 = 12.

Example 4.2 Consider an 8-digit ternary-to-binary con-
verter. Since a ternary digit requires two bits, the to-
tal number of inputs is 2 × 8 = 16. Further, the num-
ber of output bits is 13. To implement the converter
by a WS function, the weight vector should be �W =
(1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187,
4374). The column multiplicity of this function is bounded
above by 1 +

∑14
i=0 wi = 5468, and it is almost impossi-

ble to implement the function by a single cascade. So, we
will implement it by a pair of cascades. Assume that we use
cells with 11 inputs, we have the cascade realization shown
in Fig. 4.1. The upper cascade LSBLOCK realizes the least



Table 4.2: Upper Bounds and actual numbers of the column
multiplicities.

Name Inputs Outputs Bits Bound Actual
WGT16 16 5 2 4 4 LSBLOCK

3 16 14 MSBLOCK

8 ter2bin 16 14 7 128 128 LSBLOCK
7 128 126 MSBLOCK

8421 5digit 20 18 9 512 512 LSBLOCK
9 1024 521 MSBLOCK

84-2-1 5digit 20 17 9 512 512 LSBLOCK
8 1024 522 MSBLOCK

2421 5digit 20 17 9 512 512 LSBLOCK
8 1024 313 MSBLOCK

5211 5digit 20 17 9 512 512 LSBLOCK
8 1024 313 MSBLOCK

FIR filter 17 15 8 256 256 LSBLOCK
7 1792 938 MSBLOCK

LSBLOCK

MSBLOCK

1

7

77
11 4

1

7

7 7
11 4

Figure 4.1: 8-digit ternary-to-binary converter.

significant 7 bits, while the lower cascade MSBLOCK re-
alizes the most significant 7 bits. From Theorem 2.2, the
column multiplicity of the decomposition chart for the LS-
BLOCK is 27 = 128. Thus, the number of rails for the LS-
BLOCK is �log2 128� = 7. From Theorem 2.3, the column
multiplicity of the decomposition chart for the MSBLOCK
is 128. Thus, the number of rails is �log2 128� = 7.

From Fig. 4.1, we can see that the necessary amount of
memory of the cascades is 7(211 + 211 + 28 + 211 + 211 +
28) = 32, 256 (bits), which is much smaller than the single-
memory realization. Note that the most significant bit i.e.,
14th bit is not used for valid inputs, and can be omitted.
The single memory requires 216 × 13 = 851, 968 (bits).

(End of Example)

4.3 Decimal-to-Binary Converter

In this part, we consider the design of various decimal-to-
binary converters.

Example 4.3 Consider a 5-digit decimal to binary con-
verter. When the decimal numbers are represented by the

2

9

3

9

98

9 9

12

3
9

12

4

3

LSBLOCK

MSBLOCK

Figure 4.2: 5-digit decimal-to-binary converter (ordering
original).

8421 BCD code, the number of binary inputs is 4× 5 = 20.
Note that the number of different combinations represented
by the valid inputs is 105. So, the number of don’t care
combinations is 220 − 105. Thus, the ratio of the don’t care
is (220 − 105)/220 
 0.90, In other words, about 90% of
the input combinations are don’t cares. This means that the
assignment of don’t care values greatly influences the com-
plexity of converter.

Suppose that we realize it by the WS function with
the weight vector �W = (1, 2, 4, 8, 10, 20, 40, 80, 100, 200,
400, 800, 1000, 2000, 4000, 8000, 10000, 20000, 40000,
80000). We use two LUT cascades to implement the func-
tion: the LSBLOCK realizes the least significant 9 bits, and
the MSBLOCK realizes the most significant 9 bits. From
Theorem 2.2, we can see that the column multiplicity for
the LSBLOCK is at most 29 = 512. From Theorem 2.3, we
can see that the column multiplicity for the MSBLOCK is
at most 1024. So, we can implement these blocks by using
cascade with cells of at most 11 inputs. With 12-input cells,
we can implement the WS function consisting of a pair of
cascades as shown in Fig. 4.2.

In the case of the decimal-to-binary converter, some
outputs depend on only a part of the inputs. Especially,
f0 = x0. That is, the least significant bit depends on only
x0. Also, the MSBLOCK does not depend on x0. When
we change the ordering of the inputs and outputs, we have
smaller cascades shown in Fig. 4.3. Note that in the LS-
BLOCK, three outputs {y3, y2, y1} depends on only 12 in-
puts. (End of Example)

Example 4.4 Table 4.3 shows the 5211, 2421, and 84-
2-1 codes, where the 9’s complement are easily ob-
tained. Similarly to the 8421 code, we can design
converters for 5211, 2421, and 84-2-1 codes. To
design these cascades, we used weights as follows:
�W = (1, 1, 2, 5, 10, 10, 20, 50, 100, 100, 200, 500, 1000,

1000, 2000, 5000, 10000, 10000, 20000, 50000). �W =
(1, 2, 2, 4, 10, 20, 20, 40, 100, 200, 200, 400, 1000, 2000,

2000, 4000, 10000, 20000, 20000, 40000). �W = (−1,−2,
4, 8,−10,−20, 40, 80,−100,−200, 400, 800,−1000,
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Figure 4.3: 5-digit decimal-to-binary converter (ordering
optimized).

Table 4.3: Various codes for decimal-to-binary converters.
Decimal 8421 5211 2421 84-2-1
Number Code Code Code Code

0 0000 0000 0000 0000
1 0001 0001 0001 0111
2 0010 0011 0010 0110
3 0011 0101 0011 0101
4 0100 0111 0100 0100
5 0101 1000 1011 1011
6 0110 1010 1100 1010
7 0111 1100 1101 1001
8 1000 1110 1110 1000
9 1001 1111 1111 1111

−2000, 4000, 8000,−10000,−20000, 40000, 80000).
Again, we use two modules to implement code converters:
the LSBLOCK realizes the least significant 9 bits, and the
MSBLOCK realizes the most significant 9 bits. Table 4.2
shows the upper bounds obtained from Theorem 2.2 and
Theorem 2.3, and actual numbers of the column multiplic-
ities. Note that the ordering of the variables are fixed to
(x0, x1, . . . , xn−1). For the LSBLOCKs, if we reorder the
variables, the column multiplicities were greatly reduced.

(End of Example)

4.4 FIR Filter

Digital filters are important elements in signal processing
[3], and can be classified into two types: FIR (Finite Im-
pulse Response) filters and IIR (Infinite Impulse Response)
filters. FIR filters implement nonrecursive structure, and
so always have stable operations. Also, FIR filters can have
linear phase characteristics, so they are useful for wave form
transmission.

To realize FIR filters, we can use Distributed Arithmetic
(DA) to convert the multiply-accumulation operations into
table-lookup operations [1, 12]. In this part, we consider an

Σ

Register

Output

Multiplication
by constant

w w w w

Figure 4.4: Parallel Realization of FIR Filter.

implementation of the distributed arithmetic of the FIR filter
by an LUT cascade. The LUT cascade realization require
much smaller memory than the single memory realization.
The structure of FIR filter mainly depends on the number of
taps N , the number of bits in the outputs q, and the number
of inputs k of the cells in the LUT cascade.

Definition 4.1 The FIR filter computes

Y(n) =
N−1∑

i=0

wi · X (n − i), (4.1)

where X (i) is the value of the input X at the time i, and
Y(i) is the value of the output Y at the time i 1 . wi is a
filter coefficient represented by a q-bit binary number, and
N is the the number of taps in the filter 2 .

Fig. 4.4 implements (4.1) directly. It consists of an N -
stage q-bit shift register, N copies of q-bit multipliers, and
an adder for N q-bit numbers. To reduce the amount of
hardware in Fig. 4.4, we use bit-serial method shown in
Fig. 4.5, where PSC denotes the parallel to series converter,
and ACC denotes the shifting accumulator, which accumu-
lates the numbers while doing shifting operations.

In this case, the inputs to w0, w1, . . . , wN−1 are either 0
or 1, and the multipliers are replaced by AND gates. The
combinational part in Fig. 4.5 has N -inputs and q-outputs.
In Fig. 4.6, the combinational part is implemented by the
ROM that realizes the WS function:

WS(x0, x1, . . . , xN−1) =
N−1∑

j=0

wj · xj .

This method of computation is the Distributed Arithmetic,
and is often used to implement convolution operations,
since many multipliers and an adder with many inputs can

1 X and Y denotes the values of signal in the filters, xi denotes a logic
variable, �X1 and �X2 denote the vectors of logic variables.

2 In general, the number of bits for hi and Y can be different. However,
for simplicity, we assume that they are represented by q bits.
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Figure 4.5: Serial Realization of FIR Filter.
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Figure 4.6: Serial ROM Realization of FIR Filter.

be replaced by one memory [1, 12]. It is applicable only
when the coefficients wi are constants. In FIR filters, the
coefficients wi are constants, so we can apply this method.
It reduces the amount of hardware by 1/q, but increases the
computation time by a factor of q.

Example 4.5 Consider a low-pass FIR filter with 33 taps.
Suppose that it is symmetric, so we need only to realize
the WS function with 17 inputs [3]. Let the number of
output bits be 15, and let the filter coefficients be �W =
(378, 188,−521,−1120,−713, 353, 614,−420,−1168,
−100, 1538, 920,−1925,−2720, 2167, 10164, 14125).
A single ROM realization requires 217 · 15 = 1, 966, 080
bits. Fig. 4.7 shows the LUT cascades for the filter, where
the LSBLOCK realizes the least significant 8 bits, and the
MSBLOCK realizes the most significant 7 bits. The bounds
obtained from Theorems 2.1 and 2.2 are shown in Table 4.2.
In this case, the ordering of the input and the output vari-
ables are optimized. Especially, the LSBLOCK is reduced
drastically since two outputs depend on only 12 variables.
The total amount of memory is 212 · 8 + 211 · 6 + 212 · 10 +
212 · 9 + 212 · 7 = 110, 592 bits. (End of Example)

In FIR filters, the weights wi are real numbers, and we
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6
12

MSBLOCK
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7

10 9
12 2

2

Figure 4.7: FIR Filter (Ordering Optimized).

represent them by fixed point fraction numbers. In this case,
we have two different methods to generate the truth table for
the FIR filter functions.

Definition 4.2 Let w0, w1, . . . , wn−1 be coefficients of an
FIR filter. The WS1 function (addition-after-rounding) is
generated first by rounding the coefficients wi into n-bit
precision, and then adding the coefficients. On the other
hand, the WS2 function (rounding-after-addition) is gen-
erated first by adding the coefficients as real numbers, and
then rounding the results into q-bit precision.

In general, WS1 function and WS2 function are differ-
ent. The WS1 function satisfies the definition of the WS
function, while the WS2 function may not.

We designed 192 different FIR filters by distributed
arithmetic. Major results [11] are

1. LUT cascades require much smaller memory than sin-
gle ROM realizations.

2. The WS1 functions require much smaller LUT cas-
cades than WS2 functions.

3. The WS2 functions produce higher quality filters than
WS1 functions.

In the digital signal processing, we often use fixed point
numbers to represent real numbers. In this case we
cannot avoid round-off errors. For example, when
(0.10111111 . . .)2 is represented by a binary number
of 8-bit precision, we can use either (0.1011111)2 or
(0.1100000)2. In many cases, we have an option to select
one of the two representations. Although, we can use a logic
minimizer for Boolean relation to find the better representa-
tion, it is very time consuming. The concept of WS function
simply this problem. Distributed arithmetic also can imple-
ment Discrete Cosine Transform (DCT), Discrete Fourier
Transform (DFT) and other convolution operations.

4.5 Threshold Function

Definition 4.3 A threshold function f(x0, x1, . . . , xn−1)

satisfies the relation: f = 1 if
n∑

i=1

wixi ≥ T , and f = 0



otherwise, where (w0, w1, . . . , wn−1) are weights and T is
the threshold.

Although, a threshold function is not a WS function, we
can estimate the column multiplicity of a threshold function
from the theory of WS functions.

Theorem 4.1 The column multiplicity of a decompo-
sition chart of the threshold function with weights
(w0, w1, . . . , wn−1) is at most

UB4 = 1 +
n−1∑

i=0

wi. (4.2)

(Proof) The column multiplicity of a decomposition chart
for f is not greater than that of the WS function having the
same weights. By Theorem 2.1, the column multiplicity
of the WS function is at most UB4. Hence, we have the
theorem. (Q.E.D.)

Threshold functions are useful for neural nets. So, we
can see that LUT cascade is promising for neural nets, when
the sum of weights are small.

5 Conclusion and Comments

In this paper, we first defined weighted-sum functions as
a mathematical model of bit counting circuits, radix con-
verters and distributed arithmetic. Then, we derived upper
bounds on the column multiplicity for the standard decom-
position chart for a WS function.

If the weights are bounded above by a polynomial func-
tion of n, then the column multiplicity is also bounded
above a polynomial function of n. In the case of radix con-
verters, the weights exponentially increase with n. The de-
tailed analysis of radix converters that convert p-nary num-
bers into q-nary numbers is shown in a separate paper [9].

We also presented methods to realize WS functions by
LUT cascades. In some cases, the size of LUT cascades
increases exponentially with n. In such a case, we can re-
duce the size of the cascade by partitioning the outputs into
several groups. Another method to reduce the size of cas-
cades is to partition the inputs into several groups. For each
group, we can implement a WS function, and then we can
obtain the sum by using an adder. This will greatly reduce
the necessary amount of memory. Note that LUT cascades
can be used for these WS functions and the adder.
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