
Optimization Methods in Look-Up Table Rings

Tsutomu SASAO Masaki KUSANO Munehiro MATSUURA

Department of Computer Science and Electronics,
Kyushu Institute of Technology

Iizuka 820-8502, Japan

April 27, 2004

Abstract

A Look-Up Table (LUT) ring consists of memories, pro-
grammable interconnections and a control circuit. It se-
quentially emulates an LUT cascade representing a multiple-
output logic function. In this paper, we consider the realiza-
tion of multi-output functions with LUT rings using large
memories. In contrast to previous approaches where the
number of inputs to each LUT cell is fixed, we allow the
number of inputs to be different for each cell. With this
new approach, we can reduce the number of levels and the
total amount of memory by selecting the optimal size for
each cell and by packing the memory. We have developed
an optimization system for LUT ring designs using dynamic
programming. In trials, our system was able to reduce the
amount of memory required for some designs by as much as
60%.

1 Introduction

This paper considers a realization of a multiple-output func-
tion by using a large memory. Such realizations are useful
for reconfigurable applications. Several methods exist to im-
plement logic functions by using large memories.

1) Direct Method. This method directly implements logic
functions by a memory. To implement an n-input m-
output function, we need a memory with m2n bits,
which is impractical when n is large.

2) Memory and Microprocessor. This method uses a
general-purpose microprocessor and a memory. First,
it represents the given logic functions by a netlist of
random logic circuit of gates. Then, it uses an existing
logic simulator to evaluate the function. Both the data
for the netlist and the simulation program are stored in
the memory. With this method, the cost for the develop-
ment is low, but power dissipation is high relative to the
performance.

3) Branching Program Machine [2, 3]. This method uses
a dedicated circuit to evaluate logic functions instead of
a general purpose microprocessor. First, it represents a
given logic function by a decision diagram (DD). Then,
it evaluates the function by traversing the DD using a
dedicated circuit. This method stores only the data for
the DD in the large memory. Since it has no instruc-
tion fetch, it is faster and dissipates less power than the
method using a general microprocessor. To evaluate an
n-variable function, this method requires O(n) memory
references.

4) Murgai-Hirose-Fujita’s Method [4]. This method
uses a dedicated event-driven logic emulator. Instead
of a DD, this method uses the netlist of a multi-level
random logic network of large look-up tables (LUTs)
to represent the logic function. This method stores the
LUT data in a large memory. It also uses another mem-
ory to store the netlist of the LUT network. The com-
putation time is proportional to the number of LUTs in
the network.

5) Look-up Table Ring [6]. This method first represents
the logic function by a BDD, then transforms it into an
LUT cascade. And, finally it emulates the cascade by an
LUT ring. This method stores the LUT data in a large
memory. In this method, the structure of the circuit is a
cascade rather than random logic, so the control part is
simpler and faster than Murgai-Hirose-Fujita’s method.
Also, logic synthesis is simpler. This method is faster
than the branching program machine, since there are
fewer memory references.

Table 1 compares the various methods of implementing logic
functions with large memories.

In this paper, we consider optimization techniques for
LUT rings. The new techniques are as follows:

1) To find better LUT cascade, we use a new decomposi-
tion method for multiple-output functions [7]. We use a
BDD for characteristic function to find the decomposi-
tion with intermediate outputs.

X1 = (x1,x2)
0 0 1 1
0 1 0 1

0 0 0 1 1 0
X2 = (x3,x4) 0 1 1 1 1 1

1 0 0 1 1 0
1 1 0 0 0 0

Figure 1: Decomposition table for four-variable function.

2) To increase the speed and to reduce the size of memory,
we use LUTs with different number of inputs. We use
a dynamic programming approach to find the optimal
solutions.

3) To reduce the size of memory, we use memory packing.

An LUT ring was called an LUT cascade in [6]. However,
in this paper, the sequential circuit that emulates an LUT cas-
cade will be called an LUT ring.

2 Definitions and Basic Properties

This section introduces terminology used in the paper.

2.1 Functional Decomposition

Let X = (x1,x2, . . ., xn) be an ordered set of the input vari-
ables. Let {X1} be an unordered set of the variables in X .
(X1,X2, . . .,Xs) is a partition of X if {X1} ∪ {X2} ∪ · · · ∪
{Xs} = {X} and {X1} ∩ {X2}∩ · · ·∩ {Xs} = φ. A partition
is a bipartition if s = 2. The number of variables in X is
denoted by |X |.

Given a logic function f (X) and a bipartition (X1,X2) of
X , consider the table with 2|X1| columns and 2|X2| rows. For
each column and each row, assign a distinct binary number
as a label, and let the value of the corresponding element be
the value of f . Such a table is a decomposition chart. The
number of the different column patterns in the decomposition
chart is the column multiplicity, denoted by µ. Fig. 1 shows
an example of a decomposition chart for a four-variable func-
tion. In this example, µ = 2. Let (X1,X2, . . .,Xs) be a partition
of X . Then, f (X) can be represented as

f (X) = g(h1(X1),h2(X1), . . .,hu(X1),X2). (1)

The representation of form (1) is called a decomposition of
f . In this case, f (X) can be realized by the network shown in
Fig. 2, where u = �log2 µ�. In the decomposition, X1 and X2

are called bound variables and free variables, respectively.

2.2 Characteristic Function

Let X = (x1,x2, . . ., xn) be input variables. Let F =
(f1(X), f2(X), . . ., fm(X)) be a multiple-output function. A

X1 X2

 f H G
u

Figure 2: Realization of function f by decomposition.

characteristic function of a multiple-output function is

χ(X ,Y) =
m�

i=1

(yi ≡ fi(X)), (2)

where yi (i = 1,2, . . ., m) are variables that denote out-
puts. The characteristic function for an n-input m-output
function is a two-valued logic function with (n + m) vari-
ables. In this case, in addition to the input variables xi

(i = 1,2, . . .,n), we use output variables y j for f j (j =
1,2, . . ., m). Let B = {0,1}, �a ∈ Bn, �b ∈ Bm, and F(�a) =
(f1(�a), f2(�a), . . ., fm(�a)) ∈ Bm. Then, we have

χ(�a,�b) = 1 (If�b = F(�a))
= 0 (Otherwise).

2.3 BDD and Functional Decomposition [7]

A binary decision diagram for characteristic function (BDD-
for-CF) of a multiple-output function F = (f1, f2, . . ., fm) is
the BDD representing the characteristic function χ for F . We
assume that in the BDD, variable yi appears in a position
lower than the variables that influence fi.

When a logic function is represented by a BDD, the num-
ber of different nodes for the free variables that are directly
connected from the nodes of bound variables is equal to the
column multiplicity. Next, we consider the functional de-
composition of a BDD-for-CF. Let (X1,X2) be the set of input
variables, and let (Y1,Y2) be the set of output variables. Let
(X1,Y1,X2,Y2) be the ordering of the BDD-for-CF. Let µ be
the column multiplicity for the BDD-for-CF of the decom-
position (XA,Xb), where XA = (X1,Y1) and XB = (X2,Y2). In
this case, to compute µ by the BDD, we ignore the edges be-
tween constant 0 nodes and output nodes. When we realize a
multiple-output function by the network shown in Fig. 3, the
necessary and sufficient number of lines between two blocks
is �log2 µ�. The outputs of H that are connected to G are
intermediate variables.

By applying the decompositions (s−1) times, we have an
LUT cascade shown in Fig. 4. Let ki be the number of inputs
to the i-th cell. Then, we have ki = |Xi|+ui−1.

Table 1: Comparison of various methods.
Method Data Structure Evaluation Method Evaluation Time

Direct Truth table Decoder Constant
Memory and MPU Random logic of gates Software simulator O(# Gates)
Branching Program Machine Decision diagrams Special hardware O(n)
Murgai-Hirose-Fujita’s Random logic of LUTs Special hardware O(# LUTs)
LUT Ring Cascade of LUTs Special hardware O(n)

Y1 Y2

X1 X2

H G
u

Figure 3: Decomposition with intermediate outputs.

u1 u2 us-1
XsX1 X2

Y1 Y2 Ys

Figure 4: LUT cascade.

3 LUT Cascades and LUT Ring

3.1 LUT Cascade

An LUT cascade is shown in Fig. 4, where multiple-output
LUTs (cells) are connected in series to realize a multiple-
output logic function. The wires connecting adjacent cells
are called rails. Let ki be the number of inputs to the i-th
cell, and let ui be the number of rail outputs of the i-th cell,
i.e., the number of the rails between i-th cell and (i + 1)-th
cell. Let |Yi| be the number of the external outputs of the
i-th cell, i.e., the outputs that are connected to the primary
output terminals. Let s be the number of cells in a cascade.
The size of the i-th cell is 2ki ·ui. The total amount of memory
necessary to implement the cascade is

L(X1,Y1,X2,Y2, . . .,Xs,Ys) =
s

∑
i=1

2ki · (ui + |Yi|). (3)

The LUT cascade is simple and fast, but the restricted na-
ture of its interconnections means it is not so flexible. Once
the numbers of rails, inputs and outputs of cells, and the num-
ber of the cells are fixed, the number of functions realizable
in the cascade is limited.

3.2 LUT Ring

In Fig. 4, by adding feedback lines between Ys and X1, we
have an LUT ring. An LUT Ring with a single unit is shown
in Fig. 5. It sequentially emulates an LUT cascade. Although
it is slower than the LUT cascade, it has much more flexibil-
ity. In the LUT ring, the numbers of rails, inputs and outputs
of cells, and the number of cells are flexible. We can consider
an LUT ring with multiple units. However, for simplicity, in
this paper, we will consider only the LUT ring with a single
unit.

In the LUT ring, all the data for the cells are stored in a
memory. The Input Register stores the values of the primary
inputs; the MAR (Memory Address Register) stores the ad-
dress of the memory; the MBR (Memory Buffer Register)
stores the values of the outputs of the memory; the Mem-
ory for Logic stores the content of cells in the cascades; the
Programmable interconnection connects between the In-
put register and the MAR, and also between the MBR and
the MAR; the Memory for Interconnection stores method
for interconnections; and the Control obtains functional val-
ues by sequentially accessing the memory.

We can formulate the design problem for an LUT ring as
follows:

Problem 1 Given a multiple-output function F = (f1(X),
f2(X), . . ., fm(X)) and the ordering of the input variables X,
obtain the partition of X that satisfies the following condi-
tions:

1. The total amount of memory is at most L0.
2. The number of cells of the cascade is the minimum sub-

ject to condition 1.
3. The total amount of memory is the minimum subject to

condition 2.

In an LUT ring, all the least significant k bits of the start-
ing address for k-input cells should be zeros. For exam-
ple, the starting address of a 10-input cell in a 32-kilo-word
memory should have the form xxxxx0000000000. Thus, the
amount of memory actually needed to implement the LUT
ring may be larger than the value obtained by equation (3).

We can reduce the number of levels of the cascade and/or
the total amount of memory by using cells with different
numbers of inputs and/or by memory packing.

Input
Register

Programmable
Interconnections

Control

Memory
for
Logic

MBR

Output Register

MAR

Memory for
Interconnections

A
ddress

Figure 5: LUT Ring with a single unit.

x1x2x3 x4 x5x6x7

 f

x1 x2 x3 x4, , ,=()1
x5 x6 x7, ,=()2

X
X

x1x2x3 x4 x5x6x7

 f

x1 x2 x3
x7

, ,

,

=(
)

1
x4 x5 x6, ,=(

)
2

X
X

(a) (b)

Figure 6: Two different LUT cascades.

4 Reduction using Cells with Differ-
ent Number of Inputs

4.1 Principle of Reduction

A straightforward method to design an LUT ring is to use
cells with the same numbers of inputs. However, we can
often reduce the total amount of memory by using cells with
different numbers of inputs. In fact, we can often reduce the
number of inputs to a cell without increasing the number of
inputs of other cells.

Example 1 Consider the LUT cascade shown in Fig. 6. Sup-
pose that the input variables are partitioned into (X1,X2),
where X1 = (x1,x2,x3,x4) and X2 = (x5,x6,x7), as shown in
Fig. 6(a). In this case, the first block has 4 inputs and 3 out-
puts, and the second block has 6 inputs and 1 output.

Next consider the case, where the input variables are
partitioned into (X1,X2), where X1 = (x1,x2,x3) and X2 =
(x4,x5,x6,x7) as shown in Fig. 6(b). In this case, the first
block has 3 inputs and 2 outputs, and the second block has
6 inputs and 1 output. Therefore, the second realization of
this function requires less memory than the first realization.

(End of Example)

The next theorem generalizes the above example.

Theorem 1 Let (X1,X2, . . .,Xs) be a partition of the vari-
ables X, and let ui be the number of the rail outputs of the
i-th cell. Suppose that one variable xl is moved from Xi to
Xi+1. If ui is reduced by one, then we can reduce the total
amount of memory for the cascade.

(Proof) By the hypothesis of the theorem, the numbers of
inputs and outputs for the i-th cell are reduced by one by the
move of the variable. Let ki be the number of inputs for the
i-th cell. Then, the amount of memory for the i-th cell is
reduced from 2ki ·ui to 2ki−1 · (ui−1). On the other hand, the
size of the (i +1)-th cell remain unchanged. This is because
the number of the rail outputs of the i-th cell is reduce by one,
but one external variable xl is appended to the inputs of the
(i + 1)-th cell. Also, the sizes of other cells do not change.
Hence, we have the theorem. (Q.E.D.)

By using this theorem as well as other technique, we can
reduce the total amount of memory and the number of levels
by changing the partition X . In the next section, we will show
an algorithm that solves Problem 1 with a dynamic program-
ming approach.

4.2 Algorithm to Find a Partition of X That
Minimizes the Number of Levels

Consider a BDD-for-CF for an n-input m-output function.
Let Z = (z1, z2, . . ., zn+m) be the set of input and output vari-
ables. Let the height of the root node be n + m, and let
the height of the constant node be 0. Let µzi be the col-
umn multiplicity with respect the partition (ZA,ZB), where
ZA = (z1, z2, . . ., zi−1) and ZB = (zi, zi+1, . . ., zn+m). Let uzi =
�log2 µzi�. Let mem(zi) be the amount of memory for the
cells of the cascade from z1 up to the variable zi. Let s(zi) be
the number of cells in the cascade from z1 up to the variable
zi. Let mem opt(zi) and s opt(zi) be the minimum memory
and minimum cells of the optimal solutions found so far, re-
spectively. Let k be the maximum number of inputs of cells.

Algorithm 1 Fig. 7 shows the pseudo-code to find an LUT
ring with the minimum number of cells by dynamic program-
ming. In this algorithm, the maximum number of inputs of
cells are restricted to k.

The 7th and 8th lines of Algorithm 1 generate the parti-
tion. The 11th line checks if the number of inputs is equal to
or less than the maximum number allowed. The lines after
13 check if the partition is optimum or not.

Algorithm 1 constructs optimum LUT cascades with two
cells, three cells, and so on, sequentially, and finally, it finds
the optimum LUT cascade with s cells. It finds the cas-
cade with the minimum number of levels and the minimum
amount of memory by dynamic programming.

1 dyna cascade(BDD,n,m,k) {
2 for(i← n+m; i > 0; i← i−1){

(Compute the number of the rail outputs)
3 Compute µzi and uzi ←�log2µzi�;
4 mem(i)← 0;
5 }
6 mem(n +m+1)← 0, s(n +m+1)← 0, un+m+1← 0;
7 for(i← n+m; i > 1; i← i−1){
8 for(j← i−1; j > 0; j← j−1){
9 p←(The number of input variables in (zi,zi−1, . . . ,z j))
10 q←(The number of output variables in (zi,zi−1, . . . ,z j))
11 if(p+uzi+1 ≤ k){
12 mem(j)← mem(i)+(uzj +q)2p+uzi+1 , s(j)← s(i)+1;
13 if(s(j) < s opt(j)){(update the optimum level)
14 s opt(j)← s(j);
15 mem opt(j)←mem(j);
16 }
17 else if(s(j) = s opt(j) & mem(j) < mem opt(j)){

(update the optimum memory size)
18 mem opt(j)←mem(j);
19 }
20 }
21 }
22 }
23 return mem opt(1), s opt(1)
24 }

Figure 7: Algorithm 1: Pseudo-code to find an LUT ring
with the minimum number of cells.

5 Reduction by Memory Packing

In an LUT ring, the data of the cells is stored entirely in the
memory for logic. In this case, we can reduce the necessary
amount of memory by memory packing.

5.1 Principle of Memory Packing

We will illustrate the idea of memory packing by an example.

Example 2 Fig. 8 shows an LUT cascade for an 11-input 3-
output function, where 4-input cells are used. Fig. 9 shows
the memory mapping of cell data, where the memory has
6-bit address inputs, and each word consists of four bits.
(A0,A1, . . .,A5) in Fig. 9 denotes the address, where (A0,A1)
denotes the page number. (D0,D1,D2,D3) denotes the out-
puts of the memory. The dark areas in the figure are un-
used. In Fig. 9, only data for a single cell is stored in each
page. Note that half of the memory area in Fig. 9 is unused.
By moving the cell data in page 3 to the D3 part of page 1,
and the cell data for page 2 to the D3 and D2 parts of page
0, we can reduce the necessary amount of memory by half.

(End of Example)

In an LUT ring, the data of a cell must be read simulta-
neously. Thus, the data for each cell must be stored in the

same page of the memory. However, if there is any vacancy,
the data for multiple cells can be stored in the same page.
By using this property, we can reduce the required amount
of memory. This is called memory packing. To implement
memory packing, we need a shifter that shifts the bits be-
tween MBR and MAR and a mapping memory.

Algorithm 1 produces the LUT cascade with the minimum
number of cells. Note that the numbers of inputs for cells can
be different. Cells with different numbers of inputs require
different numbers of address lines in an LUT ring. In Fig. 10,
data for two cells are stored in the same page. In this case,
only three bits are necessary to specify the address. We need
a circuit to supply constants to the MAR. In the following, we
present a heuristic algorithm to reduce the necessary amount
of memory by packing.

5.2 Algorithm for Memory Packing

Algorithm 2 Let wi be the number of outputs of the i-th cell,
where i = 1,2, . . ., s. Assume that the word length of the mem-
ory is at least w = max

i
{wi}. Recall that the i-th cell has ui

rail outputs and |Yi| external outputs. So, wi = ui + |Yi|.
1. Reorder the cells in descending order of the numbers of

inputs. For the cells with the same numbers of inputs,
reorder them in descending order of the numbers of out-
puts. Let v1,v2, . . ., vs be the numbers of outputs of the
cells.

2. i← 1.
3. If (i = s) then stop the algorithm else j← i +1.
4. Check if v j outputs of j-th cell can be moved to the i-th

page. If possible, move them and go to step 5, otherwise,
go to step 6.

5. If unused area remains in the i-th cell then go to step 7
else go to step 8.

6. If j < s then go to step 7 else go to step 8.
7. j← j +1 and go to step 4.
8. i← i +1 and go to step 3.

Example 3 Fig. 11 illustrates memory packing. First, the
cells are reordered in descending order of the number of the
inputs (Fig. 11(b)). Then, they are reordered in descending
order of the number of the outputs (Fig. 11(c)). Then, the
cell for g1 is moved to the first page (Fig. 11(d)). Finally,
the cells for g10, g11 and f are moved into the second page
(Fig. 11(e)). (End of Example)

6 Experimental Results

We implemented the algorithms in C, and applied them to
MCNC benchmark functions. First, we obtained the parti-
tions where all the cells have the same numbers of inputs

x1x2x3x4 x5 x6

cell1 cell2

x7 x8

cell3 cell4

x9 x10 x11

 f 1 f 2 f 3

g1

g2

g3

g4

g5

Figure 8: Example of LUT cascade.

0 0 0 0 0 0

A4 A3 A2 A1 A0

0 0 1 1 1 1
0 1 0 0 0 0

0 1 1 1 1 1
1 0 0 0 0 0

1 0 1 1 1 1
1 1 0 0 0 0

1 1 1 1 1 1

g2g1

4bits

D3 D2 D1 D0

page0

page1

page2

page3

A5

g4g31 f

2 f

3 f

g5

Figure 9: Memory mapping of LUT data.

(Case 1). Second, we obtained the partitions by Algorithm
1, where cells can have different numbers of inputs to reduce
the total amount of memory (Case 2). Third, we obtained the
partitions where cells can have different numbers of inputs to
make the numbers of levels minimum (Case 3). We imple-
mented the cascade so that the data may fit into a memory
with one mega bits (i.e., 64 kilo words × 16 bits).

For each case, we packed memory by Algorithm 2. Ta-
ble 2 compares three cases with and without memory pack-
ing. In the table, Name denotes the name of the function;
In denotes the number of inputs; Out denotes the number
of outputs; k denotes maximum number of inputs of cells;
s denotes the number of cells in the cascade; Memory de-
notes the amount of memory (mega bits); non-pack denotes
the case without memory packing; and pack denotes the
case with memory packing. Experiments were done in the
following environment: CPU: Pentium4 Xeon 2.8GHz, L1
Cache: 32KB, L2 Cache: 512KB, Memory: 4GB, OS: Red-
Had Linux 7.3, Compiler: gcc version 2.96.

In an LUT cascade, we can reduce the number of cells
by increasing the total amount of memory. In Case 1, we

0 0 0 0 0 0

A4 A3 A2 A1 A0

0 0 0 1 1 1

g2g1

4bits

page0

A5

g6g5g4g3

Figure 10: Memory mapping for the cells with different num-
bers of inputs.

 f

g6

g1

g3

g5g4

g2

g9g8g7

g11g10

 f

g9

g1

g3

g8g7

g2

g6g5g4

g11g10

 f

g6

g1

g3

g5g4

g2

g9g8g7

g11g10

 f

g6

g1

g3

g5g4

g2

g9g8g7

g11g10

(a) (b) (c)

(d)

 f
g6

g1

g3

g5g4

g2

g9g8g7

g11g10

(e)

Figure 11: Example of memory packing.

selected the value of k that produces a cascade with the min-
imum number of levels, under the condition that all the cells
fit in a 1-Mega-bit RAM. In Case 2, we used the same k as
Case 1, and obtained the partitions that minimize the total
amount of memory and the number of cells. As shown in Ta-
ble 2, for most functions, Case 2 required less memory than
Case 1. As for the computation time, the most CPU time was
spent for the optimization of BDD-for-CFs. In Table 2, the
most time-consuming one was k2, which took 63.7 seconds.

Fig. 12 shows the cascade for the benchmark function
C432, where k = 15. The number of levels (cells) is four,
and the amount of memory after packing is 0.75 Mega bits.
By using cells with different numbers of inputs, we could
reduce the amount of memory for the LUT ring. Next, we
compare Case 1 with Case 3. For some benchmark func-
tions, we could reduce the number of levels by using cells
with more inputs than in Case 1.

Fig. 13 shows cascades for the benchmark function mi-
sex2. When k = 14, we produced the cascade with four cells,
while when k = 16, we produced a cascade with only three
cells. Note that the cells have different numbers of inputs in
both cascades. On the other hand, if we used the cells with
the same numbers of inputs k = 16, then we could not realize
the cascade using a 1-Mega-bit memory.

Table 2: The amount of memory for LUT rings to realize benchmark functions.
Case 1 Case 2 Case 3

Cells with the Minimal Memory Minimum Levels
Name In Out Same numbers of inputs Different numbers of inputs Different numbers of inputs

Memory Memory Memory
k s non-pack Pack k s non-pack Pack k s non-pack Pack

C432 36 7 15 4 2.000 1.000 15 4 1.250 0.750 15 4 1.250 0.750
apex1 45 45 13 10 1.250 1.000 13 10 0.721 0.596 13 10 0.721 0.596
apex2 39 3 15 3 1.000 0.500 15 3 1.000 0.500 15 3 1.000 0.500
apex3 54 50 12 16 0.938 0.625 12 16 0.666 0.416 13 13 1.135 0.760
comp 32 3 12 3 0.051 0.016 12 3 0.051 0.016 12 3 0.051 0.016
duke2 22 29 14 3 1.000 0.750 14 3 0.376 0.376 14 3 0.376 0.376
e64 65 65 13 6 0.750 0.750 13 6 0.313 0.313 13 6 0.313 0.313
k2 45 45 13 10 1.125 1.000 13 10 0.721 0.596 13 10 0.721 0.596
misex2 25 18 14 3 0.750 0.500 14 3 0.078 0.068 16 2 0.750 0.750
seq 41 35 13 8 1.000 0.625 13 8 0.626 0.376 15 7 1.113 0.751
vg2 25 8 13 3 0.375 0.250 13 3 0.250 0.125 16 2 1.500 1.000
x6dn 39 5 13 5 0.625 0.250 13 5 0.375 0.188 16 4 1.125 0.625
ratio 1 0.669 0.592 0.398 0.926 0.647

cell1

14
6

cell2

8
8

cell3

6
7

cell4

8

7

Figure 12: LUT cascade for C432.

cell1

12
5

cell2

7
7

cell3

6
5

cell4
15

cell1

14
5

cell2

11
5

cell3

3

153

k=14

k=16

Figure 13: LUT cascade for misex2.

7 Conclusion

In this paper, we presented design methods for LUT rings.
By using cells with different numbers of inputs, and by pack-
ing the memory, we could reduce the amount of memory by
60%, on the average of original memory sizes. To imple-
ment an LUT ring, we need a Memory for Interconnection
that stores the connection information. To do memory pack-
ing, we need a shifter and a mapping memory. However,
the amount of additional hardware is much smaller than the
Memory for Logic in Fig. 5. Thus, our method effectively
reduces the total chip size and increases the performance.

In Table 2, we showed only the functions, where each of
them we could realize by single cascade. For the functions
with more inputs and/or more outputs, we have to partition
the outputs into groups, and realize them by separate cas-
cades. Such cascades can also be emulated by the architec-

ture shown in Fig. 5. Details of the results will be reported
by a separate paper.

8 Acknowledgments

This research is partly supported by Japan Society for the
Promotion of Science (JSPS), and MEXT, Kitakyushu Inno-
vative Cluster, and Takeda Foundation. Prof. Jon T. Butler
and Dr. Marc Riedel improved English presentation.

References

[1] R. K. Brayton, “The future of logic synthesis and verification,”
in S. Hassoun and T. Sasao (eds.), Logic Synthesis and Verifi-
cation, Kluwer Academic Publishers, 2002.

[2] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno, “A hardware
simulation engine based on decision diagrams,” Asia and South
Pacific Design Automation Conference (ASP-DAC’2000), Jan.
26-28, Yokohama, Japan, pp. 73-76.

[3] Y. Iguchi, T. Sasao, and M. Matsuura, “Implementation of
multiple-output functions using PROMDDs,” 30th Interna-
tional Symposium on Multiple-Valued Logic, Portland, Oregon,
U.S.A., May 23 - 25, 2000, pp. 199-205.

[4] R. Murgai, F. Hirose, and M. Fujita, “Logic synthesis for a
single large look-up table,” Proc. International Conference on
Computer Design, pp. 415-424, Oct. 1995.

[5] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[6] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization
of multiple-output function for reconfigurable hardware,” In-
ternational Workshop on Logic Synthesis (IWLS-2001), Lake
Tahoe, CA, June 12-15, 2001, pp. 225-300.

[7] T. Sasao and M. Matsuura, “A method to decompose multiple-
output logic functions,” 41st Design Automation Conference,
June 2004, (accepted for publication).

