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Abstract

In this paper, we consider the minimization of the longest
path length (LPL) for binary decision diagrams (BDDs) and
heterogeneous multi-valued decision diagrams (MDDs).
Experimental results show that: (1) For many logic func-
tions, node minimization of BDDs also minimizes the LPLs
of BDDs. (2) When we use heterogeneous MDDs for repre-
senting logic functions and minimize the memory sizes of
heterogeneous MDDs, we can reduce both memory sizes
and LPLsto 86% and 72% of corresponding BDDs, respec-
tively. On the other hand, when the memory limitations are
set to the memory sizes of BDDs, the LPLs can be reduced
to 54% of BDDs.

1 Introduction

Binary decision diagrams (BDDs) [4] and multi-vaued
decision diagrams (MDDs) [8] are extensively used to rep-
resent logic functions, and various optimization algorithms
for BDDs and MDDs have been proposed. Most optimiza-
tion algorithms for decision diagrams (DDs) minimize the
number of nodesin DDs. However, logic simulation[1, 12]
and software synthesis [2, 7, 16] require DDs with smaller
path length, as well as fewer nodes. In the evaluation of
logic functions using DDs, the evaluation time is propor-
tional to the path length of DDs. Therefore, minimization of
the path length reduces evaluation time of logic functions.
The minimization of average path length (APL) proposed in
[6, 11, 16, 18] reduces the average evaluation time of logic
functions. While in logic simulation, the minimization of
average evaluation timeis very useful, in embedded system
using Real-Time Operating System (RTOS) [2, 9, 22, 28]
and Pass Transistor Logic (PTL) [5, 10, 25], the minimiza-
tion of longest evaluation time is more important.

Since software programs on RTOS have to finish execu-
tion within a specified time, the accurate and fast estimation
of the longest execution time is important for task schedul-
ing [2, 9, 22, 28]. In software synthesis using DDs, the
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longest execution time of the generated software programs
depends on the longest path lengths (LPLs) of DDs. Thus,
the minimization of LPLs can reduce the longest execution
time, and will allow to execute more tasks within a specified
time. Similarly, critical pathsin PTL circuits can be derived
directly from BDDs representing logic functions by consid-
ering the LPLs of the BDDs. Thus, LPL minimization of
BDDs can reduce the delay time of circuits[5, 10, 25].

In this paper, we consider the minimization of LPLs for
BDDs and heterogeneous MDDs. Sincethe LPL of aBDD,
aswell as the number of nodes, depends on the variable or-
dering, we can reduce the LPL of the BDD by trying differ-
ent variable orderings. On the other hand, in heterogeneous
MDDs, both orderings and partitions of binary variablescan
be optimized for the LPL minimization[16, 17, 19, 20]. Our
experimental results show that for many logic functions,
node minimization of BDDs minimizesthe LPLs of BDDs,
aswell. Also, we show that the LPLs of the heterogeneous
MDDs can be reduced to 54% of the L PL s of corresponding
BDDs, on average, without increasing memory size.

This paper is organized as follows. Section 2 shows the
necessary terminology and definitions. Section 3 considers
the LPL minimization for BDDs and shows experimental
results for BDDs. Section 4 considers the LPL minimiza-
tion for heterogeneous MDDs and compares heterogeneous
MDDs with BDDs.

2 Preliminaries

In this paper, we use standard terminologies for BDDs,
reduced ordered binary decision diagrams (ROBDDs) [4],
MDDs, and reduced ordered multi-valued decision dia-
grams (ROMDDs) [§].

2.1 HeterogeneousMDD

Definition 2.1 Let f(X) be a two-valued logic function,
where X = (x1,X2,...,%n) isan ordered set of binary vari-
ables. Let {X} denote the unordered set of variablesin X.
Let X © X. If {X} = {Xs} U{X}U...U{X}, {X} # @



and {Xi}N{X;} =@ (i # j), then (X1, Xz,...,X,) isa par-
tition of X. X is called a super variable. If |[Xi| =
ki (i=12,...,u) and ky +ky +...+ky = n, then a two-
valued logic function f(X) can be represented by the map-
ping f(X1,Xo,...,Xy): PLx Py xP3x ... x Py, — B, where
P={0,1,2,...,2% -1} andB = {0,1}.

Definition 2.2 A fixed-order partition of X = (xg,xp,
..., Xn) isapartition (X1, Xo,...,X,), where

Xl - (X1;X25"'7Xk1)7
X2 = (Xk1+1; Xk1+2a cee 7Xk1+k2)7

XU = (Xk1+k2+...+ku_1+lvXk1+k2+...+ku_1+27 e ,Xn—l; Xn)»

and |Xi| = ki. That is, in the fixed-order partition of X, the
variable order of X isfixed.

In this paper, we will call afixed-order partition simply
apartition of X. And, we assume that the given logic func-
tion is completely specified and has no redundant variables.

Definition 2.3 When X = (X1,Xp,...,Xn) iSpartitioned into
(X1,X2,...,Xy), the MDD representing a logic function
f(X) is called a heterogeneous MDD. A heterogeneous
MDD represents a mapping f : P x P> x ... x Py, — B,
where B = {0,1,...,2% —1} and B = {0,1}. In a het-
erogeneous MDD, non-terminal nodes representing a super
variable X; have 24 outgoing edges, where k; denotes the
number of binary variablesin X;.

Definition 2.4 Ina DD for logic function f, the number of
nodesin the DD, denoted by nodes(DD), is the sum of all
non-terminal nodes.

Definition 2.5 The width of the DD with respect to X;?,
denoted by width(DD,i), is the number of nodes in the
DD corresponding to the super variable X;. The number
of nodes in the MDD with the partition (X1,Xz,...,X,) is
given by

u
nodes(MDD) = Zwidth(MDD,i).
i=

Example 2.1 Consider the logic function f = XiXox3 Vv
XoX3X4 V X3XaX1 V XgX1X2. Fig. 2.1(a) and Fig. 2.1(b,c) rep-
resent the BDD and the heterogeneous MDDs for f, respec-
tively. InFig. 2.1(b), thebinary variables X = (X1, X2, X3, X4)
are partitioned into (X1,X2), where X; = (X1,X%2,%3) and
X2 = (X4). InFig. 2.1(c), X1 = (x1) and Xz = (X2,X3,X4).

(End of Example)

In this paper, we use shared decision diagrams
(SDDs) [13] to represent multiple-output functions F =

INote that this definition differs from that of “width of BDDS” in [14].

(b) Heterogeneous MDD with

(@) BDD minimum memory size

(c) Heterogeneous MDD with
maximum memory size

Figure 2.1. BDD and heterogeneous MDDs

(fo, f1,..., fm-1): B"— B™, where B = {1,0}, and n and
m denote the number of input and output variables, respec-
tively. In the following, BDDs and MDDs mean SBDDs
and SMDDs, respectively.

2.2 Memory Size of Decision Diagram

Definition 2.6 In a DD for logic function f, the memory
size of the DD, denoted by Mem(DD), is the number of
words needed to represent the DD in memory, where we
assume that a word is large enough to store an index or an
edge pointer.

In a memory, each non-terminal node requires an in-
dex and pointers to the succeeding nodes. Since each non-
termina node in aBDD has two pointers, the memory size
needed to represent aBDD is

Mem(BDD) = (2+ 1) x nodes(BDD)

In a heterogeneous MDD, each super variable can take a
different domain. Therefore, the memory size for a hetero-
geneous MDD is given by

Mem(heterogeneous MDD)

=

= Y (24 + 1) x width(heterogeneous MDD, i).



Example 2.2 The memory sizes to represent BDD and
heterogeneous MDDs are as follows. for the BDD in
Fig. 2.1(a), it is 18; for the heterogeneous MDD in
Fig. 2.1(b), it is 12; and for the heterogeneous MDD in
Fig. 2.1(c), itis 21. (End of Example)

2.3 Longest Path Length (LPL) of Decision Dia-
gram

Definition 2.7 In a DD, a sequence of edges and nodes
leading from the root node to a terminal node is a path.
The number of non-terminal nodes on the path is the path
length.

Definition 2.8 The longest path length (LPL) of a DD,
denoted by LPL(DD), is the length of the longest path.

Inan SDD for amultiple-output function F = (fo, f1,...,
fm-1): B" — B™, we need to evaluate each single-output
function f; one by one. Therefore, in this paper, we define
the LPL of an SDD for a multiple-output function F asfol-
lows.

Definition 2.9 The LPL of an SDD for a multiple-output
function F = (fo, f1,...,fm_1): B" — B™, denoted by
LPL(SDD), isgiven by

m-1

LPLm(SDD) = Za LPL(DD;),

where DD; represents a single output function f; (i =
0,1,...,m—1).

For a single-output logic function f, the least upper
bound on LPL, denoted by A(f), isthe number of variables
on which the function depends. For a multiple-output logic
function F, the least upper bound on LPL, denoted by A(F)
isgiven by

m-1
A(F) = _;)\(fi).

In this paper, we assume the following computational
model:

1. The logic functions are evaluated by traversing DDs
from the root node to atermina node according to val-
ues of theinput variables.

2. Encoded input values are available, and their ac-
cess time is negligible. For example, when X; =
(X1,X2,X3,%4) = (1,0,0,1), X1 = 9 is immediately
available as an input to the algorithm.

3. Most of the computation time is devoted to accessing
nodes.

4. Theevauationtimefor al MDD nodesis the same.

(a) BDD with the fewest nodes (b) BDD with the smallest LPL

Figure 3.1. Relation between LPL and variable
ordering for BDD

In this case, the longest time to evaluate a DD for a logic
function is proportional to the LPL of the DD. Thus, in
this model, we can fairly compare the LPLs of BDDs and
MDDs.

Example 2.3 For theBDD in Fig. 2.1(a), the LPL is 4. For
the heterogeneous MDDs in Fig. 2.1(b, c), the LPLs are 2.
(End of Example)

3 LPL Minimization for BDDs

3.1 LPL Minimization Using Permutation of Bi-
nary Variables

Example 3.1 Consider the logic function f = X1xoX4Xs V
X1X2X3X4 V X1X3X4X5 V X1X2XaX5 V X1X3XaXs. Fig. 3.1 illus-
trates the BDD with the fewest nodes and the BDD with
the smallest LPL for f. For the BDD in Fig. 3.1(a),
nodes(BDD) = 8, LPL(BDD) = 5, and the variable or-
der = (x1,X2,X3,X4,X%s5). For the BDD in Fig. 3.1(b),
nodes(BDD) = 9, LPL(BDD) = 4, and the variable order
= (X1,X2,%X4,X3,X5). (End of Example)

Asshownin Example 3.1, sincethe LPL of the BDD de-
pends on the variable ordering, the LPL minimization for a
BDD is aproblem of finding the optimum variable ordering
for the BDD. We formulate the LPL minimization problem
for aBDD asfollows:

Problem 3.1 Given a logic function f(X), find a variable
ordering for X that minimizes the LPL of the BDD.

The heuristic agorithm for Problem 3.1, which uses the
sifting algorithm [23], has been proposed in [5, 10, 25]. In
this paper, we implement the simplest sifting algorithm for
LPL minimization that uses the LPL as the cost function.
We call it LPL sifting. This dedicated LPL minimization



Table 3.1. Comparison of the smallest LPLs
and the least upper bounds on LPL of BDDs

Smallest
n| A(f) LPL | #samples
41 398 3.89 216
5| 5.00 4.99 232
6| 592 5.92 1,000
7| 6.99 6.99 1,000
8| 7.99 7.99 1,000
9| 899 8.99 1,000
10 | 9.99 9.99 1,000

a gorithm requires more computation time than the original
sifting and the APL sifting [6].

3.2 LPLsof BDDsfor n-Variable L ogic Functions

Table 3.1 compares the smallest LPLs with the least up-
per bounds on LPLs of BDDs for randomly generated n-
variable logic functions. Note that al the n-variable logic
functions are single output. In Table 3.1, the column la-
beled “n” denotes the number of variables. Column “#sam-
ples’ denotes the number of sample functions used for each
n-variable function. Columns “A(f)” and “Smallest LPL”
show the averages of the least upper boundson LPL and the
smallest LPLs for n-variable functions, respectively. Note
that BDDs in this table do not use complemented edges.

For 4 and 5-variable logic functions, we calculated the
exact averages over al functions. We did this by recog-
nizing that the LPL of a function in one NPN-equivalence
class [15, 24] is identica to the LPLs of other functions
in the same class. Thus, it is sufficient to consider only
one function from each class and to form a sum weighted
by the size of each class. For larger n, there are too many
NPN-equivalence classes. Therefore, for 6 < n < 10, we
generated 1,000 pseudo-random n-variable logic functions
with different number of true minterms, and calculated the
averages for them.

For 4-variable functions, the smallest LPL of BDDs was
98% of A(f), on average. For 5-variable functions, the
smallest LPL of BDDs was amost equal to A(f). For
6 ~ 10-variable functions, the smallest LPLs of BDDswere
exactly sameasA(f).

For 91% of all 4-variable functions, the smallest LPLs
were equal to A(f). Similarly, for 99% of all 5-variable
functions; and for amost all 6 ~ 10-variable functions used
in thistable, the smallest LPLsand A(f) wereidentical.

These experimental results show that the function in Ex-
ample 3.1 is arare case. From these experimental results,
we obtain the following:

Observation 3.1 For most randomly generated functions,
the LPLs of BDDs are independent of the variable ordering.

3.3 LPLsof BDDsfor Benchmark Functions

Table 3.2 compares the numbers of nodes and LPLs of
BDDs for 21 selected benchmark functions. The column
labeled “A(F)” denotes the least upper bounds on LPLs for
the benchmark functions. Columns labeled “MinNodes’
denote the BDDs obtained by the best known variable or-
ders [26], that minimize the number of nodes. Columns
“MinLPL" denote the BDDs obtained by the LPL sifting.
For the LPL sifting, the number of rounds of sifting is set to
two. The BDDs in this table use complemented edges. The
numbers of nodes and LPLsin Table 3.2 may not be the ex-
act minimum, since the algorithms are heuristic. The row
labeled Average of ratiosl represents the normalized aver-
ages of the numbers of nodes and LPLs, where the num-
ber of nodes and the LPL of “MinNodes’ are set to 1.00.
Similarly, the bottom row labeled Average of ratios2 repre-
sents the normalized averages of LPLs, where each valuein
“A(F)” isset to 1.00.

For these benchmark functions, the difference between
A(F) and the LPLs obtained by LPL sifting is not so small.
However, except for one function (i8), the difference be-
tween the LPLs of BDDs obtained by LPL sifting and the
LPLsof BDDsin “MinNodes’ is small. For i8, the LPL of
BDD was reduced to 82% of “MinNodes’, but the number
of nodes increased by 172% of the original one. For C3540,
athough the difference of the numbers of nodesislarge, the
difference of LPLsis very small.

For 301 standard benchmark functions [3, 24, 27], we
conducted similar experiments using BDDs without com-
plemented edges. For also 301 benchmark functions, the
difference between the least upper bounds on LPLs and the
LPLsobtained by LPL sifting wasnot so small. On average,
the LPL obtained by LPL sifting was 93% of theleast upper
bound on LPL. And, for 148 (49%) of 301 benchmark func-
tions, LPLsminimized by LPL sifting were smaller than the
least upper bounds on LPLs. On the other hand, the differ-
ence between the LPLs of BDDs obtained by LPL sifting
and the LPLs of BDDs obtained by the original sifting was
small. On average, the LPL of BDDs obtained by LPL sift-
ing was just 99% of the LPL of BDDs obtained by the orig-
inal sifting. For 211 (70%) of 301 benchmark functions,
LPLs minimized by LPL sifting and LPLs of BDDs ob-
tained by origina sifting were identical. For function c8,
the LPL of BDD was reduced to 91% of the LPL of BDDs
obtained by the original sifting. It was the best case for LPL
minimization in 301 benchmark functions.

From these experimental results, we obtain the follow-

ing:
Observation 3.2 For benchmark functions, LPLs of BDDs
can be reduced by trying different variable orderings be-

cause the difference between the smallest LPL and the |east
upper bound on LPL is not so small. For many bench-



Table 3.2. Numbers of nodes and LPLs of BDDs for 21 benchmark functions

Number of nodes LPL

Name In | Out | A(F) || MinNodes | MinLPL || MinNodes | MinLPL
C432 36 7| 225 1063 1063 225 225
C499 41 | 32| 1312 25865 25865 1312 1312
880 60 | 26| 419 4052 5674 387 386
C1908 33| 25| 753 5525 5626 731 727
C2670 233 | 64 | 1057 1773 1790 491 490
C3540 50| 22| 713 23827 34996 454 452
C5315 178 | 123 | 2975 1718 1718 1429 1429
C7552 207 | 107 | 3496 2211 2237 2439 2433
alud 14 8 70 349 349 70 70
apex1 45| 45| 814 1245 1245 543 543
apex6 135 | 99 | 759 497 510 651 640
cps 24 | 102 | 1637 970 970 1630 1630
dalu 75| 16| 635 688 688 272 272
des 256 | 245 | 2788 2944 2944 2211 2211
frg2 143 | 139 | 1763 962 2247 1626 1582
i3 132 6| 132 132 132 132 132
i8 133 | 81 | 1260 1275 2195 1044 853
i10 257 | 224 | 5438 20659 61815 4634 4483
k2 45| 45| 814 1245 1245 543 543
toolarge | 38 3| 107 318 403 107 104
vda 17| 39| 472 477 477 397 397

Average of ratiosl — 1.00 1.25 1.00 0.99

Average of ratios2 | 1.00 - - 0.81 0.80

mark functions, the conventional sifting that minimizes the
number of nodes in BDDs produces BDDs with reasonably
small LPLs, comparable to LPLs obtained by LPL sifting.

From Observations 3.1 and 3.2, we conclude that for
many logic functions, node minimization of BDDs mini-
mizesthe LPLs, aswell.

4 LPL Minimization for
MDDs

Heter ogeneous

4.1 LPL Minimization Using Both Permutation
and Partition of Binary Variables

In this section, we consider both orderings and partitions
of binary variables to minimize the LPL of a heterogeneous
MDD. For any n-variablelogic function, thetrivial partition
of X, where X = Xz and |X1| = n, produces a heterogeneous
MDD with the smallest LPL (i.e., LPL = 1), independently
of the variable ordering. However, since the memory size
needed to represent the heterogeneous MDD for the trivial
partition is nearly 2", such an heterogeneous MDD is too
large in most cases. Therefore, we seek an ordering and
a partition of X that minimizes the LPL within the given
memory size limitation. We formulate the LPL minimiza-
tion problem considering both orderings and partitions of
binary variables as follows:

Problem 4.2 Given a logic function f(X) and a memory
size limitation L, find an ordering and a partition of X that
produces the heterogeneous MDD with the smallest LPL
and with memory size equal to or smaller than L.

Example 4.1 Consider the logic function f = X1XoX3Xs V
X1X3X4X5 V X1XoXaXs. Fig. 4.1(a) illustrates the BDD with
the fewest nodes for f. Fig. 4.1(b) illustrates the hetero-
geneous MDD with the smallest LPL obtained by consid-
ering both orderings and partitions of binary variables,
where the memory size limitation L is set to the mem-
ory size of the BDD in Fig. 4.1(a). In Fig. 4.1(b), X1 =
(X2,X3,Xa) and Xz = (x1,Xs). For the BDD in Fig. 4.1(a),
Mem(BDD) = 18 and LPL(BDD) = 5. For the heteroge-
neous MDD in Fig. 4.1(b), Mem(heterogeneous MDD) =
14 and LPL (heterogeneous MDD) = 2. (End of Example)

For logic functions with many binary variables, solv-
ing Problem 4.2 exactly within a reasonable time is dif-
ficult. That is, there may exist many different heteroge-
neous MDDs when both orderings and partitions of binary
variables are considered for the optimization [20]. Thus, a
heuristic algorithm is required for such logic functions. To
develop an efficient heuristic algorithm, we modify Prob-
lem 4.2, based on a conjecture that reducing the number
of variables also reduce the LPL, and reformulate the LPL
minimization problem as follows.

Problem 4.3 Given a logic function f(X) and a memory
size limitation L, find an ordering and a partition of X that



(a) BDD with the fewest nodes  (b) Heterogeneous MDD

Figure 4.1. Relation between LPL and parti-
tion of binary variables

Table 4.1. Memory sizes and LPLs of hetero-
geneous MDDs for n-variable logic functions

Memory size LPL
n || BDD | MDD || BDD | MDD || #samples
4 1.00 0.87 1.00 0.32 216
5 100 | 087 | 1.00| 031 232
6 1.00 0.87 1.00 0.34 1,000
7 1.00 | 0381 1.00 | 0.29 1,000
8 1.00 0.73 1.00 0.26 1,000
9 1.00 | 0.68 1.00 | 0.23 1,000
10 1.00 0.67 1.00 0.21 1,000

produces a heterogeneous MDD with the fewest super vari-
ables X; and with memory size equal to or smaller than L.

Although an optimum solution for Problem 4.3 is not a-
ways an optimum solution for Problem 4.2, the solution for
Problem 4.3 will reduce the LPL of heterogeneous MDDs.
Therefore, the heuristic algorithm for Problem 4.3 can be
used for also Problem 4.2. We implement it and compare
with the other algorithms. This heuristic algorithm is quite
similar to the APL minimization algorithm in [21], except
that the cost function is the number of super variables.

4.2 LPLsof Heterogeneous MDDs for n-Variable
Logic Functions

Table 4.1 compares the memory sizes and the LPLs of
BDDs and heterogeneous MDDs for the same logic func-
tions as Table 3.1. The BDDs and heterogeneous MDDs
are optimized using the following agorithms, respectively:
1) The exact minimization algorithm of the number of nodes
inaBDD. 2) The exact LPL minimization algorithm for het-
erogeneous MDD considering both orderings and partitions
of binary variables, where the memory size limitation L of

thisagorithmis set to the memory size of the BDD with the
fewest nodes. Thevaluesin thetable are the normalized av-
erages of n-variable logic functions with the memory sizes
and LPLs of BDDs set to 1.00. The columns “MDD” show
the relative values of the memory sizes and LPLs for het-
erogeneous MDDsto BDDs. The BDDs and heterogeneous
MDDs in this table do not use complemented edges.

As shown in Table 4.1, the LPLs of heterogeneous
MDDs can be reduced to 21% of the LPLs of BDDs with-
out increasing the memory size. Table 4.1 shows that the
relative values of LPLs for heterogeneous MDDs decreases
as the number of binary variables n increases.

Observation 4.1 For single-output functions, LPLs of het-
erogeneous MDDs can be reduced substantially without in-
creasing memory size.

4.3 LPLsof Heterogeneous MDDs for 21 Bench-
mark Functions

Table 4.2 compares memory sizes and LPLs of BDDs
and heterogeneous MDDs for the same benchmark func-
tions as Table 3.2. Columns labeled “BDD” denote the
BDDs obtained by the best known variable orders [26],
that minimize the number of nodes. Columns “MinMem”
denote the heterogeneous MDDs obtained by the memory
minimization algorithm shownin[20]. Columns*MinLPL”
denote heterogeneous MDDs obtained by the LPL mini-
mization algorithm considering both orderings and parti-
tions of binary variables, that minimizes the number of su-
per variables. And, columns “MinAPL” denote the hetero-
geneous MDDs obtained by the APL minimization algo-
rithm shown in [21]. The memory size limitation L of the
LPL minimization and APL minimization algorithms for
heterogeneous MDDsiis set to the memory size of the BDD.
And, for both the LPL minimization and APL minimization
algorithms, the number of rounds of sifting is set to two.
The BDDs and heterogeneous MDDs in this table use com-
plemented edges. The memory sizesand LPLsin Table 4.2
may not be the exact minimum, since the algorithms are
heuristic. The bottom row labeled Average of ratios repre-
sents the normalized averages of memory sizes and LPLSs,
where the memory size and the LPL of “BDD” are set to
1.00.

The memory minimization algorithm for heterogeneous
MDDs reduced memory sizes to 86% and LPLs to 72% of
corresponding BDDs, on average, respectively. The LPL
minimization and APL minimization algorithms for hetero-
geneous MDDs reduced LPLs to 57% and 54% of BDDs,
on average, respectively, without increasing memory size.
Especialy, for C499, the LPL of heterogeneous MDD was
reduced to 27% of BDD. These experimenta results show
that the APL minimization algorithm for heterogeneous
MDDs also can be used for the LPL minimization.



Table 4.2. Memory sizes and LPLs of heterogeneous MDDs for 21 benchmark functions

Memory size LPL
MDD MDD

Name In | Out || BDD | MinMem | MinLPL | MinAPL || BDD | MinMem | MinLPL | MinAPL
C432 36 7| 3189 2824 3176 3179 225 143 104 108
C499 41| 32 | 77595 59739 77411 77589 || 1312 768 352 384
C880 60 | 26 || 12156 11812 12155 12154 387 329 255 254
C1908 33| 25| 16575 13493 16549 16564 731 465 268 301
C2670 233 | 64 | 5319 4650 5319 5319 || 491 397 330 280
C3540 50 | 22 || 71481 65029 71455 71480 454 357 269 239
C5315 178 | 123 || 5154 4582 5154 5153 || 1429 1273 1143 1035
C7552 207 | 107 | 6633 6199 6632 6633 || 2439 2003 1762 1395
alud 14 8| 1047 855 1019 1019 70 50 33 33
apex1 45| 45| 3735 3016 3734 3728 543 357 272 273
apex6 135 | 99 || 1491 1414 1491 1490 651 575 518 435
cps 24 | 102 || 2910 2533 2908 2906 || 1630 1106 743 835
dalu 75| 16 || 2064 1548 2062 2064 272 181 132 150
des 256 | 245 | 8832 7288 8832 8831 || 2211 1478 1384 1227
frg2 143 | 139 || 2886 2671 2886 2884 || 1626 1298 1094 1095
i3 132 6 396 330 395 396 132 66 57 58
i8 133 | 81| 3825 3662 3824 3825 || 1044 811 960 617
i10 257 | 224 || 61977 55766 61967 61974 || 4634 3434 3152 2902
k2 45| 45| 3735 3018 3733 3728 543 357 271 271
toolarge | 38 3 954 857 951 954 107 68 55 59
vda 17| 39| 1431 1088 1421 1424 397 280 189 199

Average of ratios 1.00 0.86 1.00 1.00 || 1.00 0.72 0.57 0.54

Observation 4.2 When we use heterogeneous MDDs for
representing logic functions and minimize the memory sizes
of heterogeneous MDDs, we can reduce both memory sizes
and LPLsto 86% and 72% of corresponding BDDs, respec-
tively. On the other hand, when the memory limitations are
set to the memory sizes of BDDs, the LPLs can be reduced
to 54% of BDDs.

5 Conclusion

In this paper, we have considered the LPL minimization
for BDDs and heterogeneous MDDs. Experimental results
show that: 1) For most randomly generated functions, the
LPLsof BDDs areindependent of the variable ordering. On
the other hand, for many standard benchmark functions, the
LPLs of BDDs can be reduced by checking different vari-
able orderings. 2) For many logic functions, the difference
between the smallest LPLs of BDDs and the LPLs of BDDs
with the fewest nodes is small. Thus, for many logic func-
tions, conventional algorithm for BDD node minimization
minimizes the LPL, aswell. In applications that use BDDs
(e.g. PTL synthesis), we can use node minimization ago-
rithm for LPL minimization. 3) The exact smallest LPLs of
heterogeneous MDDs is much smaller than the exact small-
est LPLs of BDDs. However, for logic functions with many
binary variables, exact minimization is difficult. 4) For 21
benchmark functions, both memory sizes and LPLs of the
heterogeneous MDDs can be reduced to 86% and 72% of

corresponding BDDs, respectively. When the memory lim-
itations are set to the memory sizes of BDDs, the LPLs
of heterogeneous MDDs can be reduced to 54% of BDDs
without increasing memory sizes. In applications that can
use MDDs (e.g. software synthesis), we can reduce the
LPLs substantially by using heterogeneous MDDs.
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