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Abstract

Minimizing the Average Path Length (APL) in a BDD
reduces the time needed to evaluate Boolean functions rep-
resented by BDDs. This paper describes an efficient heuris-
tic APL minimization procedure based on BDD variable
reordering. The reordering algorithm is similar to classi-
cal variable sifting with the cost function equal to the APL
rather than the number of BDD nodes. The main contribu-
tion of our paper is a fast way of updating the APL during
the swap of two adjacent variables. Experimental results
show that the proposed algorithm effectively minimizes the
APL of large MCNC benchmark functions, achieving reduc-
tions of up to 47%. For some benchmarks, minimizing APL
also reduces the BDD node count.

1. Introduction

Binary Decision Diagrams (BDDs) [1] are used to rep-
resent logic functions in various applications encountered
in logic synthesis, logic simulation, and formal verification.
In those applications that use a BDD to evaluate logic func-
tions, the evaluation time is proportional to the Average Path
Length (APL) in the BDD. Therefore, minimization of the
APL leads to faster evaluation of the logic function. Par-
ticularly, in logic simulation using decision diagrams [6],
minimization of the APL reduces the simulation time sub-
stantially because a logic function is evaluated again and
again with different test vectors.

The minimization of the APL can also be applied in logic
synthesis. Some methods for functional decomposition [14]
use BDDs to detect Boolean divisors. The quality of a di-
visor is measured by the amount of don’t-cares it provides
for the minimization of the quotient. The don’t-cares are
generated by the paths in the BDD that lead to the terminal
nodes. The shorter the paths, the more don’t-care minterms

they contain. Therefore, minimizing the APL in BDDs rep-
resenting logic functions can improve the quality of decom-
position.

The only known method to minimize the APL of a
BDD [8] first minimizes the BDD for the number of
nodes [5, 7] followed by applying incremental transforma-
tions to reduce the APL. Experimental results show for most
benchmark functions, the ordering that results in the mini-
mal APL differs from the ordering that results in the min-
imal number of BDD nodes. For some benchmarks, such
as cordic, the minimal-APL ordering leads to a BDD that
is two times larger than the minimal-node BDD. This ob-
servation suggests that the BDD reordered to minimize the
number of nodes may not be a good starting point for the
APL minimization.

In this paper, we develop a variable reordering algorithm,
which minimizes the APL rather than the number of nodes.
The proposed algorithm is similar to variable sifting [9]. It
performs a series of swaps among pairs of adjacent vari-
ables, trying to minimize the cost function defined as the
APL of the BDD. An important part of the algorithm that
has a significant effect on computation time is updating the
APL after swapping each pair of the adjacent variables. The
APL minimization algorithm of [8] does not provide an ef-
ficient solution to this problem, because the APL is com-
puted by performing a traversal of the BDD. The traversal
is required after the swap of each variable pair, which sig-
nificantly slows the process of variable ordering.

The main contribution of this paper is a fast method to
update the APL of the BDD after two adjacent variables
have been swapped. This method is integrated into the
swapping algorithm in such a way that there is no need to
perform additional traversals of the BDD. The APL is up-
dated ”on the fly”, as the BDDs nodes are being swapped.
This explains why the proposed variable reordering algo-
rithm is fast.

The rest of the paper is organized as follow. Section 2
contains the necessary terminology and definitions. Sec-



tion 3 introduces a method to obtain statically the initial or-
dering of the variables. In Section 4, we propose the method
to calculate the APL after the swap of two variables. Sec-
tion 5 explains the implementation of the method described
in Section 4. In Section 6, we propose a pruning technique
to speed up the sifting algorithm. And, in Section 7, we
show the efficiency of our method using benchmark func-
tions.

2 Preliminaries

We assume that the reader is familiar with the basic ter-
minology of Binary Decision Diagrams (BDDs) [1]. In
particular, we consider the Reduced Ordered Binary De-
cision Diagram (ROBDD) derived from the decision trees
by removing redundant nodes and merging isomorphic sub-
graphs.

Definition 2.1 The average path length or APL of a BDD
is the sum of path lengths over all assignments of values to
the variables divided by the number of assignments, 2n.

We are concerned with a traverse of the BDD, beginning
at the root node and ending of a terminal node.

Definition 2.2 The node traversing probability , denoted
by P (vi), is the fraction of all 2n assignments of values to
the variables whose path includes node vi.

Definition 2.3 The edge traversing probability , denoted
by P (ei0) (or P (ei1)), is the fraction of all 2n assignments
of values to the variables whose path includes ei0 (or ei1),
where ei0 (or ei1) denotes the 0-edge (or the 1-edge) di-
rected from away node vi.

Since all paths include the root node, this node is tra-
versed with probability 1.0. Since all assignments to values
of variables are equally likely, we have the following rela-
tion:

P (vi)
2

= P (ei0) = P (ei1).

Lemma 2.1 [11] The node traversing probability on node
vi is the sum of the edge traversing probabilities of all in-
coming edges to vi.

Theorem 2.1 [11] The APL is equal to the sum of the node
traversing probabilities of the non-terminal nodes.

That is,

APL =
N−1∑

i=0

P (vi),

where N denotes the number of non-terminal nodes.
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Figure 2.1. Example of node traversing prob-
ability in a BDD.

Example 2.1 Consider the BDD in Fig. 2.1. First, we have
P (v0) = 1.00, and then we calculate P (v1) = P (e00) =
0.50 and P (v2) = P (e01) = 0.50. Similarly, we calculate

P (v3) = P (e11) + P (e20) = 0.50,

P (v4) = P (e21) = 0.25,

P (v5) = P (e31) + P (e40) = 0.375.

Thus,

APL =
5∑

i=0

P (vi) = 3.125.

(End of Example)

3 Initial Ordering of the Variables

The efficiency of APL minimization depends on finding
an initial ordering that yields a reasonably small APL. The
analysis of orderings that produces the minimal APL for
known function classes [10] leads to a heuristic to find a
good initial variable order. The value of a first-order Walsh
spectral coefficient expresses the correlation between the
variable value with the function value. Given a function
f(x) and a variable xi ∈ X, the first order coefficient can
be computed as follows:

Ri =
(|x̄i ⊕ f | − |xi ⊕ f |)

2n
.

Here, |g(X)| means the number of assignments of values to
the variables X such that g(X) = 1. Ri is just the num-
ber of agreements between the value of xi and the value of
f(x) less the number of disagreements divided by the total
number of assignments of values to variables. Ri is known
as a first order spectral coefficient of f(X) [3] and is related
to the Chow parameters of the function [2]. For example, if



f(X) = xi, then Ri = 1, corresponding to complete corre-
lation and if f(X) = x̄i, then Ri = −1, corresponding to
complete anti-correlation.

All spectral coefficients of a completely specified
Boolean function can be computed by scanning the nodes
beginning at the root node and ending on the terminal nodes
using a fast algorithm [12]. The first-order coefficients can
be computed by a simplified version of the general algo-
rithm.

When the spectral coefficients Ri are known, an initial
variable order is found by placing the variables in the de-
creasing order of the absolute values of the corresponding
first-order spectral coefficients. For variables with identical
absolute values, we arbitrarily choose the given ordering.

4 Change of APL During Variable Swap

Fig. 4.1 illustrates the BDD when two adjacent variables
are interchanged. There are six cases, all shown in Fig. 4.1.
In each case, the figure on the left occurs before the inter-
change, while the figure on the right occurs as a result of the
interchange.

Note that these partial BDDs apply only to arcs incident
to the root node. For example, for case a) prior to the in-
terchange, there are also arcs incident to the two daughter
nodes, each labeled xi+1. For each node, case f) applies,
creating for each a single node at the higher of the two lev-
els. Case a) is the most general. Other cases occur when the
functions at the nodes are independent of some variables.

It can be observed from Fig. 4.1 that only cases b) and
c) affect the APL of the BDD. The change in the APL is
caused by merging some disjoint paths going through F3 in
case b), or splitting some disjoint paths going through F3 in
case c).

In Fig. 4.1 b), we say that one of the two nodes labeled
xi+1 disappears as a result of the variable exchange. Sim-
ilarly, in Fig. 4.1 c), we say that an additional node labeled
xi appears as a result of the variable exchange.

Suppose Pd is the sum of node traversing probabilities
of nodes that disappear during the variable swap of two ad-
jacent variables. That is, Pd is the sum of node traversing
probabilities of nodes that are reduced in case b). And, sup-
pose Pa is the sum of node traversing probabilities of nodes
that appear during the variable swap. That is, Pa is the sum
of node traversing probabilities of nodes that are inserted in
case c). Then, the reduction in the APL for the BDD by
interchanging xi and xi+1 is equal to Pd − Pa. Note that
Pd − Pa can be negative, in which case, the interchange of
xi and xi+1 increases the APL. Thus, we can calculate the
change in the APL during the variable swap by considering
only the BDD nodes involved in the swap.

Note that, in the above discussion and in Fig. 4.1, we
consider only the node traversing probability of a node on

the lower level due to the incoming edges from nodes on
the upper level. In general, a node on the lower level is in-
cident to arcs from several upper level nodes. During the
variable ordering, we consider all the subgraphs, one by
one, and therefore the computed difference Pd and Pa ac-
counts for all possible paths going through each node on the
lower level. Also, there may be case b) on the same level as
case c). They may cancel each other depending on the node
traversing probabilities.

5 Implementation Issues

The change in the APL by swapping two adjacent vari-
ables can be computed by summing the node traversing
probabilities of the lower-level nodes that appear and dis-
appear in the BDD during the swap. The nodes appear and
disappear when situations b) and c), respectively, take place,
as shown in Fig. 4.1.

To compute the reduction in the APL, two double-
precision floating point registers Pd and Pa are used. The
registers are set to 0.0 before the swap. During the swap,
when situations b) and c) occur, the registers are increased
by the node traversing probability of the corresponding
lower-level nodes that have disappeared and appeared, re-
spectively. This node traversing probability is equal to the
edge traversing probability of the edge from the upper-level
node pointing to the lower-level node.

After the swap, the values of the two registers Pd and
Pa are used to form Pd − Pa and to update the APL of the
BDD. The APL represents the cost function during the mod-
ified sifting procedure, similar to how the total node count is
used during the classical sifting algorithm, which minimizes
the number of BDD nodes. During sifting, all positions of
the given variable are examined, and finally the variable is
moved to the position corresponding to the minimum value
of the cost function.

Example 5.1 Consider the sifting of BDD in Fig. 5.1(a).
First, we calculate the APL of this BDD, which is 2.25. We
seek the best position for x1, and we begin by swapping x3

and x1. During this swap, case d) and case f) in Fig. 4.1
occur (see Fig. 5.1(b)). Hence, the APL of BDD does not
change. And, we have the BDD in Fig. 5.1(c).

Next, we swap x2 and x1. During this swap, since case
b) takes place, we increase register Pd: Pd+ = P (ev0),
where P (ev0) is the edge traversing probability of 0-edge
from the root node for the BDD, that is 0.5. Then, the
APL of BDD is updated by using the registers Pd and Pa:
APLnew = APLold − (Pd − Pa). Therefore, we have the
BDD shown in Fig. 5.1(d) whereAPL = 1.75, and then we
accept x1 as the root node because this position minimizes
the cost function. (End of Example)

The algorithm executes in two rounds. In both rounds,
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Figure 4.1. Exchanging two adjacent vari-
ables during BDD variable reordering.
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Figure 5.1. Example of sifting on BDD.

each variable is sifted across all possible positions, except
that certain extreme positions can be eliminated because
they do not yield a minimum APL (discussed later). Within
each round, the next variable to be sifted is chosen as the
one labeling the maximum number of nodes. Two rounds
are chosen because a third round rarely improved the APL.

Because the algorithm interchanges two adjacent vari-
ables, in order to insert the variable in all positions, it is
necessary to first scan in one direction to an extreme, then
scan in the opposite direction, returning to the starting po-
sition, and to continue scanning to the other extreme. The
algorithm chooses first to scan toward the closer of the two
extremes.

6 Lower Bound on APL During Sifting

This section describes an efficient lower bound that can
be used to prevent useless swaps. The lower bound for the
APL is similar to the one introduced for the number of BDD
nodes during the classical sifting [4].

Theorem 6.1 Fix the position of all variables except x. Let
S be the smallest value of the APL achieved during sifting



of variable x. Let variable x be currently on level i and the
total sum of node traversing probabilities of all nodes in the
BDD above the level i be Ui. Then, if Ui ≥ S, sifting of
variable x further down to levels i + 1, i + 2, etc., cannot
reduce the cost function below S.

(Proof) Let the total of the node traversing probabilities of
all nodes in the BDD be T (i.e., APL of the BDD). Then,
the following relation clearly holds;

T ≥ Ui.

Sifting variable x further down to level i+1, i+2, etc., does
not change Ui i.e., P (v) remains unchange for any node v
above level i. Therefore, we have the theorem. (Q.E.D)

A similar theorem can be formulated for the case when
variable x is moved up.

The following discussion provides the rationale for the
lower bound theorem. In sifting, the position of all vari-
ables in the BDD is fixed, except for variable x. Suppose
x is moved down toward the bottom of the BDD, and the
APL decreases to S and then increases. At some point, the
sum of the node traversing probabilities of all nodes above
x becomes equal to U , such that U is larger than S, the
minimum APL achieved earlier. In this case, we can stop
the sifting, since the APL of the BDD cannot be reduced
below the limit set by the best position found so far, even
if variable x is moved all the way down. It is also possible
to show that a similar lower bound works for the case when
the variable is moved up in the BDD variable order.

Using the lower bound theorems introduced above, it is
possible to limit the range of sifting for variable x. Exper-
iments show that the lower bound typically speeds up the
computation by 30-50%.

7 Experimental Results

An experiment using MCNC benchmarks was conducted
in the following environment:

• CPU: Pentium 4 Xeon 2.8GHz

• L1 Cache: 20KB

• L2 Cache: 512KB

• Main Memory: 4GB

• Operating System: Redhat (Linux 7.3)

• C-Compiler: gcc -O2

Table 7.1 compares the proposed algorithm for APL
minimization with a previously published algorithm [8].
Benchmark functions are selected to be compatible with [8]
except for incompletely specified functions. Each output of

the multi-output benchmark functions is reordered indepen-
dently, and the value reported is the sum of the APL for each
output.

Table 7.2 shows the results for larger MCNC bench-
marks. In this case, reordering was applied to the shared
BDDs. Note that, in all experiments, the BDDs have com-
plemented edges. Two rounds of sifting are performed in all
experiments.

In the tables, Name denotes the benchmark function
name, In and Out denote the number of inputs and outputs,
respectively. In Table 7.1, the column “Results from [8]”
shows the results reported in [8], and the column “Our re-
sults” shows the results obtained by the proposed sifting al-
gorithm that minimizes the APL. Note that, in our results,
initial variable orderings for BDDs are obtained by the static
ordering algorithm described in Section 3. In Table 7.2, the
column “Min node BDD” shows the number of nodes and
the APL for BDDs obtained by the sifting algorithm, which
minimizes the number of BDD nodes. The column “With-
out static ordering” shows the results of the proposed sifting
algorithm, which minimizes the APL, where initial variable
order is the variable order of BDD in “Min node BDD”.
And, the column “With static ordering” shows the results of
the proposed sifting algorithm, where initial variable order-
ing is obtained by static ordering in Section 3. The column
“Coef. Time” denotes the CPU time needed to calculate
the coefficients Ri in Section 3. Unfortunately, for C2670,
C5315, and C7552, BDDs with the initial variable ordering
could not be constructed due to memory overflow. Time in
the table denotes the CPU time needed to perform the corre-
sponding reordering. This time does not include the time for
reading the original benchmark from file. In Table 7.1, the
row labeled Average of ratios represents a standardized av-
erage of the Nodes and APL, with the values of [8] standard-
ized to 1.00. The “Our Results” column is a value relative
to the results of [8]. In Table 7.2, the row labeled Average
of ratios represents a standardized average of the Nodes and
APL, with the values of “Min node BDD” standardized to
1.00. The “Without static ordering” column and the “With
static ordering” column are a value relative to the results for
“Min node BDD”.

Table 7.1 shows that our proposed sifting algorithm im-
proves the APL in 11 of the 17 benchmark functions con-
sidered in [8], yields the same APL for 5 of the remaining
functions and yields a larger APL for one function. Fur-
ther, it improves the number of nodes in 16 of 17 functions
and yields the same number for one function. Especially,
for cordic, both the number of nodes and the APL of our
results are much smaller than [8]. Note especially that the
computation time is small.

Table 7.2 shows that our algorithm performs well on
large benchmark functions. For some of them, for exam-
ple, C1908, frg2, and rot, the APL is reduced drastically.



Table 7.1. Minimization of APL for individual BDDs

Name In Out Results from [8] Our results
Nodes APL Nodes APL Time, s

5xp1 7 10 91 31.31 79 31.28 0.01
alu4 14 8 899 47.54 516 39.97 0.01
b12 15 9 81 22.22 71 21.88 0.01
con1 7 2 16 6.06 16 5.94 0.01
cordic 23 2 259 11.82 88 9.47 0.01
sao2 10 4 128 10.71 121 10.59 0.01
vg2 25 8 230 30.37 204 30.16 0.01
misex1 8 7 68 22.16 64 21.97 0.01
cm150a 21 1 33 3.50 32 3.50 0.01
cm151a 12 2 36 6.50 32 6.00 0.01
cm162a 14 5 59 11.70 48 11.71 0.01
cm163a 16 5 42 11.70 36 11.70 0.01
cm85a 11 3 47 8.28 38 7.72 0.01
mux 21 1 33 3.50 32 3.50 0.01
z4ml 7 4 32 17.13 28 16.38 0.01
f51m 8 8 76 27.45 64 27.45 0.01
pcle 19 9 89 22.50 79 22.50 0.01
Average of ratios 1.00 1.00 0.84 0.96 –

For C7552, the number of nodes is reduced as a byprod-
uct of the APL minimization. However, for most func-
tions, the number of nodes is increased by the sifting for
the APL minimization. This shows that the minimization
of the APL tends to be independent of the minimization of
BDD nodes. The comparison of “Without static ordering”
and “With static ordering” shows that the minimization of
APL depends on the initial variable order. For 8 benchmark
functions (C432, C880, C1908, apex3, des, frg2, k2, and
rot), the APLs obtained by using static ordering in Section 3
are smaller than ones in “Without static ordering” column.
However, for most functions, the computation time of sift-
ing with static ordering is significantly longer than that of
sifting without static ordering. The reason for this is the
large size of initial BDDs. Swapping one pair of adjacent
variables takes longer time because the time needed for the
swap is roughly proportional to the number of nodes located
in the BDD on the given levels.

8 Conclusions

This paper shows a fast way of updating the Average
Path Length (APL) in the BDD during the swap of two
variables adjacent in the variable order. Fast updating of
the APL is used to create a specialized variable reordering
algorithm for the heuristic minimization of the APL. The
proposed algorithm is similar to the classical BDD variable
sifting, except that the cost function used is the APL, in-
stead of the number of BDD nodes. The proposed sifting
algorithm processes the largest multi-output MCNC bench-
mark functions in reasonable time, while achieving a sub-
stantial reduction (up to 47%) in the APL. Our experiments

also show that, for some benchmark functions, the number
of nodes is reduced as a byproduct of the APL minimiza-
tion.
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