
Exploring Multi-Valued Minimization Using Binary Methods

Alan Mishchenko
Department of EECS

UC Berkeley
Berkeley, CA 94720

alanmi@eecs.berkeley.edu

Robert K. Brayton
Department of EECS

UC Berkeley
Berkeley, CA 94720

brayton@eecs.berkeley.edu

Tsutomu Sasao
Center for MS and Dept. of CSE
Kyushu Institute of Technology

Iizuka, 820-8502, Japan
sasao@cse.kyutech.ac.jp

Abstract

A transformation of multi-valued input binary-output functions,
called co-singleton transform (CST), was introduced in [11] to
reduce algebraic multi-valued (MV) operations to binary. In this
paper, we explore its potential for a number of problems related
to MV SOP minimization, such as computing ISOPs, the set of all
primes, and the set of all essential primes. Experimental results
show that in some cases these problems can be solved more
efficiently than by the traditional MV SOP minimization
approaches represented by ESPRESSO-MV, but that generally
there is no clear method-of-choice.

1 Introduction

Several approaches have been proposed to minimize an SOP
representation of binary multi-output logic functions [10][2][8]
and to solve related problems, such as the computation of ISOPs
[20][17][5], the set of all primes [20][5], and the set of essential
primes [25][5]. The problem of SOP minimization has been
solved successfully for multi-valued-input binary-output functions
(MV functions, for short) [10][23]. This approach stores and
manipulates MV SOPs in their original MV form, as sets of MV
cubes represented in positional notation using bit-strings.

In contrast, the co-singleton transform (CST) [11], can be used
to transform a binary solution into a solution of the original MV
problem. The approach [11] was applied successfully to algebraic
extraction of logic in MV networks [3][22], resulting in
comparable quality and noticeable reduction in runtime, compared
to a purely MV algebraic approach [9]. Experiments were done
only in applications where algebraic operations were performed.

In is natural to try to extend this success to apply the CST to
Boolean problems, in particular those related to MV SOP
minimization. The binary problems resulting from the CST can be
solved using binary BDD-based algorithms, which are often
simpler than dedicated MV algorithms. To extend the CST to the
Boolean domain, induced don’t cares have to be introduced and
algorithms are modified to generate only positive unate covers.

For algebraic problems, it was shown that the CST was the
unique smallest encoding possible that preserved certain desirable
properties. For Boolean problems, no such statement exists;
indeed, an equivalent alternate method would be to use the “1-
hot” code (the CST is a “1-not-hot code”). Induced don’t cares for

both are similar but the targeted cover is negative unate in the 1-
hot case.

In fact, use of 1-hot codes was the way that MV minimization
problems were solved originally using ESPRESSO-binary.
ESPRESSO-MV replaced such methods since it was much faster.
Besides better data-structures, one reason for this is that induced
don’t cares are not necessary because MV variables implicitly
require a single value at a time. The other reason is that the
number of variables is less with the MV representation than with
the 1-hot one, although each MV-variable is more complicated.

This paper re-visits these issues, motivated by the success of
CST for algebraic problems and with the hope that better data-
structures and new ideas may offer interesting alternative
methods. Although the 1-hot encoding could be used as well, in
this paper we discuss all the ideas in terms of the CST for
uniformity with the algebraic methods.

The contributions of this paper are to propose, for MV
functions, implicit algorithms to compute a) MV-ISOPs [17], b)
the set of all MV-primes, and c) the set of all MV-essential
primes. Except for an implicit algorithm to compute the primes of
an MV function [13], no comparable algorithms are known.

The paper is organized as follows. Section 2 introduces
terminology and notation. Section 3 defines the CST. Sections 4,
5, and 6 discuss algorithms for ISOP, prime, and essential prime
computation, respectively. Section 7 compares traditional
solutions of these problems with solutions obtained by the
algorithms proposed in this paper. Section 8 concludes the paper
and outlines some directions for future work.

2 Preliminaries

The following terminology is assumed familiar to the reader:
(1) Binary SOP minimization [2] and, in particular, concepts

of literal, cube, prime, essential primes.
(2) Multi-valued SOP minimization [23] and extension of the

above concepts for the MV case.
(3) Binary Decision Diagrams (BDDs) [4], in particular,

concepts of cofactoring, ITE operator, the generic structure
of a BDD traversal procedure.

(4) Zero-suppressed Binary Decision Diagrams (ZDDs) [16]
and, in particular, ZDD representation of combinatorial
sets and cube covers.

(5) MV functions and relations, as defined in [19].

We refer to completely specified functions as CSFs and
incompletely specified functions as ISFs. Unless specifically
stated, a CSF or ISF has multi-valued-inputs and a binary output.

An ISF can be represented by two CSFs, L and U, called the
lower bound and the upper bound, respectively. The lower bound
of an ISF is its on-set, i.e. the set of minterms where the ISF must
have value 1. The upper bound is the sum of its on-set and don’t-
care-set, i.e. the set of minterms where the ISF can have value 1.
The offset is the complement of the upper bound.

A CSF F is compatible with an ISF (L, U) iff L ⇒ F ⇒ U,
where symbol “⇒” denotes implication. The support of a CSF F,
supp(F), is the set of variables X, which influence the output value
of F. The support size is denoted by |supp(F)|.

3 The Co-Singleton Transform

The co-singleton transform (CST), introduced in [11], is defined
for MV literals, MV cubes, MV SOPs, and MV functions.

Definition. An MV literal is non-trivial if it is not constant 0
(MV literal has the empty value set) nor constant 1 (MV literal
has the value set equal to all possible values).

Example. Consider variable X with 5 values. The domain of X
is {0,1,2,3,4}. The trivial literals are X{} and X{0,1,2,3,4}. A non-
trivial literal is X{1,3}.

Definition (CST of MV literal). Let X be a k-valued MV
variable with domain DX = {0, 1, … , k-1}. Let l be a non-trivial
MV literal of X. Let Sl be the value set of l. Let the set of binary
variables {x0, x1,…, xk-1} be put in one-to-one correspondence
with the values of DX. The CST of l is a cube L composed of
variables xi. For each value lv S∉ , the corresponding variable xv

is added to the cube L in the positive polarity: L = v
lSv
x

∉
Π

Because l is non-trivial, Sl is a non-empty proper subset of DX.
Thus L contains at least one binary variable xi.

Example. Consider variable X with 5 values and MV literals l1
= X{0,3,4} and l2 = X{2}. The CST of literals l1 and l2 are cubes L1
and L2, respectively: L1 = x1x2, L2 = x0x1x3x4.

Definition (CST of MV cube). Let c be an MV cube
c = l1l2…ln, where li are non-trivial literals. The CST of c is a cube
C, called CST cube, equal to the product of the CSTs of literals li.

C = L1L2…Ln.
Example. Consider MV cubes c1 = A{0,1}B{0,3}C{3} and c2 =

A{0}C{1,2,3}; A is 3-valued and B and C are 4-valued. The CST of c1
and c2 , are C1 = a2b1b2c0c1c2, C2 = a1a2c0, respectively.

Definition (CST of MV SOP). Let t be an MV SOP composed
of cubes c1, c2, … , ck, where ci are MV cubes. The CST of t is the
binary SOP T, called CST SOP, composed of cubes Ci that are

CSTs of MV cubes ci:
1

k

i
i

T C
=

= ∑ .

Example. MV SOP composed of the two MV cubes in the
previous example is t = A{0,1}B{0,3}C{3} ∨ A{0}C{1,2,3}. Then the
CST of t is T = a2b1b2c0c1c2 ∨ a1a2c0.

Definition (Inverse CST). Let T be a positive unate SOP
composed of binary variables in one-to-one correspondence with
the values of a set of MV variables. Then, the inverse CST (ICST)
is the transform, which translates the CST SOP into an MV SOP
using the rules inverse to those of CST.

Example. Let positive unate SOP be

T = a2b1b2c0c2 ∨ b0c0c1 ∨ a1,
and suppose the binary values ai, bi, and ci are in one-to-one
correspondence with the values of ternary MV variables A, B, and
C. Let t be ICST of T. Then,

t = A{0,1}B{0}C{1} ∨ B{1,2}C{2} ∨ A{0,2}.
Property. The cardinality of MV SOP and CST SOP is the

same.
Proof. CST transforms each MV cube into a binary cube and

the ICST transforms each binary cube into an MV cube. Q. E. D.
Property (Singleton literal). Let X be a k-valued MV variable.

Let binary variables {x0, x1,…, xk-1} be used to derive the CST of
MV literals of X. Then, ix = X{i}.

Proof. Consider literal l = X{0,1,…,i-1,i+1,…,k-1}. Its CST is xi. The
complement of l is X{i}. Therefore, ix = X{i}. Q.E.D.

When an MV object (literal, cube or SOP) is subject to CST, a
don’t-care set is implied, because some of the combinations of the
binary variables cannot occur in the transformed object. The
following property shows how to compute the CST-generated
don’t-cares.

Property (Induced don’t-care). When a k-valued MV variable
undergoes CST, the following CST-related don’t-care (induced
don’t-care, or CST DC) is generated in the binary domain:

0 1
0 ,

i jk
i j k
i j

x x x x−
≤ <
≠

+ ∑K .

Proof. By the above property, ix = X{i} and jx = X{j}, i ≠ j. The

product of the left-hand sides is jxxi . The product of the right-

hand sides is X{}, the literal with the empty set of values. Literal
cube X{} can be added to any MV SOP without changing the
function represented by it. Therefore, jxxi is a don’t-care.

Similarly, {}
0 1kx x X− =K . Adding all don’t-cares of this kind, we

get the property. Q. E. D.
Definition (CST of CSF). Let f be a MV CSF and t be an MV

SOP of f. Let T be CST SOP of t and D be the CST DC. Let F be
the Boolean function of T. The CST of f is the binary ISF
represented by the interval (F ∧ D , F ∨ D).

Definition (CST of ISF). Let f = (f1, f2) be an MV ISF. Let t1
and t2 be MV SOPs of f1 and f2. Let T1 and T2 be CST SOPs of t1
and t2. Let D be the CST DC. Let F1 and F2 be Boolean functions
of T1 and T2. The CST of f is the binary ISF represented by the
interval (F1 ∧ D , F2 ∨ D).

The following properties are important for SOP minimization.
Property. The CST of a CSF or an ISF is unique and does not

depend on MV SOPs used to generate it.
Property. The size of the domain (the total number of minterms

in the domain) of the transformed function increases compared to
the domain of the original MV function. The number of onset and
offset minterms remains the same. It follows that the ratios of on-
set size and off-set size to the domain size decrease.

Property. When CST don’t-cares are used, minimality of the
MV SOP and CST SOPs translates across the domains.

Property. A cube of the original function is prime iff a
transformed cube is a prime of the CST function interval.

Property. The primes of the CST function form equivalence
classes, distinguished by the polarity of variables. The set of all

primes of the MV function can be computed by computing the
CST primes of only one polarity, for example, positive unate.

Property. Primeness and irredundancy of covers translates
across the domains.

Property. All minterms composed of the on-set and the off-set
of the CST function interval are distance two or more.

Example. Consider f(A, B) = A{0}B{1,2} ∨ B{1} ∨ A{1}B{0,1},
where A is binary and B is ternary. Let F be the CST of f and D be
the CST DC. Then,

1 0 0 2 0 2

0 1 0 1 0 2 1 2 0 1 0 1 2

F a b b b a b

D a a b b b b b b a a b b b

= + +

= + + + + +

a0a1 \ b0b1b2 000 001 011 010 110 111 101 100
00 - - - - - - - -
01 - - 0 - 1 - 1 -
11 - - - - - - - -
10 - - 1 - 0 - 1 -

Figure 1. MV function transformed by CST.

The function interval (F ∧ D , F ∨ D) is shown in Figure 1.
Only the positive unate primes are shown. Note that both the CST
cube b0b2, and the corresponding cube B{1} of the original function
are redundant. (End of example.)

Figure 2 shows a recursive algorithm to generate the CST for a
binary function represented by a BDD. In the pseudo-code, the
binary variable x is represented using two CST variables, x0 and
x1. Note that although both the original and the CST functions are
binary, the former can be binate while the latter is always unate.

function CST(function F)
{
 if (F = 0) return 0;
 if (F = 1) return 1;
 x = TopVariable(F);
 (F0, F1) = Cofactors(F, x);
 R0 = CST(F0);
 R1 = CST(F1);
 return x1R0 ∨ x0R1;
}

Figure 2. CST for a function represented by the BDD.

Although not shown, the recursive pseudo-code discussed in
this and the following figures, uses cache for computed results.

4 Computing ISOP

Computation of ISOP for MV function is of practical interest
because, in some cases, it can be used as a fast heuristic SOP
minimization procedure. In particular, when the SOP of a function
to be minimized is composed of essential primes only, the ISOP is
the exact minimum.

For binary functions, an efficient recursive ISOP computation
algorithm is known [20][17][5]. Given the function interval of an
ISF, it computes the ISOP in one traversal of the shared BDD of
the lower and the upper bound of the interval.

This ISOP algorithm has not been extended to MV functions
represented by MDDs. However, it is possible to apply the binary
ISOP computation to MV functions represented using binary

encoded MDDs (BEMDDs). To reduce the number of binary
variables, a logarithmic encoding of the values of MV variables is
used. The resulting ISOP for the binary function is converted back
to the MV domain. This method is fast and often generates MV
ISOPs much smaller than the set of disjoint SOPs derived by
enumerating the paths to terminal 1 in the BDD. Although the
resulting ISOP is prime and irredundant in the binary domain, it
may not be prime and irredundant after decoding back to the MV
domain; the result may not even be single-cube containment free.

4.1 ISOP for Binary Functions
We briefly review the ISOP computation [20][17][5].

cover ISOP(function L, function U)
{
 if (L = 0) return {};
 if (U = 1) return {{}};
 x = TopVariable(L, U);
 (L0, L1) = Cofactors(L, x);
 (U0, U1) = Cofactors(U, x);
 R0 = ISOP(L0 ∧ U 1, U0);
 R1 = ISOP(L1 ∧ U 0, U1);
 R2 = ISOP(L0 ∧)(R0Bdd ∨ L1 ∧)(R1Bdd , U0 ∧ U1);
 return Cover(x, R0, R1, R2);
}

Figure 3. ISOP computation.

The procedure in Figure 3 takes the function interval (L, U)
representing an ISF and returns the ISOP of the ISF. If the lower
bound L is 0, the empty cover is returned. If the upper bound U is
1, the cover composed of the cube without literals (the tautology
cube) is returned. Otherwise, the topmost variable x in the BDDs
is found and used to cofactor of L and U.

Next, are three recursive calls to ISOP, which return cubes
containing variable x in the negative polarity (R0), in the positive
polarity (R1) and without variable x (R2).

To compute R0, it is necessary to cover that part of the negative
cofactor of the on-set (L0), which cannot be covered by cubes with
the positive polarity literal and without literal x (U1). Therefore,
the lower bound for the recursive call, which computes R0, is
derived by “sharping” L0 with U1 (L0 ∧ U 1). The computation of
R1 is similar.

The computation of R2 is based on the partial solutions, R0 and
R1. The lower bound is the part of the negative cofactor of the on-
set (L0) not covered by R0 and the part of the positive cofactor of
the on-set (L1) not covered by R1. Cubes without variable x belong
equally to the negative and the positive parts of the on-set. This is
why the upper bound in the last recursive call is the intersection of
the cofactors of the initial upper bound.

4.2 ISOP for MV Functions
Figure 4 shows a new algorithm for MV ISOP computation for

the CST function using the induced don’t-cares. The approach is
different from the binate ISOP computation shown in Figure 3 in
that it generates a unate cover. The assertion, after cofactoring,
ensures that the unate cover of the given function can be
computed. The cubes without the literal of variable x (R2) are
computed for the negative cofactor of the on-set, followed by
covering the remaining part of the domain of the positive cofactor
of the on-set with the cubes containing the positive literal of

variable x (R1). The resulting cover is constructed using the empty
set for the set of cubes with the negative literal (R0).
cover ISOP(function L, function U)
{
 if (L = 0) return {};
 if (U = 1) return {{}};
 x = TopVariable(L, U);
 (L0, L1) = Cofactors(L, x);
 (U0, U1) = Cofactors(U, x);
 assert(L0 ⇒ U1);
 R2 = ISOP(L0, U0 ∧ U1);
 R1 = ISOP(L1 ∧)(R0Bdd , U1);
 return Cover(x, {}, R1, R2);
}

Figure 4. Unate ISOP computation.

Experiments show that the algorithm in Figure 4 results in
ISOPs with many more cubes, compared to the covers generated
by applying the general-case binate ISOP computation in Figure 3
to the CST function.

One possible reason is that the function interval of the CST
function with don’t-cares is such that the number of minterms in
the on-set and the off-set is the same as in the original function.
Meanwhile, the size of the domain has increased. Moreover, all
the on-set and off-set minterms are distance two or more from
each other; thus 0s and 1s in the care set of the Boolean space of
the CST function are surrounded by vast domains of don’t-cares.
The binate ISOP computation is more “flexible” in trying to
distinguish among the 0s and 1s using the cubes with both positive
and negative literals, while the unate ISOP computation is more
“rigid” in always using only positive unate cubes.

5 Computing Primes

Prime computation for MV functions is important for
applications, such as exact SOP minimization. A recursive
algorithm was proposed in [20] and efficiently implemented in [8]
for multi-output binary functions represented using BDDs. The
computation of primes for MV functions in Espresso-MV [2][23]
is performed recursively using a bit-set cube representation.

A BDD-based prime computation algorithm for MV functions
exists [13] but is not efficient in practice, because of the large
intermediate BDD representations. In this section, a new method
is given to compute the set of all primes for MV functions using
the CST function and the induced don’t-cares. In some cases, this
method is faster than Espresso-MV, because it uses the implicit
representation and exploits unateness of the transformed function.

5.1 Primes of Binary Functions
We briefly review the binary prime computation procedure for

CSFs [20][8], shown in Figure 5.
If the function is 0, the set of primes is empty; if the function is

1, the set of primes is the tautology cube. Otherwise, F is
cofactored using the topmost variable x in the BDD. Let R0 and R1
be primes computed for the cofactors of F. The set of primes
without variable x are those primes R2 which appear as primes of
both F0 and F1. Alternatively, it is possible to compute R2 as the
set of primes in the intersection of cofactors, F0 ∧ F1. The sets of

primes with negative and positive literal x are derived by
removing from R0 and R1 the primes R2 .
cover Primes(function F)
{
 if (F = 0) return {};
 if (F = 1) return {{}};
 x = TopVariable(F);
 (F0, F1) = Cofactors(F, x);
 R0 = Primes(F0);
 R1 = Primes(F1);
 R2 = R0 ∩ R1;
 R0 = R0 \ R2;
 R1 = R1 \ R2;
 return Cover(x, R0, R1, R2);
}

Figure 5. Binary prime computation.

5.2 Primes of MV Functions
The computation of all primes for a binary ISF (L, U) is

performed in two steps. First, all the primes of U are computed, as
shown in Figure 5. Next, the procedure in Figure 8 is applied to
select only those primes that overlap with L.

If the binary ISF is the CST transformed function for an MV
function, the resulting binary primes are projected to the MV
domain using the inverse CST. By the property in Section 3, to
compute all the primes of an MV function, it is enough to
compute only the positive unate primes for the binary ISF. This is
done using the pseudo-code in Figure 6.

The computation of positive primes in Figure 6 is similar to that
of all primes in Figure 5, except that the primes R0, with negative
literal x, are not computed, and the empty set is used instead of R0
when creating the result.

cover PositivePrimes(function F)
{
 if (F = 0) return {};
 if (F = 1) return {{}};
 x = TopVariable(F);
 (F0, F1) = Cofactors(F, x);
 R1 = PositivePrimes(F1);
 R2 = PositivePrimes(F0 ∧ F1);
 R1 = R1 \ R2;
 return Cover(x, {}, R1, R2);
}

Figure 6. Positive prime computation.

6 Computing Essential Primes

One algorithm to compute essential primes of an MV function
[25] uses a bit-set representation of the SOP of the function. We
propose two new algorithms for the computation of the set of all
essential primes. These operate on the BDDs of interval (L, U)
representing the transformed function. The first algorithm requires
the computation of all primes; the second does not.

Algorithm 1.
The algorithm shown in Figure 7 computes the set R of all

primes of the upper bound U of the CST function. Computed next
is the set P of those primes in R that overlap with the on-set L.
Domain A is the Boolean space covered by only one cube in P.

Finally, the set of essential primes E is primes in P that overlap
with A. If an ISOP C contained in the interval (L, U) is available,
C can be used instead of P in the last step because an ISOP
contains all essential primes.

cover Essentials(interval (L,U), subsets S)
{
 cover R = FilteredPrimes(U, S);
 cover P = OverlappingCubes(R, L);
 domain A = SingleCoveredDomain(P);
 cover E = OverlappingCubes(P, A);
 return E;
}

Figure 7. Essential prime computation using primes.

The procedures used in Figure 7, are detailed in Figure 8 and
Figure 9. These work for an arbitrary cover C. When the cover is
positive unate, they can be simplified by setting C0 to the empty
set.

cover OverlappingCubes(cover C, function F)
{
 if (F = 0 or C = {}) return {};
 if (F = 1) return C;
 x = TopVariable(C, F);
 (C0, C1, C2) = Cofactors(C, x);
 (F0, F1) = Cofactors(F, x);
 R0 = OverlappingCubes(C0, F0);
 R1 = OverlappingCubes(C1, F1);
 R2 = OverlappingCubes(C2, F0 ∨ F1);
 return Cover(x, R0, R1, R2);
}

Figure 8. Computing cubes overlapping with domain.

function SingleCoveredDomain(cover C)
{
 if (C = {}) return 0;
 if (C = {{}}) return 1;
 x = TopVariable(C);
 (C0, C1, C2) = Cofactors(C, x);
 F0 = SingleCoveredDomain(C0 ∪ C2);
 F1 = SingleCoveredDomain(C1 ∪ C2);
 return ITE(x, F1, F0);
}

Figure 9. Computing domain covered by a single cube.

Algorithm 2.
This algorithm in Figure 10 takes the function interval (L, U)

and returns the set of positive unate primes and the essential
domain, i.e. the sub-domain of L covered by only one prime.
Returning the essential domain and the set of essential primes
allows for not computing the set of all primes. To simplify the
pseudo-code, the subset S used for filtering primes is not shown.

After checking for the trivial cases and cofactoring the argument
functions in Figure 10, the problem is solved recursively for the
domains inside and outside the intersection of cofactors. Because
L is positive unate, the domain outside the intersection can be
covered by cubes with the positive literal. The subsequent steps
compute the essential domain and essential primes inside and
outside of the intersection of cofactors, assuming that the partial
problems have been solved, and the return values are created.
Note that the positive cofactor of the essential domain is the sum
of the essential domains inside and outside the intersection, while

the negative cofactor is the essential domain inside the
intersection.

(cover, function) Essentials(interval (L,U))
{
 if (L = 0) return ({}, 0);
 if (U = 1) return ({{}}, L);
 x = TopVariable(L, U);
 (L0, L1) = Cofactors(L, x);
 (U0, U1) = Cofactors(U, x);
 assert(L is positive unate);
 // recursively solve in the intersection
 (P2, E2) = Essentials(L0, H0 ∧ H1);
 // recursively solve outside the intersection
 (P1, E1) = Essentials(L1 - L0, H1);
 // essential primes in the intersection
 P2 = P1 ∩ P2;
 // essential domain in the intersection
 A2 = CoveredDomain(E1, P2);
 // essential area outside the intersection
 A1 = E1 – (H0 ∧ H1);
 // essential primes outside the intersection
 P1 = OverlappingCubes(P1, A1);
 return (Cover(x,{},P1,P2), ITE(x, A1∨A2, A2));
}

Figure 10. Computing essential primes without computing
primes.

7 Experimental results

The algorithms for ISOP and prime computation were
implemented in C using the CUDD package [27] and the EXTRA
library [18]. The implementation was tested using a 994GHz
256Mb RAM computer under Windows XP.

Table 1 compares several algorithms for ISOP computation. The
MV-input binary-output benchmarks were derived from Espresso
benchmarks using pair-decoding [24]. Pair-decoding consists of
replacing pairs of binary variables by 4-valued variables. For an
odd number of binary variables, one variable is left unpaired. The
output MV variable is not changed.

Table 1 shows the benchmark parameters: the number of MV
variables after pair-decoding (“vars”), the total number of all
values (“Σv”), and the total number of binary variables needed for
the logarithmic encoding of each variable in the function (“Σb”).
This encoding is used to derive Binary Encoded MDD (BEMDD),
to which a binary ISOP computation is applied.

Columns “Disj SOP” gives the number of cubes in the disjoint
SOP of the given function derived by enumerating the paths to the
terminal 1 in the BEMDD of the function.

Columns “ISOP-log” shows the number of cubes and runtime in
seconds to compute the MV SOP by first computing the binary
SOP of the BEMDD. The resulting cover is single-cube
containment free but is not necessarily prime or irredundant. Note
that the BEMDD depends on “Σb” binary variables. Also, note
that unlike CST, the BEMDD does not provide any don’t cares
induced by the encoding.

Columns “ISOP-cst” shows the number of cubes and runtime to
compute the MV SOP of the same function using the algorithms
proposed. This cover is irredundant but not necessarily prime
(conjecture). Note that the CST-based representation of the
function depends on “Σv” binary variables. The results in this and

the previous section were verified by deriving the BEMDD for the
resulting MV ISOPs and comparing them with the original
BEMDD.

The final columns contain the results of running Espresso-MV
with three different options. “Espr-fast” performs only one
EXPAND and IRREDUNDANT without MAKE_SPARSE.
“Espr-heu” runs the heuristic MV SOP minimization loop until no
improvement. “Espr-exact” minimizes the functions exactly. The
dashes in the table mean the program did not finish within 1
minute. The results were internally verified by Espresso.

Table 1 shows that CST-based minimization is generally a
failure; it is always slower than ISOP-log, and only in 8 examples
does it derive fewer cubes than ISOP-log. Also, the CST-based
computation does not finish in reasonable time for some
benchmarks because the CST function depends on more variables
(“Σv”) than the BEMDD (“Σb”). However, ISOP-log (BEMDD)
seems to provide a useful trade-off; although (as expected) it is
always worse (in terms of cubes) than Espresso-fast, it is always
(except for one example) faster.

Table 2 shows the results of prime computation for both the
original and bit-paired benchmark functions. The parameters
section of the table includes the number of inputs (“Ins”), outputs
(“Outs”), and the number of values (“Values”). Sections “CST-
based” show the sizes of the ZDD representations of the sets of
primes, and the number of primes computed using the CST-based
approach. The number of primes is the same in all the prime
computation methods (of course). The subsequent three columns
contain the runtime of the CST-based computation, the output-1-
hot-encoded approach [1][2][8], and the explicit MV prime
computation in Espresso-MV [23].

The 1-hot-encoded representation was only implemented for
binary-input functions. Therefore, column “1-hot” is not listed on
the right for the benchmark functions obtained by bit-pairing.

The conclusion from Table 2 is that CST/ZDD prime
computation, for the MV-input examples, is generally superior to
the explicit computation in Espresso-MV; in 14 of the 17 cases
CST is faster. For some benchmarks (apex2) CST is more than
two orders of magnitude faster. However, CST is slower, on
binary input examples, than the computation of primes using
output-1-hot encoding. The reason is similar to why the CST is
slower than the ISOP computed from the BEMDD; the output-1-
hot encoded representation depends on fewer variables (Ins +
Outs) compared to the CST representation (2*Ins + Outs).

Experiments have not been done yet for generating essential
primes.

8 Conclusions

In this paper, the approach of reducing multi-valued algebraic
operations to binary using the co-singleton transform [11] was
extended to a number of problems related to SOP minimization.
The approach reduces the minimization of the general-case MV
functions to the minimization of binary unate functions with
don’t-cares.

Algorithms were given to solve typical problems related to SOP
minimization of MV functions, such as computation of ISOPs,
computation of all primes, and essential primes. The CST results
for minimization were generally inferior to those using
logarithmic encoding (ISOP/BEMDD). For generating primes for

MV-input examples, the new method was almost always faster
than ESPRESSO-MV prime generation. For both high quality and
reasonable runtime ESPRESSO-MV-heuristic [23] is still the
method of choice for minimizing MV SOP functions.

The ISOP/BEMDD approach can be useful as an alternative to
ESPRESSO-MV-fast for trading off fast MV-minimization for
less optimal results. Generally, fast ISOP computation can be a
useful starter for ESPRESSO-MV, but the latter can be time
consuming, especially for functions with large offsets.

The hope for the future is to discover extensions of the
Espresso-type algorithms that will take better advantage of the
fact that the sought-for solution is unate. Future work will also
focus on achieving a better runtime/quality trade-off in the SOP
minimization for MV-functions and/or MV-relations arising in the
optimization of MV networks in MVSIS [21].

Acknowledgements
The first and second authors acknowledge the generous long-

term support of the SRC under contract 683.004, as well as the
GSRC, and the California Micro program with our industrial
sponsors, Cadence and Synplicity. The first and third authors
acknowledge the support from Kyushu Institute of Technology
under the 75th Commemoration Fund Program for Foreign
Researchers, which partially sponsored this research during the
first author’s visit in Japan.

References

[1] T. C. Bartee, “Computer design of multiple-output logical networks”.
IRE Trans. Electr. Comp., March 1961, pp. 21-30.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, Dordrecht, 1984.

[3] R. K. Brayton and C. McMullen, “The decomposition and
factorization of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[4] R. E. Bryant, "Graph-based algorithms for Boolean function
manipulation," IEEE Trans. Comp., Vol. C-35, No. 8 (August, 1986),
pp. 677-691.

[5] O. Coudert and J. C. Madre, “Implicit and incremental computation
of primes and essential primes of Boolean functions”, Proc. DAC
’92, pp. 36-39.

[6] O. Coudert, J. C. Madre, H. Fraisse, H. Touati, "Implicit prime cover
computation: An overview", Proc. SASIMI '93, Nara, Japan.

[7] O. Coudert and J. C. Madre, “Towards a symbolic logic minimization
algorithm”, Proc. VLSI Design, January 1993.

[8] O. Coudert, “Two-level logic minimization: An overview”,
Integration, 17-2, pp. 97-140, Oct. 1994.

[9] M. Gao and R. K. Brayton, “Semi-algebraic methods for multi-
valued logic”, Proc. IWLS ‘00, pp. 73-80.

[10] S. J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A heuristic
approach for logic minimization”, IBM J. Res. Develop., Sept. 1974,
pp. 443-458.

[11] J.-H. R. Jiang, A. Mishchenko, and R. K. Brayton, “Reducing multi-
valued algebraic operations to binary”, Proc. DATE ’03, to appear.

[12] T. Kam, T. Villa, R. Brayton, A. Sangiovanni-Vincentelli. Synthesis
of Finite State Machines: Functional Optimization. Kluwer
Academic Publishers, 1997.

[13] B. Lin, O. Coudert, and J-C. Madre, “Symbolic prime generation for
multiple-valued functions”, Proc. DAC ‘92, pp. 40-44.

[14] A. A. Malik, R. Brayton, A. R. Newton and A. Sangiovanni-
Vincentelli, “Reduced offsets for two-level multi-valued logic
minimization”, Proc. DAC’ 90, pp. 290-296.

[15] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-
Vincentelli, "Espresso-Signature: A new exact minimizer for logic
functions," Proc. DAC ’93, pp. 618-624.

[16] S. Minato, “Zero-suppressed BDDs for set manipulation in
combinatorial problems”, Proc. of DAC ‘93, pp. 272-277.

[17] S. Minato, “Fast generation of irredundant sum-of-products forms
from binary decision diagrams”, Proc. SASIMI '92, pp. 64-73.

[18] A. Mishchenko, EXTRA Library of DD procedures.
http://www.ee.pdx.edu/~alanmi/research/ extra.htm

[19] A. Mishchenko and R. K. Brayton, “Simplification of non-
deterministic multi-valued networks”, Proc. ICCAD ‘02, pp. 557-
562.

[20] E. Morreale, “Recursive operators for prime implicant and
irredundant normal form determination”, IEEE Trans. Comp., C-
19(6), 1970, pp. 504-509.

[21] MVSIS Group. MVSIS. UC Berkeley.
http://www-cad.eecs.berkeley.edu/mvsis/

[22] J. Rajski and J. Vasudevamurthy, “The testability-preserving
concurrent decomposition and factorization of Boolean expressions”,
IEEE Trans. CAD, Vol. 11(6), June 1992, pp. 778-793.

[23] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued
minimization for PLA optimization”, IEEE Trans. CAD, Vol. 6(5),
pp. 727-750, Sep. 1987.

[24] T. Sasao, "Multiple-valued decomposition of generalized Boolean
functions and the complexityof programmable logic arrays," IEEE
Trans. Comp.,Vol. C-30, No. 9, pp. 635-643, Sept. l981.

[25] T. Sasao, "An algorithm to derive the complement of a binary
function with multiple-valued inputs," IEEE Trans. Comp. Vol. C-
34, No. 2, pp. 131-140, Feb. 1985.

[26] E. Sentovich, et al, “SIS: A system for sequential circuit synthesis”,
Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, Univ. of
California, Berkeley, 1992.

[27] F. Somenzi, BDD package “CUDD v. 2.3.0.”
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

Table 1. Comparision of ISOP computation algorithms.

Parameters Disj SOP ISOP-log ISOP-cst Espr-fast Espr-heu Espr-exact Bench
mark vars Σv Σb Cubes Cubes Time Cubes Time Cubes Time Cubes Time Cubes Time
5xp1 5 24 11 395 69 0.01 110 0.02 47 0.04 46 0.05 46 0.11
9sym 6 19 10 148 148 0.01 112 0.01 42 0.01 31 0.07 26 0.09
alu4 8 36 17 17,790 637 0.24 1273 0.62 304 0.51 288 2.24 280 15.69

apex1 24 135 51 17,482,296 746 0.60 - - 216 2.62 197 6.20 - -
apex4 6 37 14 1,570 940 0.04 1133 1.61 671 0.49 466 3.51 - -

b12 9 39 19 2,796 48 0.01 121 0.02 34 0.01 32 0.04 30 1.15
clip 6 23 12 826 146 0.01 91 0.01 42 0.02 42 0.02 40 0.11

con1 5 16 8 30 9 0.01 18 0.01 8 0.01 8 0.01 8 0.01
cordic 13 48 24 79,936 1180 0.01 918 0.01 78 1.74 78 2.36 78 13.16

cps 13 157 31 17,510 511 0.09 - - 174 0.54 148 1.39 144 9.55
duke2 12 73 27 93,472 188 0.03 - - 86 0.08 76 0.22 75 0.93

e64 34 195 72 466,152 65 0.05 - - 65 0.20 65 12.50 65 12.50
ex1010 6 30 14 3,325 1210 0.08 1202 0.92 543 0.67 241 1.36 - -

ex5 5 79 14 1,679 211 0.02 - - 87 0.16 70 0.55 - -
inc 5 23 11 104 46 0.01 63 0.01 36 0.01 29 0.01 27 0.01

misex1 5 23 11 76 21 0.01 72 0.01 13 0.01 13 0.01 12 0.01
misex2 14 68 30 2,228 29 0.01 70 0.64 28 0.02 27 0.01 27 0.01
misex3 8 42 18 11,640 1104 0.08 2236 1.01 631 1.21 498 6.87 - -

misex3c 8 42 18 62,031 311 0.24 925 0.61 171 0.20 147 0.98 - -
rd53 4 13 7 32 31 0.01 26 0.01 13 0.01 13 0.01 12 0.01
rd73 5 17 9 169 147 0.01 77 0.01 38 0.01 37 0.01 37 0.01
rd84 5 20 10 291 258 0.01 171 0.01 56 0.01 54 0.02 54 0.04
sao2 6 24 12 139 60 0.01 112 0.01 39 0.01 39 0.02 38 0.02
seq 22 117 47 1,717,537 1148 0.27 - - 309 5.31 222 9.46 - -

spla 9 78 22 88,885 595 0.23 - - 204 0.29 185 0.78 - -
squar5 4 18 8 66 28 0.01 33 0.01 24 0.01 21 0.01 21 0.01
table3 8 42 18 1,971 421 0.04 709 0.20 201 0.19 169 0.37 166 0.27
table5 10 49 21 2,145 366 0.03 1062 0.70 143 0.33 119 0.53 119 0.44

vg2 14 58 28 29,690 110 0.06 932 0.14 88 0.16 88 0.33 88 1.97
xor5 4 11 6 16 16 0.01 9 0.01 4 0.01 4 0.01 4 0.01

z5xp1 5 24 11 410 71 0.01 96 0.01 60 0.01 53 0.03 51 0.10
Total 20,085,355 10870 2.26 4455 14.9 3506 49.98

Table 2. Comparision of prime computation algorithms.

Original PLAs Pair-decoded PLAs
Parameters

CST-based Runtime, sec CST-based Runtime, sec
Bench
mark

Ins Outs Values ZDD
size

Primes CST output-
1-hot

Espr ZDD
size

Primes CST Espr

5xp1 8 10 24 1212 390 0.04 0.01 0.02 1649 482 0.04 0.06
9sym 10 1 19 98 1680 0.01 0.01 0.08 126 264 0.01 0.06
alu4 15 8 36 9551 7145 0.72 0.27 2.47 10598 6150 1.34 2.70

apex2 40 3 81 1135 13403 0.03 0.01 37.01 5205 2217 0.49 3100.0
b12 16 9 39 958 1490 0.03 0.01 0.04 3244 1095 0.08 0.04
clip 10 5 23 533 865 0.01 0.01 0.02 698 376 0.01 0.03

cordic 24 2 48 161 1754 0.01 0.01 0.82 436 225 0.01 6.83
misex2 26 18 68 418 42 0.01 0.01 0.01 715 45 0.01 0.01
misex3 15 14 42 15200 6731 0.45 0.16 1.60 20195 7704 0.52 4.13

rd73 8 3 17 91 211 0.01 0.01 0.01 129 77 0.01 0.01
rd84 9 4 20 143 633 0.01 0.01 0.03 192 149 0.01 0.01
sao2 11 4 24 195 184 0.01 0.01 0.01 285 98 0.01 0.01
t481 17 1 33 58 481 0.01 0.01 0.05 74 32 0.01 0.08

table3 15 14 42 1817 539 0.05 0.02 0.03 2460 625 0.07 0.09
table5 18 15 49 1531 462 0.04 0.01 0.04 2646 431 0.08 0.14

vg2 26 8 58 370 1188 0.02 0.01 0.07 5307 1149 0.35 0.33
z5xp1 8 10 24 1045 390 0.03 0.01 0.02 1527 479 0.03 0.02

