
Encoding of Boolean Functions and Its Application to LUT Cascade Synthesis

 Alan Mishchenko Tsutomu Sasao
 Department of ECE Center for Microelectronic Systems and Department of CSE
 Portland State University Kyushu Institute of Technology
 Portland, OR 97207, USA Iizuka, Fukuoka, 820-8502 JAPAN
 alanmi@ece.pdx.edu sasao@cse.kyutech.ac.jp

Abstract1

The problem of encoding arises in several areas of logic
synthesis. Due to the nature of this problem, it is often difficult to
systematically explore the space of all feasible encodings in order
to find an optimal one.

In this paper, we show that when the objects to be encoded are
Boolean functions, it is possible to formulate and solve the
problem optimally. We present a general approach to the
encoding problem with one or more code-bit functions having
some desirable properties. The method allows for an efficient
implementation using branch-and-bound procedure coupled with
specialized BDD operators.

The proposed approach was used to synthesize look-up table
(LUT) cascades implementing Boolean functions. Experimental
results show that it finds optimal solutions for complex encoding
problems in less than a second of CPU time.

1 Introduction

A binary encoding can be represented by a mapping from the set
of objects into the set of all subsets of minterms of the Boolean
space, Bw = {0,1}w, where µ is the number of objects and
w ≥ log2µ. An additional requirement is that the subsets of
minterms used for the codes do not overlap.

The encoding problems have been extensively studied for state
assignment of finite state machines (FSMs), in particular, in
asynchronous synthesis [15], generation of minimum-area PLAs
[6], and design of state-event systems [3]. In these applications,
the objects to be encoded are FSM states.

In several other areas, the objects to be encoded are Boolean
functions. These areas include Ashenhurst-Curtis decomposition
of binary and multi-valued relations [10], functional
decomposition for FPGAs [5], and binary encoding of multi-
valued networks [3].

Previous approaches to encoding Boolean functions relied on
encoding with input and output constraints from state assignment
of FSMs [8][3], the use of heuristics [10][1], or Boolean
satisfiability [9][5]. Although the latter two approaches tend to
work better because they search a larger solution space, they are
often slow due to large representations for all encoding choices.

1 The first author has been partially supported by a research grant from
Intel Corporation.

This paper continues research started in [12] and presents a
general solution to encoding of Boolean functions with the
following optimality criteria: (1) the resulting code-bit functions
have small support sizes, or (2) the resulting code-bit functions
belong to a certain class of functions. The first requirement is
typical in the decomposition for FPGAs because functions
depending on a single variable are implemented as a wire without
a LUT. The second type occurs in technology-dependent logic
synthesis when the Boolean network is decomposed/mapped into
a standard-cell library.

To experimentally evaluate the proposed encoding algorithm,
we apply it to synthesis of the LUT cascade representation of
Boolean functions [11]. Experimental results show that the new
encoding algorithm significantly reduces the number of LUTs
compared to random encoding. A similar study has been recently
performed using fast heuristic encoding algorithm [2].

 The rest of the paper is organized as follows. Section 2 defines
the encoding problem and introduces the notation. Section 3
derives and compares the number of strict and non-strict
encodings. Section 4 presents the theoretical background of the
paper. Section 5 discusses the efficient implementation of the
algorithm using branch-and-bound search and specialized BDD
operators. Section 6 shows the application of the encoding
algorithm to LUT cascade synthesis. Section 7 gives experimental
results. Section 8 draws conclusions and outlines future work.

2 Definitions

Given a set of objects {oi}, 1 ≤ i ≤ µ, and a set of Boolean
variables, {zj}, 1 ≤ j ≤ w, w ≥ log2 µ, a strict encoding is an
assignment of a unique minterm mi(z) to each object oi. A non-
strict encoding is an assignment of a unique function ci(z) to each
object oi in such a way that the functions ci(z) are pair-wise
disjoint. The encodings discussed in this paper are always non-
strict unless stated otherwise.

Parameter w is code length. Variables zj are code bits. Minterm
mi(z), or function ci(z), are the code of object oi.

A strict encoding is straight-binary (natural) if the codes are
minterms representing integer indices of the objects. The
minimum length of the code needed to encode µ objects is
log2 µ. An encoding with w = log2 µ bits is a minimum-length
(or logarithmic) encoding.

Example 1. Table 1 gives examples of a strict and a non-strict
encodings of objects {o1, o2, o3} using binary variables {z1, z2}.

The strict encoding is a straight-binary encoding with the unused
code 21zz .

Table 1. Examples of strict and non-strict encodings.

Objects Strict encoding Non-string encoding

o1 21zz 21zz

o2 21zz 21zz ∨ 21zz

o3 21zz 21zz

In this paper, we consider the encoding problem when the
objects to be encoded are non-overlapping (disjoint) Boolean
functions, fi(x), 1 ≤ i ≤ µ. When this problem arises in functional
decomposition, the parameter µ is called column multiplicity.

An encoding of a set of functions can be represented by the
encoding relation, C(x, z), mapping the domain of the functions
into the domain of the code variables. The encoding relation is the
sum of the products of functions fi(x) by their codes ci(z):

C(x, z) =][)()(
1

zcxfi
n

i
∧

=
∨

The code-bit functions (or simply, code functions) express each
bit of the code in terms of support variables of fi(x). The code-bit
functions are derived by cofactoring C(x, z). The j-th code-bit
function zj(x) is the positive cofactor of C(x, z) w.r.t. zj = 1, with
the remaining code bit variables existentially quantified:

zj(x) = ∃ z [C(x, z) | zj=1].
Example 2. Let objects {o1, o2, o3} in Example 1 be functions

{ x1x2, 21xx , 1x }. For the strict encoding shown in Table 1, the
encoding relation and code-bit functions are:

C(x, z) = x1x2 21zz ∨ 21xx 21zz ∨ 1x 21zz ,

z1= 1x ∨ 2x , z2= 1x ∨ x2.
Given a set of functions fi(x), 1≤ i ≤ µ, and a function g(x),

which may belong to the set, the number of functions in fi(x) that
overlap with g(x) is denoted Count(fi, g).

Consider functions fi(x), 1 ≤ i ≤ 3, in Example 2 and the
function g(x) = x2. Count(fi, g) = 2, because g(x) = x2 does not
overlap with f2 = 21xx , but overlaps with f1 = x1x2 and f3 = 1x .

3 Number of Encodings

This section considers the number, NE(µ, w), of different
encodings of the set of µ objects using w-bit codes.

If µ = 2w, the number of encodings is equal to the number of
different permutations of µ minterms, NE(µ, w) = µ!.

If µ < 2w, for each out of µ! encodings, there are

!)!2(

!2

µµ−w

w
ways of choosing minterms used in the codes,

which yields the total of NE(µ, w) =
)!2(

!2

µ−w

w
.

In the case of non-strict encodings, the number is even larger.
Let us assign µ minterms to µ functions, which gives µ!
encodings. The remaining 2w – µ minterms can either be assigned
to one of the functions or left unused. This gives an upper bound
on the number of different non-strict encodings:

NE(µ, w) ≤ µµµ −+ w2)1(! .
The formulas are illustrated in Table 2. The table shows that the

number of different encodings is extremely large.

Table 2. The number of strict and non-strict encodings.

µ w
Strict

encodings
Non-strict
encodings

3 2 24 96
5 3 6720 25920

10 4 2.9 ⋅ 1010 6.4 ⋅ 1012
20 5 5.5 ⋅ 1026 1.8 ⋅ 1034
40 6 2.0 ⋅ 1065 4.2 ⋅ 1086

100 7 1.2 ⋅ 10186 1.2 ⋅ 10214

4 Theoretical Background

The encoding algorithm is based on the following theorem.
Theorem 1. Let fi(x), 1 ≤ i ≤ µ, be Boolean functions and the

encoding variables be zj, 1 ≤ j ≤ w, w ≥ log2 µ. An encoding of
function fi(x) using variables zj with the given code-bit function
g(x) exists if and only if

Count(fi, g) ≤ 2w-1 and Count(fi, g) ≤ 2w-1.
Proof. (Sufficiency) Suppose a non-strict encoding with

function g(x) exists. Setting the code-bit to 1 gives Count(fi, g)
functions to be encoded by the remaining w-1 bits. It means that
there are no more than 2w-1 functions, that is, Count(fi, g) ≤ 2w-1.

Similarly, it is proved that Count(fi, g) ≤ 2w-1.
(Necessity) If the above limits on the number of overlapping

functions are true, then each group of functions can be encoded
using w-1 encoding bits. Taken together with the code-bit of g(x),
these bits create a non-strict encoding. Q. E. D.

A theoretical result similar to Theorem 1 was formulated in [5]
(Property 1) without proof and used to implicitly enumerate
support-reducing encoding choices. In this paper, we consider
another application of the same result.

Example 3. Consider five non-overlapping functions depending
on four variables. Figure 1 shows the Karnaugh map. The
minterms in the map are labeled by the functions covering these
minterms. Let us encode these five functions using variables
{z1, z2, z3} and assume that the given code-bit function is g(x) = x1.

 x1x2 g(x)=0 g(x)=1

x3x4 00 01 11 01
 00 f5 f2 f1 f5
 01 f5 f2 f1 f3
 11 f4 f1 f1 f3
 10 f4 f1 f1 f4

Figure 1. Example illustrating Theorem 1.

The code-bit function g(x) splits the Boolean space into two
parts (to the left and to the right of the double line). In each part,
there are minterms of four different functions ({f1, f2, f4, f5} on the
left, {f1, f3, f4, f5} on the right). These four minterms can be
encoded using two remaning two bits.

Suppose the functions on the left and on the right of the double
line are encoded as shown in Table 3. (The dash indicates that a
function is missing in this part.) The resulting encoding is shown
in column “Code”. Note that this encoding is non-strict because
the codes of f1, f4, and f5 contain more than one minterm.

Table 3. Encoding of functions in Example 3.

Function
Left part
(z1 = 0)

Right part
(z1 = 1) Code

f1 32zz 32zz 32zz

f2 32zz - 321 zzz

f3 - 32zz 321 zzz

f4 32zz 32zz 321 zzz ∨ 321 zzz

f5 32zz 32zz 321 zzz ∨ 321 zzz

5 Implementation Issues

5.1 Considering Multiple Code-Bits
In practical applications it is often important to find an

encoding, in which not one, but the largest possible number of
code-bit functions are one-variable functions. To achieve this,
Theorem 1 is applied iteratively, as long as a feasible non-strict
encoding exists.

Suppose we applied Theorem 1 for the first time and found the
first code-bit function equal to the input variable xi1. Next, the
functions are cofactored w.r.t. variable xi1, and Theorem 1 is
applied to the set of positive cofactors and the set of negative
cofactors. If a feasible encoding with a simple code-bit function
exists for both cofactors, we continue searching for the next code
bit, and so on.

The iterative computation scheme can be realized as a branch-
and-bound search. At each branching point, we try all input
variables that are not used as simple code-bit function. If a
variable can be a code-bit function, we branch to the next level. If
on some level, we tested all input variables and none of them
worked, the branch-and-bound procedure backtracks to the
previous level.

The runtime of the branch-and-bound procedure can be
significantly reduced using upper and lower bounds updated
dynamically as computation proceeds.

The branch-and-bound algorithm can solve the encoding
problem exactly in the following sense. If there exists an encoding
with u out of w code-bits, u ≤ w, represented by the simple
functions (functions depending on one variable, or functions
implementing library gates), this encoding is found, and u is
guaranteed to have the largest value.

5.2 Encoding Steps
The encoding algorithm takes a set of functions to be encoded,

fi(x), and a set of preferred code-bit functions, gk(x). The algorithm
tries to find a feasible encoding with the largest number of code-
bit functions in the given set. The resulting encoding is in the form
of the encoding relation.

The following steps are performed repeatedly in the above
branch-and-bound procedure:

(1) Count the number of functions in the set fi(x) that are
overlapping with the function g(x), Count(fi, g).

(2) Cofactor all the functions belonging to a set w.r.t. a
variable.

(3) Extract the individual codes from the encoding relation.
The naïve implementation iterates through all the functions in

the set to perform operations (1) and (2). This leads to a noticable
slow-down when the number of functions is large (say, 1000).

In a more efficient implementation, the set of functions is
represented by the encoding relation assuming a natural encoding
of functions. This representation reduces operation (1) to counting
minterms, and operation (2) to cofactoring the encoding relation.
Count(fi, g) can be computed as follows:

Count(fi, g) = mintz(∃ a[C(x, z)∧ g(x)]),
where mintz(h(z)) is the number of minterms in function h(z)
depending on variables z.

Given a set of functions, computing the encoding relation is
trivial; deriving codes from the encoding relation is not. The naïve
implementation evaluates the following formula for each function
in the set:

ci(z) = ∃ a[C(x, z) ∧ fi(x)]
This leads to µ computations of the product with quantification,
which is inefficient for large µ.

5.3 Deriving Codes from Encoding Relation
A more efficient way of deriving codes requires only two partial

traversals of the BDD of C(x, z) but assumes that the code-bit
variables z are ordered above variables x. For clarity, BDDs
without complement edges are considered in the sequel.

Each BDD node is annotated with the cofactors (node->else and
node->then), the labeling variable (node->var), and the following
additional data members: an integer counter (node->count), and
the Boolean OR of the incoming BDD paths (node->sum). The
exclamation mark (!) stands for complementation.

The goal of the first traversal (Figure 2) is to count the number
of incoming edges of the nodes labeled with variables z in the
BDD of C(x, z). This is achieved by associating a counter with
each BDD node and incrementing the counter when the node is
visited. Only the first visit to a node is followed by visiting the
node’s children. For this reason, each node is visited no more than
once. The computational complexity of this traversal is linear in
the number of BDD nodes labeled with variables z.

The second traversal (Figure 3) is more complicated. It involves
computing the sum of the BDD paths converging into a node.
Each visit to a node corresponds to a new path, which is added to
the variable node->sum associated with the node (initially, it is set
to the zero Boolean function for all nodes). Each time the node is
visited, its counter of incoming edges, computed by the first
traversal, is decremented. Upon the last traversal, the counter

becomes zero, meaning that we traversed all the paths leading to
the given node and can now propagate the resulting sum of paths
to the node’s children.

The computation terminates at the nodes labeled by variables x.
At this point, the computed sums of paths are equal to the codes of
functions represented by the nodes.

CountEdges(bdd node)
{
 if (node->count == 0) {
 if (node->var ∈ code-bit variables) {
 CountEdges(node->else);
 CountEdges(node->then);
 }
 }
 node->count = node->count + 1;
}

Figure 2. Counting the number of incoming edges of the BDD nodes
labeled by the code-bit variables.

ComputePaths(bdd node, bdd paths)
{
 node->sum = node->sum ∨ paths;
 node->count = node->count - 1;
 if (node->count == 0) {
 if (node->var ∈ code-bit variables) {
 ComputePaths(node->else, node->sum ∧ !(node->var));
 ComputePaths(node->then, node->sum ∧ node->var);
 }
 }
}
Figure 3. Computing OR of BDD paths leading to the BDD nodes

labeled by the code-bit variables.

5.4 Counting Overlapping Functions
Profiling of the encoding algorithm has shown that most of the

runtime is spent in computing Count(fi, g). It is possible to speed-
up this computation several times by developing a specialized
BDD operator to count the number of minterms involving
variables z, without evaluation of the formula for Count(fi, g),
which includes the product and the existential quantification.

The pseudo-code of this operator is shown in Figure 4.
It traverses BDDs of C(x, z) and g(z) without building new nodes
and returns the number of minterms in the product C(x, z) ∧ g(z).
For this operator to work, variables z should be ordered below
variables x. The procedure CountMintSimple(C) returns the
number of minterms in C depending only on code-bit variables z.

CountMintSpecialized(bdd C, bdd g)
{
 v = TopMostVar(C, g);
 if (v is a code-bit variable) {
 assert(g = 0 || g = 1);
 if (g = 0) return 0;
 else return CountMintSimple(C);
 }
 // otherwise, v is a functional variable
 (C0, C1) = Cofactors(C, v);
 (g0, g1) = Cofactors(g, v);
 return CountMintSpecialized(C0, g0) + CountMintSpecialized(C0, g0);
 }

Figure 4. A specialized BDD operator to count the number of
overlapping functions.

6 Application to LUT Cascade Synthesis

6.1 LUT Cascade
LUT cascade is a programmable device for evaluation of

completely specified Boolean functions [11]. LUT cascade is
approximately ten times faster than branching programs, even
though it requires more memory. This observation gives LUT
cascade a unique place among programmable devices and makes it
a practical alternative to FPGAs.

Figure 5. Architecture of LUT cascade.

LUT cascade consists of an array of look-up tables, denoted

“Memory” in Figure 5, the control unit, the distributor, and
several additional registers: the memory address register (MAR),
the memory buffer register (MBR), and the input register to store
the values of input variables. The distributor is an n-bit register
storing the bit-vector applied to one stage of LUTs in each
clocking period.

An k-input LUT can be programmed to implement any single-
output Boolean function of k variables. A cascade of k-input LUTs
can implement a single-output Boolean function if its BDD width
(µ), defined as the number of different cofactors on a level, is such
that log2 µ < k.

The evaluation of the function implemented in the LUT cascade
is performed as follows. The input vector, for which the function
is evaluated, is loaded into the input register. This vector is split
into several parts loaded into the distributor at the successive
clocking periods. Variables belonging to each part are determined
during synthesis.

In the first clocking period, MAR is filled with the values of
variables feeding into the first stage of the cascade. In the
following clocking periods, one part of MAR is filled with the
outputs of LUTs from the previous period; while the remaining
part is filled with the input variables values. The evaluation
continues until the last LUT is reached. This LUT produces the
output value of the function.

Example 4. Consider function F = (ab ∨ c)d. This function can
be realized using a cascade of two-input LUTs. The structure of
the cascade is found by mapping the BDD of F into three two-
input LUTs. The K-maps of functions programmed in the LUTs
are shown in Figure 6.

LUT-1 takes values of variables a and b and implements the
function x(a, b) distinguishing among the two cofactors in the

Memory

Distributor

Control
Unit

MAR

Input Register

MBR

BDD on the level of variable c. The second stage of the cascade
(LUT-2) depends on x and c and implements the function y(x, c)
distinguishing among the two cofactors in the BDD on the level of
variable d. Finally, the last LUT (LUT-3) takes y and d and
produces the output value of F.

Figure 6. LUT cascade for F(a,b,c,d) = (ab ∨ c)d.

If the function has multiple outputs, they are encoded using
additional variables. The resulting single-output function is called
Encoded Characteristic Function for Non-zero outputs (ECFN)
[11]. The evaluation of a particular output is performed by setting
values of the additional variables to the code of this output. Using
this method one output is evaluated at a time.

6.2 Encoding in LUT Cascade Synthesis
The theory and algorithms for LUT cascade synthesis are

developed in [11]. Similar to the above example, LUT cascade
synthesis is reduced to the decomposition of the BDD (or ECFN)
of the function into a number of n-input blocks, each implemented
by a LUT. Synthesizing one stage of the cascade involves
encoding the cofactors found in the BDD below a certain level.

Different cofactor encodings lead to different cascade
implementations. A reduction in the LUT count can be achieved
by selecting decomposition subfunctions so that as many as
possible are single-variable functions. The number of such
subfunctions is equal to the number of LUTs replaced by a wire in
the LUT cascade implementation.

Figure 7. Synthesis of one stage of LUT cascade.

Encoding of cofactors is performed for each stage of the LUT
cascade. Consider synthesis of stage i of the cascade in Figure 7.

Suppose the number of cofactors coming from the previous stage
i-1 is µi-1. These cofactors can be encoded using wi-1 = log2 µi-1
bits. Then, k-input LUTs at stage i depend on wi-1 outputs z of the
previous stage and k - wi-1 primary input variables x. Knowing the
codes assigned to the cofactors at stage i-1, we label the nodes c1

i-

1, c2
i-1,…, cµi-1

i-1 with their codes and compute the sums of the
BDD paths through stage i for nodes c1

i, c2
i,…, cµk

i the same way
it was done in the procedure ComputePaths() in Figure 3.

The resulting path functions, Pµi
i(x, z), depend on code-bit

variables z at stage i-1 and the primary inputs x coming to stage i.
The support size of Pµi

i(x, z) does not exceed the number of LUT
inputs. During the encoding, we perform a branch-and-bound
procedure using variables in the support of Pµi

i(x, z) and find the
largest number of one-variable code-bit functions.

7 Experimental Results

The algorithm was programmed in C and included in EXTRA
Library [7] extending the functionality of CUDD Release 2.3.1
[13]. The algorithm was tested on benchmarks used in [11].

The number of inputs in the LUTs was set to 15. For a function
to be implementable using 15-input LUTs, each stage of the
cascade should have at least one primary input variable, which
makes the upper bound on the number of encoding bits equal to
14. The limit on the depth of branch-and-bound search was set to
5. This saved up to 5 LUTs in one stage due to encoding.

The following notation is accepted in Table 3. SBDD stands for
the number of nodes in the shared BDD (w/complement edges)
after reading and reordering. For some benchmarks, good variable
orders [14] were used to build the BDDs for LUT cascade
synthesis. ECFN is the number of nodes in the encoded
characteristic function for non-zero outputs (w/o complement
edges). W_SBDD is the maximum width of the shared BDD.
W_ECFN is the maximum width of the ECFN.

Stages is the number of stages in the synthesized cascade. This
number is equal to the number of 15-bit encoding problems
solved. Strict is the number of LUTs using strict encoding.
Non-str is the number of LUTs with non-strict encoding. Read is
the time to read the benchmark from file. Dec is the time for
decomposition without encoding. Enc is the time for encoding.

The last column of the table N lists the number of LUTs used in
[11]. It should be noted that the experimental settings in [11] were
different from ours. The latter work assumes a natural encoding of
cofactors but considers the problem of encoding the outputs of the
function in ECNF and the problem of finding a good variable
order to reduce the BDD width. In our work, on the other hand,
the main emphasis is on finding a non-strict encoding of cofactors,
while the encoding of the outputs in ECNF was natural and
variable reordering did not aim at reducing the BDD width.

The ECFNs and the LUT cascades derived by our program are
written into the output BLIF files. Verification was not performed
for “C7552.blif” because of the very large size of the output BLIF.
For all other benchmarks, verification was successful.

In summary, columns Strict and Non-str show that the new
encoding algorithm allows for saving up to 25% of LUTs. The
runtime of the algorithm is comparable to the time needed for
reading the benchmark. Taking into account the number of 14-bit
encoding problems solved for each benchmark (column Stages),
this runtime does not seem large.

1 0

a
b

c

d

x

y

F

x

y

a

b
x=1

c

d

x=0

y=1

y=0

 a
b 1 1
 1 0

 y
d 0 0
 1 0

 x
c 0 1
 0 0

LUT-1

LUT-2

LUT-3

F

BDD of stage i

BDD of stage i+1

µi cofactors to be
encoded at stage i

c1
i-1 c2

i-1 cµi-1
i-1

c1
i c2

i cµi
 i

x

µi-1 encoded
cofactors of stage i-1

8 Conclusions

This paper presents optimal non-strict encoding for sets of
Boolean functions. An encoding is optimal if as many code-bit
functions as possible are single-variable functions, or implement
gates from a library. In LUT cascade synthesis, single-variable
functions are implemented by a wire. As a result, the non-strict
cofactor encoding reduces the numbers of LUTs in the LUT
cascades by 25% on average, compared to the natural encoding.

The future work includes the application of the optimal non-
strict encoding in the functional decomposition and technology-
dependent decomposition-mapping of logic functions.

References

[1] C. Files. A new functional decomposition method as applied to
machine learning and VLSI layout. Ph. D. Thesis. Portland State
University, June 2000.

[2] H. Gouji, T. Sasao, and M. Matsuura. On a method to reduce the
number of LUTs in LUT cascades. Technical Report of IEICE,
VLD2001-99, Nov. 2001 (in Japanese).

[3] J.-H. Jiang, Y. Jiang, R. K. Brayton. An implicit method for multi-
valued network encoding. Proc. IWLS’01, pp.127-131.

[4] L. Lavagno, C. W. Moon, R. K. Brayton, A. L. Sangiovanni-
Vincentelli. An efficient heuristic procedure for solving the state
assignment problem for event-based specifications. IEEE Trans.
CAD, 14-1, pp. 45-60, Jan 1995.

[5] Ch. Legl, B. Wurth, and K. Eckl. Computing support-minimal
subfunctions during functional decomposition. IEEE Trans. VLSI,
6(3), pp. 354-363, Sept. 1998.

[6] G. D. Micheli, R. K. Brayton, A. L Sangiovanni-Vincentelli.
Optimal state assignment for finite state machines. IEEE Trans.
CAD, 4-3, July 1985, pp. 269-285.

[7] A. Mishchenko. EXTRA library of the DD procedures.
http://www.ee.pdx.edu/~alanmi/research/extra.htm

[8] R. Murgai, R. K. Brayton, A. Sangiovanni-Vincentelli. Optimum
functional decomposition using encoding. Proc. DAC ‘94, pp. 408-
414.

[9] V. Kravets, K. Sakallah. Constructive library-aware synthesis using
symmetries. Proc. DATE’00, pp. 208-213.

[10] M. Perkowski et al. Decomposition of multiple-valued relations.
Proc. ISMVL '97, Halifax, Canada, May 1997, pp.13-18.

[11] T. Sasao, M. Matsuura, Y. Iguchi. A cascade realization of multiple-
output function for reconfigurable hardware, Proc. IWLS ‘01, pp.
225-230.

[12] T. Sasao. A new expansion of symmetric functions and their
application to non-disjoint functional decompositions for LUT-type
FPGAs. Proc. IWLS, pp. 105-110, June 2000.

[13] F. Somenzi. CUDD package, Release 2.3.1.
http://vlsi.Colorado.EDU/~fabio/CUDD/cuddIntro.html

[14] F. Somenzi. Variable orders for MCNC benchmarks.
ftp://vlsi.colorado.edu/pub/orders.tar.gz

[15] J. H. Tracey. Internal state assignment for asynchronous sequential
machines. IEEE Trans Elec. Comp., pp. 551-560. Aug. 1966.

Table 3. Experimental results for LUT cascade synthesis with non-strict encoding.

Benchmark Node Count Width LUT Cascade Runtime, c [11]
Name Inputs Outputs SBDD ECFN W_SBDDW_ECFN Stages Strict Non-Str Read Dec Enc N
C432 36 7 1064 950 102 100 4 20 18 0.08 0.06 0.08 20
C499 41 32 25866 27216 2112 2176 8 63 58 3.47 2.51 4.87 60
C880 60 26 4053 4098 467 467 8 53 43 1.64 0.24 0.53 51

C1908 33 25 5526 7449 595 620 5 36 33 1.04 0.57 1.61 35
C2670 233 140 1850 2639 373 416 31 224 148 2.04 0.18 1.26 170
C3540 50 22 23828 34712 4264 5414 17 194 144 16.45 3.08 28.01 107
C5315 178 123 1719 2566 176 258 23 161 121 0.96 0.20 0.64 142
C7552 207 108 2213 2939 177 193 26 176 147 6.17 0.20 0.86 156
apex3 54 50 902 980 174 186 7 45 31 0.23 0.05 0.32 28
apex7 49 37 304 346 101 87 6 29 20 0.01 0.01 0.08 21

b9 16 5 78 93 30 30 2 5 5 0.00 0.00 0.00 14
dalu 75 16 689 581 147 147 10 64 41 0.41 0.04 0.39 40
des 256 245 2945 3024 622 363 36 268 172 1.26 0.36 2.13 235

duke2 22 29 387 386 58 60 3 11 11 0.01 0.02 0.01 10
e64 65 65 133 200 66 66 7 33 22 0.03 0.02 0.06 25
ex4 128 28 509 534 71 49 12 47 41 0.02 0.01 0.05 32
k2 45 45 1246 1299 274 262 6 36 31 0.16 0.05 0.19 28
rot 135 107 5922 7401 694 788 20 151 122 0.69 0.41 1.40 125

spla 16 46 637 616 99 95 2 7 6 0.30 0.03 0.02 8
Total 233 1623 1214 34.97 8.04 42.51 1307

Ratio, % 100.0 74.8 80.5

