
A New Expansion of Symmetric Functions and Their Application to

Non-Disjoint Functional Decompositions for LUT Type FPGAs

Tsutomu Sasao

Department of Computer Science and Electronics

Kyushu Institute of Technology Iizuka 820-8502, Japan

Abstract| This paper presents a new expansion method

for symmetric functions, and shows an application to non-

disjoint decompositions. It is useful when the column mul-

tiplicity � satis�es the condition � 6= 2r. This paper also

shows the realizations of rd73, rd84, and 9sym that require

only 4, 6, and 5 Xilinx 3000 CLBs, respectively.

I Introduction

Functions that appears in arithmetic circuits often have

symmetries. When logic functions have some symme-

tries, they have more e�cient realizations than the

functions without symmetry [14].

This paper presents a new expansion method for

symmetric functions. It also shows the application of

this expansion to the design of Look up table (LUT)

type Field Programmable Gate Array (FPGA) by us-

ing non-disjoint decompositions.

An LUT type FPGA consists of many Con�gurable

Logic Blocks (CLBs). We assume that each CLB

realizes 1) arbitrary 5 input 1 output variable func-

tion, or 2) a pair of arbitrary 4 input functions. To

design LUT type FPGAs, functional decomposition

is useful [1, 6, 8, 9, 10, 13, 16]. Given a function

f , a disjoint decomposition is to represent f in the

form f(X1; X2) = g(h1(X1); h2(X1); : : : ; hr(X1);X2),

where two variable sets X1 and X2 have no com-

mon element (Fig. 1.1). We consider the encod-

ing that simpli�es function hr. Speci�cally, we con-

sider an encoding such that hr(X1) = xi; that is,

f(X1;X2) = g(h1(X1); h2(X1); : : : ; hr�1(X1); xi;X2).

This can be also considered as a non-disjoint decompo-

sition (Fig. 1.2). This type of decomposition is useful

for designing LUT-type FPGAs.

As examples, we show realizations of rd73, rd84,

and 9sym that require only 4, 6, and 5 CLBs, respec-

tively. As far as we know, these are the smallest CLB

realizations ever found.

r = log µ2

X2

X1

G

H

Figure 1.1: Disjoint de-

composition.

r-1

X2

X1

G

H
xi

Figure 1.2: Non-disjoint

decomposition.

II Symmetric Functions

De�nition 2.1 A function f is totally symmetric

if any permutation of the variables in f does not change

the function. A totally symmetric function is also

called a symmetric function.

De�nition 2.2 In a function f(x1; : : : ; xi; : : : ; xj ; : : : ;
xn), if the function f(x1; : : : ; xj ; : : : ; xi; : : : ; xn) that is

obtained by interchanging variables xi with xj, is equal

to the original function, then f is symmetric with

respect to xi and xj . If any permutation of subset S
of the variables does not change the function f , then f

is partially symmetric.

De�nition 2.3 The elementary symmetric func-

tions of n variables are

Sn0=�x1�x2 � � � �xn

Sn1=x1�x2 � � � �xn _ �x1x2�x3 � � � �xn _ � � � _ �x1�x2 � � � �xn�1xn

� � � � � � � � � � � � � � � � � �

Sn
n
=x1x2 � � � xn

Sn
i
=1 i� exactly i out of n inputs are equal to one. Let

A � f0; 1; : : : ; ng. A symmetric function Sn
A
is de�ned

as follows:

Sn
A
=
_

i2A

Sn
i
:

Example 2.1 f(x1; x2; x3) = x1x2x3 _ x1�x2�x3 _

�x1x2�x3_ �x1�x2x3 is a totally symmetric function. f = 1

when all the variables are one, or when only one vari-

able is one. Thus, f can be written as S31_S
3
3 = S3

f1;3g
.

The following Lemma is well known [14].

Lemma 2.1 An arbitrary n-variable symmetric func-

tion f is uniquely represented by elementary symmetric
functions Sn0 ; S

n

1 ; : : : ; S
n

n
as follows:

f =
_

i2A

Sn
i
= Sn

A
; where A � f0; 1; : : : ; ng:

De�nition 2.4 Let SB(n; k) be the n-variable sym-

metric function represented by the EXOR sum of all
the products consisting of k positive literals:

SB(n; 0)=1

SB(n; 1)=
X
�xi

SB(n; 2)=
X
�

(i<j)

xixj

SB(n; 3)=
X
�

(i<j<k)

xixjxk

� � � � � � � � �

SB(n; n)=x1x2 � � �xn

SB(n; k) has been used as a benchmark function for

AND-EXOR logic minimizer [12]. The following two

lemmas were been proved by Komamiya [5] and refor-

mulated by the author [14].

Lemma 2.2 Let x1, x2,: : :, xn be binary variables and
r be an integer de�ned by r = x1 + x2 + � � � + xn,

where + is an ordinary integer addition. Let the binary

representation of r be

(yk; yk�1; : : : ; y1; y0)2; yj 2 f0; 1g (j = 0; 1; : : : ; k):

In other words,

x1 + x2 + � � �+ xn = 2kyk + 2k�1yk�1 + � � �+ 2y1 + y0:

Then,
yi = SB(n; 2i):

Lemma 2.3 Let 0 � k1 < k2 < � � � < ks, and 2k1 +

2k2 + � � �+ 2ks � n. Then,

s^

i=1

SB(n; 2ki) = SB(n;

sX

i=1

2ki):

Example 2.2

SB(4; 1)SB(4; 2) = SB(4; 3)

SB(6; 2)SB(6; 4) = SB(6; 6)

SB(7; 1)SB(7; 2)SB(7; 4) = SB(7; 7)

x1
x2

x7

WGT7
SB(7,4)

SB(7,2)

SB(7,1)

y2

y1

y0

=
=
=

Figure 2.1: WGT7.

De�nition 2.5 WGT n is an n-input dlog2(n + 1)e-
output function. It counts the number of 1's in the

inputs and represents it by a binary number.

By Lemma 2.2, WGTn produces SB(n; 2i), (i =

0; 1; : : : ; dlog2(n+1)e�1), where dae denotes the small-

est integer greater than or equal to a.

Example 2.3 WGT7 has x1; x2; : : : ; x7 as inputs and

y2; y1; y0 as outputs (Fig. 2.1). By Lemma 2.2, we have

y2=SB(7; 4) =
X
�

i<j<k<l

xixjxkxl

y1=SB(7; 2) =
X
�

i<j

xixj

y0=SB(7; 1) = x1 � x2 � � � � � x7

WGT7 is also called as rd73.

The following is a new expansion method for symmetric

functions using SB(n; k) functions:

Theorem 2.1 An arbitrary n-variable symmetric
function f can be represented by yi = SB(n; 2i), (i =

0; 1; 2; : : : ; t) as follows:

f =
_

(a0;a1;:::;at)

g(a0; a1; : : : ; at)y
a0

0 y
a1

1 � � � yat
t
;

where g(a0; a1; : : : ; at) is 0 or 1, and t = dlog2(n+1)e�

1.

(Proof) A symmetric function f only depends on the

number of 1's in the inputs. Since WGTn counts the

number of 1's in the input, we can represent f as a

function of y0, y1,: : :, yt. 2

III Functional Decomposition

and Standard Encoding

3.1 Functional Decomposition

2

De�nition 3.1 Let f(X1;X2) be a logic function, and

(X1;X2) be a partition of X. jX1j denotes the number

of variable in X1. When n1 = jX1j and n2 = jX2j,
an equivalence relation � on Bn1 is de�ned as follows:

a � b () f(a; X2) = f(b; X2). Let the equivalence

classes of Bn1 be 	0, 	1; : : : ;	��1. In this case, � is

equal to the column multiplicity for the decomposition
table f with the partition (X1;X2). 	i is also used to

represent the corresponding switching function.

3.2 Standard Encoding

The minimum-length encoding uses dlog2 �e bits to en-

code 	0;	1; : : : ;	��1 where dae denotes the minimum

integer not smaller than a. For example, in the case of

� = 5,

	0 is coded by 000,

	1 is coded by 001,

	2 is coded by 010,

	3 is coded by 011, and

	4 is coded by 100.

Let the encoding functions be h1; h2; : : : ; hr, where

r = dlog2 �e. In this encoding, \All the vectors in an

equivalence class have the same codes," and is strict.

Minimizing the number of the intermediate variables

is preferable, and unused codes can be used as don't

cares to simplify G [10].

IV Encoding that Simpli�es the

Intermediate Variables

In the strict encoding, \all the vectors in an equiva-

lence class have the same codes." However, in general,

the coding where, \two vectors in the di�erent classes

have di�erent codes" is su�cient. Thus, two vectors

in the same equivalence class may have di�erent codes.

Such an encoding is non-strict, and can simpli�es the

network H [10].

Many methods exist to encode the equivalence

classes; 	0;	1; : : : ;	��1. In this paper, we will use

an encoding that simpli�es hr. Assume that � 6= 2k.

If we can choose an encoding such that hr(X1) = xi,

then the network for hr can be deleted.

Example 4.1 Consider a 7-variable function f(X1;

X2), where X1 = fx1; x2; x3; x4g and X2 = fx5; x6;

x7g, and assume that f is partially symmetric with re-

spect to X1. In this case, the column multiplicity �

of the decomposition chart for f(X1;X2) is at most

GA

X2

x1
h2

h3

h1

x2
x3
x4

X1

Figure 4.1: Standard encoding.

G’A’

X2

x1
h2

h1

x4
x2
x3
x4

X1

Figure 4.2: Encoding that simpli�es h.

5, since it is su�cient to identify if 0; 1; 2; 3, or 4 of

x1; x2; x3, and x4 are 1. Thus, f can be realized as

Fig. 4.1. In the case of � = 5, we need three interme-
diate variables: h1, h2, and h3.

a) Standard Encoding
Table 4.1 shows the encoding for h1, h2, and h3.

In this case, we have

h3 = SB(4; 4)=x1x2x3x4 = S4
4

h2 = SB(4; 2)=x1x2 � x1x3 � x1x4 � x2x3

�x2x4 � x3x4 = S4
f2;3g

h1 = SB(4; 1)=x1 � x2 � x3 � x4 = S4
f1;3g:

Note that Table 4.1 represents WGT4, witch is re-

alized by block A. In Fig. 4.1, the network for A re-

quires two CLBs since it produces three non-trivial
functions. This encoding uses �ve code words.

b) An encoding that Simpli�es h

For h3, we use x4 instead of SB(4; 4):

h3=x4

h2=SB(4; 2)

h1=SB(4; 1)

Table 4.1: Standard Encoding.

h3h2h1The number of 1's in X1

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4

3

In this case, (h3; h2; h1) shows the number of 1's

in fX1g. In other words,

(h3; h2; h1)=(0; 0; 0) denotes that X1 has no 1

(h3; h2; h1)=({; 0; 1) denotes that X1 has one 1

(h3; h2; h1)=({; 1; 0) denotes that X1 has two 1's

(h3; h2; h1)=({; 1; 1) denotes that X1 has three 1's

(h3; h2; h1)=(1; 0; 0) denotes that X1 has four 1's

Since the function h3 = x4 is available as an in-

put, we need not realize this function. As shown
in Fig. 4.2, the network for A0 represents a 4-

input 3-output function, and can be realized by us-

ing only one CLB. This encoding uses 8 di�erent

code words.

Theorem 4.1 Consider the decomposition:

f(X1;X2) = g(h1(X1); h2(X1); : : : ; hr(X1);X2):

The following are su�cient conditions for hr(X1) to be
represented as hr(X1) = xi, where xi 2 X1 are

1) � = 2r�1 + 1 and,

2) There exist two equivalence classes 	A and 	B

such that

	A = xi A; and 	B = �xi B:

(Proof) Assume 1) and 2). Then, merge the two

equivalence classes as 	M = 	A [B. This will re-

duce the number of equivalence classes by one. Since

� = 2r�1+1, we can reduce the outputs for H by one.

2

Partially symmetric functions often satisfy the

above conditions.

Example 4.2 Let X1 = (x1; x2; x3), and the equiva-

lence classes for the decomposition f with the partition
(X1;X2) be

	0=�x1�x2�x3

	1=�x1x2 _ �x2x3 _ �x3x1

	2=x1x2x3

In this case � = 3, but we have only to realize one in-
termediate variable. Let 	M = 	0 _	2, and we have

	0=�x1	M = �x1�h1

	1=h1

	2=x1	M = x1�h1

We have only to realize the function h1 = 	1.

Example 4.3 Let X1 = (x1; x2; x3; x4), and the equiv-

alence classes for the decomposition for f with the par-

tition (X1;X2) be

	0=S
4
0(x1; x2; x3; x4) = �x1�x2�x3�x4

	1=S
4
1(x1; x2; x3; x4)

	2=S
4
2(x1; x2; x3; x4)

	3=S
4
3(x1; x2; x3; x4)

	4=S
4
4(x1; x2; x3; x4) = x1x2x3x4

In this case, � = 5, but we have only to realize two in-

termediate variables y0 = SB(4; 1) and y1 = SB(4; 2).

Note that
	0=�x1�y1�y0

	1=�y1y0

	2=y1�y0

	3=y1y0

	4=x1�y1�y0

Corollary 4.1 Let f(X1;X2) be symmetric with re-
spect to X1 = fx1; x2; x3; x4g. Then, f can be repre-

sented as f(X1;X2) = g(y0; y1; x1;X2), where

y0=SB(4; 1) = x1 � x2 � x3 � x4; and

y1=SB(4; 2) = x1x2�x1x3�x1x4�x2x3�x2x4�x3x4

This Corollary is useful to design symmetric functions.

Example 4.4 Realize WGT7 (rd73) by using LUTs.

(Solution) WGT7 counts the number of 1's in the in-
put, and represent it by a binary number (Fig. 2.1).

Let X be partitioned as (X1;X2), where X1 =

(x1; x2; x3; x4) and X2 = (x5; x6; x7). The column mul-
tiplicity of the decomposition chart (X1;X2) is �ve.

So, the straightforward realization produces the network

shown in Fig. 4.3, where WGT4 is a 4-input bit count-
ing circuit and produces three functions:

h3=SB(4; 4) = x1x2x3x4

h2=SB(4; 2) = x1(x2 � x3 � x4)� x2(x3 � x4) � x3x4

h1=SB(4; 1) = x1 � x2 � x3 � x4

Also, WGT3 is a 3-input bit-counting circuit (i.e.,
a full adder), and produces two functions:

h5=SB(3; 2) = x5x6 � x6x7 � x7x5

h4=SB(3; 1) = x5 � x6 � x7

G1 adds two 2-bit numbers: (h2; h1) and (h5; h4) pro-

ducing the two least signi�cant bits of the sum, and G2

adds a 2-bit number with a 3-bit number: (h3; h2; h1)

and (h5; h4) producing the most signi�cant bit of the
sum. In Fig. 4.3, WGT4 has three outputs and require

two CLBs. Note that

y2=h3 � h2h5 � h1h4(h2 � h5)

y1=h2 � h5 � h1h4

y0=h1 � h4

4

x1
x2

x4

WGT4
SB(4,4)

SB(4,2)

SB(4,1)
x3

h3=
h2=
h1=

x5
x6 WGT3

SB(3,2)

SB(3,1)x7

h5=
h4= h2

h1
h5
h4

SB(7,1)

SB(7,2)

y0 =

y1 =

h2
h1
h5
h4

SB(7,4)y2 =

h3

G2

G1

Figure 4.3: Realization of WGT7 with 5 LUTs.

x1
x2

x4

WGT4’
SB(4,2)

SB(4,1)
x3

h2=

h1=

x5
x6 WGT3

SB(3,2)

SB(3,1)x7

h5=
h4= h2

h1
h5
h4

SB(7,1)

SB(7,2)

y0 =

y1 =

h1
h5
h4

SB(7,4)y2 =
h2

x1

G2

G1

’

Figure 4.4: Realization of WGT7 with four LUTs.

Since each of G1 and G2 in Fig. 4.3 requires one LUT,
we need �ve LUTs in total.

However, if h3 = SB(4; 4) is replaced by h3 = x1
as shown in Fig. 4.4, we need only four LUTs. In
this case, we use the relation h3 = x1�h1�h2 and y2 =

x1�h1�h2 � h2h5 � h1h4(h2 � h5).

Example 4.5 Realize WGT8 (rd84) by LUTs.

(Solution) The WGT8 realizes the four functions

SB(8; 8), SB(8; 4), SB(8; 2), and SB(8; 1). Let X

be partitioned as X = (X1; X2;X3), where X1 =

(x1; x2; x3; x4), X2 = (x5; x6), and X3 = (x7; x8).

First, realize WGT4 as:

SB(4; 4)=x1x2x3x4

SB(4; 2)=x1(x2 � x3 � x4)� x2(x3 � x4)� x3x4

SB(4; 1)=x1 � x2 � x3 � x4

Second, realize WGT6 as:

SB(6; 4)=SB(4; 4)�SB(4; 3)(x5 � x6) �SB(4; 2)x5x6

SB(6; 2)=SB(4; 2)�SB(4; 1)(x5 � x6) � x5x6

SB(6; 1)=SB(4; 1)� x5 � x6

Here, we use the relation:

SB(4; 3) = SB(4; 2)SB(4; 1)

And, �nally realize WGT8 as:

y3=B(8; 8) =SB(6; 6)x7x8

y2=SB(8; 4)=SB(6; 4)�SB(6; 3)(x7�x8)�SB(6; 2)x7x8

y1=SB(8; 2)=SB(6; 2)�SB(6; 1)(x7�x8)�x7x8

y0=SB(8; 1)=SB(6; 1)� x7 � x8

x1
x2

SB(4,4)

x1
x2

SB(4,2)

x1
x2

SB(4,1)

SB(6,4)

SB(6,2)

SB(6,1)

SB(8,4)

SB(8,2)

SB(8,1)

SB(8,8)x3 x4 x5 x6

x7 x8

=SB(8,4)

=SB(8,2)

=SB(8,1)

=SB(8,8)y3

y2

y1

y0

Figure 4.5: Realization of WGT8.

Table 4.2: Truth Table for 9sym.

y2 y1 y0 x8 x9 f

0 0 0 � � 0

0 0 1 1 1 1

0 1 0 1 � 1
0 1 0 � 1 1

0 1 1 � � 1

1 0 0 � � 1

1 0 1 0 � 1
1 0 1 � 0 1

1 1 0 0 0 1

1 1 1 � � 0

Here, we use the relations:

SB(6; 6)=SB(6; 4)SB(6; 2)

SB(6; 3)=SB(6; 2)SB(6; 1)

Thus, WGT8 is realized as Fig. 4.5. However, if we

use the relation,

SB(4; 4) = x1x2x3x4 = x1SB(4; 2) SB(4; 1);

the LUT for SB(4; 4) is absorbed into the CLB

for SB(6; 4). Also, note that each of the pair of

LUTs for fSB(4; 2); SB(4; 1)g, fSB(6; 2); SB(6; 1)g,
and fSB(8; 2); SB(8; 1)g is merged into one CLB.

Thus, WGT8 requires only 6 CLBs.

Example 4.6 Realize the 9-input symmetric function
9sym by LUTs.

(Solution) 9sym is represented as f = S9
f3;4;5;6g

(x1; x2; : : : ; x9). f = 1 if and only if the number of

1's in the input is 3, 4, 5, or 6. To realize 9sym, we

use WGT7. From the de�nition of 9sym, we have Ta-

ble 4.2. In Fig. 4.6, the network G for Table 4.2 re-
quires only one CLB. Since WGT7 requires only four

CLBs (Example 4.4), 9sym requires only �ve CLBs.

5

x1
x2

x7

WGT7
SB(7,4)

SB(7,2)

SB(7,1)

2=y

1=y

0=y

2y

1y

0y

8x 9x

f G

Figure 4.6: Realization for 9sym.

Table 4.3: Number of XC3000 CLBs.

IMO PDD HYDE This

DEC MAP paper

9sym SYM9 7 5 6 5

rd73 WGT7 5 { 5 4

rd84 WGT8 8 8 7 6

IMODEC: Wurth-Eckl-Antreich: DAC-95 [7].

PDDMAP: Cong-Hwang: FPGA-97 (XC4000) [2].

HYDE: Jiang-Jou-Huang: DAC-98 [4].

V Conclusion and Comments

In this paper, we have presented a new expansion the-

orem for an n-variable symmetric function f by using

SB(n; 2i) functions (i = 0; 1; : : : ; dlog2(n+ 1)e � 1).

Representation of f by using Sn
i
(i = 0; 1; 2; : : : ; n)

corresponds to one-hot encoding, while representation

of f by using SB(n; 2i) corresponds tominimum-length

strict encoding. When the number of equivalence class

� satis�es the relation 2r�1 < � < 2r, a strict encoding

requires r intermediate variables. However, non-strict

encoding often requires a smaller number of interme-

diate variables. This produces non-disjoint decompo-

sitions. By using a new expansion method and non-

disjoint decompositions, we obtained the best realiza-

tions for well known benchmark functions (rd73, rd84,

and 9sym). These realizations were found by inspec-

tion rather than by a computer program.

The FPGA design systems such as [2, 4, 7, 11, 15]

consider non-disjoint decompositions or encodings that

simplify the intermediate variables. Unfortunately,

they failed to �nd the optimum solutions for rd73, rd84,

and 9sym (see Table 4.3). To develop the design sys-

tem that obtains optimum solutions for these functions

is challenging.

Acknowledgments

This work was supported in part by a Grant in Aid

for Scienti�c Research of the Ministry of Education,

Science, Culture and Sports of Japan. J. T. Butler's

comments improved the presentation. Mr. M. Mat-

suura edited the LaTEX �le.

References

[1] S-C. Chang, M. Marek-Sadowska, and T. Hwang, \Tech-
nology mapping for LUT FPGA's based on decomposi-
tion of binary decision diagrams," IEEE Trans. on CAD,
Vol. CAD-15, No. , pp. 1226-1236, Oct. 1996.

[2] J. Cong and Y.-Y Hwang, \Partially-dependent functional
decomposition with applications in FPGA synthesis and
mapping," Fifth Int. Symp. on Field-Programmable Gate

Arrays, pp. 35-42, Feb. 1997.

[3] Feng Wang and D. L. Dietmeyer, \Exploiting near symme-
try in multilevel logic synthesis," IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., Vol. 17, No. 9, pp. 772-
781, Sept. 1998.

[4] J.-H. R. Jian, J.-Y. Jou, and J.-D. Huang, \Compatible
class encoding in hyper-function decomposition for FPGA
synthesis," Design Automation Conference, pp. 712-717,
June 1998.

[5] Y. Komamiya, \Theory of computing networks," Electro-

technical Laboratory in Japanese Government, July 10,
1959.

[6] Y-T. Lai, M. Pedram, and S. B. K. Vrudhula, \EVBDD-
based algorithm for integer linear programming, spec-
tral transformation, and functional decomposition," IEEE

Trans. CAD, Vol. 13, No. 8, pp. 959-975, Aug. 1994.

[7] C. Legl, B. Wurth, and K. Eckl, \Computing support-
minimal subfunctions during functional decomposition,"
IEEE Trans. VLSI, Vol. 6, No. 3, pp. 354-363, Sept. 1998.

[8] Y. Matsunaga, \An exact and e�cient algorithm for dis-
junctive decomposition," SASIMI'98, pp. 44-50, Oct. 1998.

[9] S. Minato and G. De Micheli, \Finding all simple disjunc-
tive decompositions using irredundant sum-of-products
forms," ICCAD-99, pp. 111-117, Nov. 1998.

[10] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli,
\Optimum functional decomposition using encoding," 31st
Design Automation Conference, pp. 408-414, June 1994.

[11] M. Raski, L. Jozwiak, M. Noricka, and T. Luba, \Non-
disjoint decomposition of Boolean functions and its applica-
tion in FPGA-oriented technology mapping," Euromicro-

97, pp.24-30.

[12] T. Sasao and Ph. Besslich, \On the complexity of MOD-2
Sum PLA's," IEEE TC, Vol. 39, No. 2, pp. 262-266, Feb.
1990.

[13] T. Sasao, \FPGA design by generalized functional decom-
position," (Sasao ed.) Logic Synthesis and Optimization,
Kluwer Academic Publishers, 1993.

[14] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[15] H. Sawada, T. Suyama, and A. Nagoya, \Logic synthesis
for look-up table based FPGAs using functional decom-
position and support minimization," ICCAD, pp. 353-359,
Nov. 1995.

[16] C. Scholl and P. Molitor, \Communication based FPGA

synthesis for multi-output Boolean functions," Asia and

South Paci�c Design Automation Conference, pp. 279-287,

Aug. 1995.

6

