
Functional Decompositions Using an Automatic Test

Pattern Generator and a Logic Simulator

Tsutomu Sasao and Seiji Kajihara

Department of Computer Science and Electronics

Kyushu Institute of Technology Iizuka 820-8502, Japan

Abstract| This paper presents a method to �nd dis-

joint decompositions using an automatic test pattern gen-

erator and a logic simulator. Since the method uses

netlists rather than binary decision diagrams to represent

logic functions, it can decompose larger networks. By

using netlists, it e�ciently �nds decompositions of form

f(X1;X2) = g(h(X1); X2), where jX1j � k or jX2j � k.

I Introduction

Functional decompositions are useful in multi-level

logic synthesis. In functional decompositions, logic

functions are represented by decomposition charts [1],

binary decision diagrams (BDDs), sum-of-products ex-

pressions (SOPs) [8, 6], or Reed-Muller expressions [8].

Among these representations, BDDs are the most com-

pact for many practical functions.

Recently, e�cient methods to �nd all simple disjoint

decompositions for the functions given by BDDs have

been developed [2, 5]. Unfortunately, for some func-

tions, BDDs are very large, while their circuits are not

so large. For an example, the 16-bit multiplier has the

BDD whose size is too large to store in a computer,

while its netlist has less than 5000 lines.

In this paper, we will present a method to �nd dis-

joint decompositions for the functions represented by

netlists. We use an automatic test pattern generator

(ATPG) and a logic simulator as basic tools to �nd

decompositions.

II Functional Decomposition

2.1 De�nitions and Basic Properties

We assume that f(X) is a completely speci�ed non-

degenerate function.

De�nition 2.1 Let X = (x1; x2; : : : ; xn) be input
variables. The set of the variables in X is denoted by

fXg. X = (X1;X2; : : : ;Xr) is a partition of X when
fX1g[fX2g[� � � [fXrg = fXg and fXig\ fXjg = �

(i 6= j). Especially, (X1; X2) is a bipartition. The

number of variables in Xi is denoted by jXij.

De�nition 2.2 Function f(X) has a disjoint de-

composition if f is represented as f(X) =

1 0 1 1

1 1 1 1

0 0 0 0

0 1 0 0

x1x2

x3x4

00 01 10 11

00

01

10

11

Figure 2.1: Decomposition table.

g(h(X1);X2). If 1 < jX1j < n, then this decompo-
sition is non-trivial, and f is decomposable. The

variables in X1 and X2 are bound variables and free
variables, respectively.

De�nition 2.3 Let f(X) be a function, and X be a
partition of X = (X1;X2). Let n1 = jX1j and n2 =

jX2j. The decomposition table of f has 2n1 columns
and 2n2 rows, each column has distinct binary label of

n1 bits, each row has distinct binary label of n2 bits,
and the corresponding entry of the table is the value of
f .

Example 2.1 Fig. 2.1 shows an example of a de-

composition table for a four-variable function, where
X = (X1;X2), X1 = (x1; x2), and X2 = (x3; x4).

De�nition 2.4 The number of di�erent column pat-
terns in the decomposition table (X1;X2) is the col-

umn multiplicity and is denoted by �(f : X1;X2).
The number of di�erent row patterns in the decompo-
sition table (X1;X2) is the row multiplicity and is

denoted by �(f : X1;X2).

Theorem 2.1 A function f(X) has a non-trivial
functional decomposition f(X) = g(h(X1);X2) i�
�(f : X1;X2) � 2.

Theorem 2.2 A function f(X) has a non-trivial

functional decomposition f(X) = g(h(X1);X2) i� �(f :

X1;X2) � 4 and row patterns of the decomposition ta-
ble represent constant 0, constant 1, a function h, or

its complement �h.

Example 2.2 The column multiplicity of the decom-

position table in Fig. 2.1 is two. The row multiplic-
ity is four. Thus, this function has a decomposition

f(X1;X2) = g(h(X1);X2), where X1 = (x1; x2) and
X2 = (x3; x4). The �rst column is identical to the
third and fourth columns. The �rst row denotes func-

tion h = x1 _ �x2; the second row denotes the constant
1 function; the third row denotes the constant 0 func-

tion; and the fourth row denotes function �h = �x1x2.
(End of Example)

Therefore, to �nd decompositions by using Theo-

rems 2.1 and 2.2, we need to test that

1) Two subfunctions are the same.

2) A subfunction is the constant 0.

3) A subfunction is the constant 1.

4) A subfunction is the complement of an another

subfunction.

III ATPG

3.1 ATPG0 and ATPG1

Although an automatic test pattern generator

(ATPG) is a software to generate test patterns, in this

paper, the ATPG is used to �nd functional decomposi-

tions. To make the argument simple, we will formulate

mathematical models of the ATPG.

The ATPG0 �nds test vectors for logic networks,

while the ATPG1 solves a decision problem.

De�nition 3.1 (ATPG0) Given a netlist for a logic
function f(x1; x2; : : : ; xn), the ATPG0 �nds an assign-

ment (a1; a2; : : : ; an) of input variables that satis�es the
following condition:

f(a1; a2; : : : ;
i

0; : : : ; an) 6= f(a1; a2; : : : ;
i

1; : : : ; an):

If there is no such assignment, the ATPG0 reports that

\f does not depend on xi" (xi is redundant).

De�nition 3.2 (ATPG1) Given a netlist for a logic
function f(x1; x2; : : : ; xn), the ATPG1 solves the fol-

lowing decision problem: Is there any assignment
(a1; a2; : : : ; an) of input variables that satis�es

f(a1; a2; : : : ;
i

0; : : : ; an) 6= f(a1; a2; : : : ;
i

1; : : : ; an)?

If the answer is yes, then f depends on xi. Else, f does
not depend on xi (xi is redundant).

x1
x2
x3

xn

x1 x2 x3 xn, ... ,, ,f ()

1
2
3

n

Figure 3.1: Original network.

x3

xn

x3 x4 xn, ... ,, ,g ()x3 xn, ... ,, ,f ()

1
2
3

n

y y = y

y

Figure 3.2: Modi�ed network to check f01 = f10.

y

x3

xn

x3 x4 xn, ... ,, ,g ()x3 xn, ... ,, ,f ()

1
2
3

n

y y = y

Figure 3.3: Modi�ed network to check f00 = f11.

x5

xn

x5 xn, ... ,,g ()x5 xn, ... ,, ,f ()

1
2
3

n

y y = y4
5

y
0
1

1 0, ,

Figure 3.4: Modi�ed network to check f1001 = f1010.

3.2 Functional Check Using the ATPG1

In this part, we will show methods to check func-

tional relations between subfunctions. These methods

will be used to detect functional decompositions.

3.2.1 Equivalence Checking between Two Sub-

functions

Let f01 = f(0; 1; x3; : : : ; xn) and f10 = f(1; 0; x3; : : : ;

xn). If f01 = f10, then f is partially symmetric with

respect to x1 and x2. This property can be checked by

using the ATPG1 as follows [7]:

By modifying the network in Fig. 3.1 to obtain

Fig. 3.2, we can realize the function g(y; x3; x4; : : : ; xn)

= f(y; �y; x3; : : : ; xn). If g does not depend on y, then

f(0; 1; x3; : : : ; xn) = f(1; 0; x3; : : : ; xn).

Similarly, by modifying Fig. 3.1 to obtain Fig. 3.3,

we can realize g(y; x3; x4; : : : ; xn) = f(y; y; x3; : : : ; xn).

In this case, if g does not depend on y, then

f(0; 0; x3; : : : ; xn) = f(1; 1; x3; : : : ; xn).

2

0

x3

xn

1
2
3

n
y

0
0

x4 xn, ... ,,f ()0 0, , x3y

x4 xn, ... ,,g ()= y ,x3

Figure 3.5: Checking for the constant 0.

0

x3

xn

1
2
3

n
y

0
0

x4 xn, ... ,,f ()0 0, , x3yV V

x4 xn, ... ,,g ()= y ,x3

Figure 3.6: Checking for the constant 1.

0

x3

xn

1
2
3

n

y
x4 xn, ... ,,f ()0 y, , x3y

x4 xn, ... ,,g ()= y ,x3

Figure 3.7: Checking for f00 = �f01.

By appending constants and inverters, we can check

the equivalence of arbitrary subfunctions. For exam-

ple, in Fig. 3.4, we can check f(1; 0; 1; 0; x5; : : : ; xn) =

f(1; 0; 0; 1; x5; : : : ; xn) by redundancy check of y in

g(y; x5; : : : ; xn).

3.2.2 Checking for the Constant 0

To check whether f00 = 0 or not, we can modify Fig. 3.1

to obtain Fig. 3.5. This network realizes the function

g(y; x3; x4; : : : ; xn) = yf(0; 0; x3; x4; : : : ; xn). If g does

not depend on y, then f(0; 0; x3; x4; : : : ; xn) = 0.

3.2.3 Checking for the Constant 1

To check whether f00 = 1 or not, we can modify Fig. 3.1

to obtain Fig. 3.6. This network realizes the function

g(y; x3; x4; : : : ; xn) = y _ f(0; 0; x3; x4; : : : ; xn). If g

does not depend on y, then f(0; 0; x3; x4; : : : ; xn) = 1.

3.2.4 Checking for f00 = �f01

To check whether f00 = �f01 or not, we can

modify Fig. 3.1 to obtain Fig. 3.7. This net-

work realizes the function g(y; x3; x4; : : : ; xn) = y �
f(0; y; x3; x4; : : : ; xn). If g does not depend on y, then

f(0; 0; x3; x4; : : : ; xn) = �f(0; 1; x3; x4; : : : ; xn).

As shown in this section, we can �nd functional de-

compositions by using only ATPG1. Unfortunately,

these methods are quite time consuming. In the next

section, we will show faster methods.

IV Speedup Using A Logic Simulator

In this section, we will show a method to detect sets

of bipartitions (X1;X2) for which f has no decompo-

sition f = g(h(X1);X2) by using a logic simulator.

4.1 Detection of Undecomposable Bipar-

titions Using a Logic Simulator

In this part, we will show methods to �nd bipar-

titions (X1; X2) for which f has no decomposition

f(X1;X2) = g(h(X1);X2).

Example 4.1 By using Theorem 2.1, we can �nd the
bipartitions (X1; X2) for which f has no decomposition

f = g(h(X1);X2). Assume that X1 = (x1; x2). Let

f00 = f(0; 0; X2);

f01 = f(0; 1; X2);

f10 = f(1; 0; X2); and

f11 = f(1; 1; X2):

be subfunctions obtained by assigning the constants to
x1 and x2. If they denote more than two di�erent func-

tions, then f does not have a decomposition for this bi-
partition. Let apply the random patterns to input X2,

and let a00, a01, a10, and a11 be the response vectors
of the subfunctions f00, f01, f10, and f11, respectively.
If there are more than two di�erent response vectors,

then f does not have the decomposition for this bipar-
tition. (End of Example)

Example 4.2 By using Theorem 2.2, we can �nd the

bipartitions for which f has no decomposition f =

g(h(X1);X2). Assume that X2 = (xn�1; xn). Let

f00 = f(X1; 0; 0);

f01 = f(X1; 0; 1);

f10 = f(X1; 1; 0); and

f11 = f(X1; 1; 1)

be subfunctions obtained by assigning the constants to

xn�1 and xn. If f00, f01, f10, and f11 denote functions
other than 0, 1, h, or �h, then f does not have a de-

composition for this bipartition. Let apply the random
patterns to input X1, and let a00, a01, a10, and a11, be
the response vectors of the subfunctions f00, f01, f10,

and f11, respectively. Let a be a non-constant response
vector. If one of the response vectors is a non-constant

and denotes neither a nor �a, then f does not have the
decomposition for this bipartition. (End of Example)

3

V Experimental Results

Rather than developing dedicated programs for

ATPG0 and ATPG1, wemodi�ed the program in [4] for

functional decompositions. MCNC benchmark func-

tions in BLIF [10] format were used as input data.

Experimental results in [8] show that for the bench-

mark functions, most decompositions are of the form

f(X1;X2) = g(h(X1);X2), where jX1j � 2 or jX2j � 2.

Thus, we used the following:

Algorithm 5.1 (Decomposition using an ATPG and

a Logic Simulator)

1. For each output function, do the followings:

2. Extract the netlist for the function.

3. Detect the decomposition which are easily found
from the netlist.

4. By using the logic simulator, �nd the set of can-

didate bipartitions (X1;X2) having decompositions
g(h(X1);X2), where jX1j � 3 or jX2j � 3.

5. For each candidate bipartition, check if there is a

decomposition by using the ATPG. If exist, reform
the netlist and repeat this step.

For the functions whose BDDs are relatively small, we

can �nd simple disjoint decompositions easily [5, 8].

Thus, in this experiment, we considered the functions

whose BDDs are very large, but their netlists are small

enough to be stored in a computer.

One of such functions is an n-bit multiplier (mlp n).

xn xn�1 � � � x3 x2 x1
x) yn yn�1 � � � y3 y2 y1

z2n z2n�1 � � � zn zn�1 � � � z3 z2 z1

The mlp n has 2n inputs and 2n outputs. Note that

z1, z2, z3, and z2n have decompositions:

z1 = x1y1

z2 = x1y2 � x2y1

z3 = x2y2x1y1 � x3y1 � x1y3
z2n = xnyng(xn�1; : : : ; x1; yn�1; : : : ; y1):

However, other outputs zk (k = 4; : : : ; 2n� 1) of mlp n

are undecomposable. Especially, the size of the BDD

for zn is exponential for any order of the input variables

[3]. Note that the benchmark circuit c6288 represents

the mlp 16, and its BDD is too large to built. Our

system found the decompositions for z1, z2, z3, and

z2n. Also, for k = 4; : : : ; 2n�2, our system successfully

proved that they have no decomposition of the form

zk = g(h(X1);X2), where jX1j � 3 or jX2j � 3.

VI Conclusions and Comments

In this paper, we presented a method to �nd dis-

joint decompositions for the functions given by netlists,

where an ATPG and a logic simulator show equiva-

lence and non-equivalence of subfunctions, respectively.

Since our method uses netlist rather than BDDs, it

can decompose functions whose BDDs are too large to

store in a computer. The presented method can be ex-

tended to the case of k-decomposition [9] f(X1;X2) =

g(h1(X1); h2(X2); : : : ; hk(X1);X2). It is possible to re-

place the ATPG-based engine with SAT-based engine.

Functional decompositions on netlists are more

time-consuming than ones on BDDs. However, we have

to consider the tasks for converting netlists into BDDs.

In many cases, they are non-trivial tasks, and often we

cannot build BDDs. Decompositions on netlists are

also promising to �nd good ordering of the input vari-

ables to build BDDs.

Acknowledgements

This work was supported in part by a Grant in Aid

for Scienti�c Research of the Ministry of Education,

Science, Culture and Sports of Japan. Major parts

of the system were developed by the following person:

M. Kusumoto, N. Harada, and Y. Kurata. Mr. Mat-

suura edited a LaTEX �les.

References

[1] R. L. Ashenhurst, \The decomposition of switching func-
tions," In Proceedings of an International Symposium on

the Theory of Switching, pp. 74-116, April 1957.

[2] V. Bertacco and M. Damiani, \The disjunctive decomposi-
tion of logic functions," ICCAD-97, pp. 78-82, Nov. 1997.

[3] R. E. Bryant, \On the complexity of VLSI implementations
and graph representations of Boolean functions with appli-
cation to integer multiplication," IEEE Trans. on Comput.,
Vol. 40, No. 2, pp. 205-213, Feb. 1991.

[4] S. Kajihara, H. Shiba and K. Kinoshita, \Removal of
redundancy in logic circuits under classi�cation of un-
detectable faults," Proc. 22nd Fault-Tolerant Computer

Sympo., pp. 263-270, 1992.

[5] Y. Matsunaga, \An exact and e�cient algorithm for dis-
junctive decomposition," SASIMI'98, pp. 44-50, Oct. 1998.

[6] S. Minato and G. De Micheli, \Finding all simple disjunc-
tive decompositions using irredundant sum-of-products
forms," ICCAD-98, pp. 111-117, Nov. 1998.

[7] I. Pomeranz and S. M. Reddy, \On determing symmetries
in inputs of logic circuits," IEEE TCAD, Vol. 13, No. 11,
pp. 1428-1433, Nov. 1994.

[8] T. Sasao and M. Matsuura, \DECOMPOS: An integrated
system for functional decomposition," 1998 International

Workshop on Logic Synthesis, Lake Tahoe, June 1998.

[9] T. Sasao, \Totally undecomposable functions: applications
to e�cient multiple-valued decompositions," IEEE Inter-

national Symposium on Multiple-Valued Logic, Freiburg,
Germany, May 20-23, 1999 (to be published).

[10] S. Yang, \Logic synthesis and optimization benchmark user

guide," version 3.0, MCNC, Jan. 1991.

4

