
DECOMPOS: An Integrated System for Functional

Decomposition

Tsutomu Sasao and Munehiro Matsuura

Department of Computer Science and Electronics

Kyushu Institute of Technology

Iizuka 820-8502, Japan

Abstract

This paper presents a system for disjoint decom-
positions of logic functions with many inputs. It is

a combination of three di�erent methods:

1) Disjoint decompositions with a few bound set
variables;

2) Disjoint bi-decompositions; and

3) Decompositions using Jacobian.

1) and 2) are quick, but �nd only limited classes

of decompositions, while 3) �nds all disjoint de-
compositions by spending more time. We show the
results of decompositions for more than four thou-

sand functions. We also de�ne a new class of func-
tions: Completely bi-decomposable functions. Ex-

perimental results show that many practical logic
functions have disjoint decompositions and some
are completely bi-decomposable functions.

I Introduction

In general, an n-variable function f requires
about 2n=n gates [23]. Suppose that the func-
tion f can be decomposed into two networks as

shown in Fig. 1.1. Let the numbers of inputs for
the network H and G be n1 and n2 + 1, respec-

tively, where n1 + n2 = n. Then, H and G can
be realized by the networks with at most 2n1=n1
and 2n2+1=(n2 + 1) gates, respectively. When n

is large, 2n=n >> 2n1=n1 + 2n2+1=(n2 + 1). This
implies that the decomposed realization requires

many fewer gates than the non-decomposed one.
Such a design method is a functional decom-

position. Functional decomposition developed by
Ashenhurst [1] has been used for design of con-
tact networks [7], PLAs (programmable logic ar-

rays) [17, 8, 5, 22, 26], FPGAs [18, 16, 21, 6], and
multi-level networks [2].

In this paper, we consider the functional decom-

position of logic functions with many inputs. We
assume that n, the number of inputs, can be more

than 30. Direct application of the classical decom-
position method has two problems. The �rst prob-

g(h(X1);X2)

h

n2

n1

X1

X2

H

G

Figure 1.1: Functional decomposition f(X1; X2) =
g(h(X1);X2).

lem is the computation time and the memory re-
quirement. The number of di�erent decompositions

is 2n and the size of the decomposition table is 2n.
Thus, the straightforward implementation of clas-

sical method is impractical for the functions with
many variables. The second problem is the useful-
ness of the functional decompositions. Statistically

speaking, almost all n-variable functions are unde-
composable when n is large [9, 18].

In this paper, we will solve the �rst problem. It

is not a single method, but a combination of three
di�erent decomposition methods.

1) Decompose the function into smaller pieces by
�rst �nding the decompositions that are easy
to detect: Disjoint decompositions with a few

bound set variables, and bi-decompositions.

2) For each piece of function which are not de-

composed by the above method, �nd the re-
maining disjoint decompositions by spending

more time. For this purpose, we use an algo-
rithm using Jacobian.

Then, we will demonstrate the usefulness of
the functional decompositions by using benchmark

functions. Experimental results show that many
benchmark functions have disjoint decompositions.

1

Table 2.1: Example logic function.

x1 x2 x3 x4 f

0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0

0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1

1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0

1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

II Functional Decomposition The-

ory

2.1 De�nitions and Basic Properties

We assume that f(X) is a completely speci�ed
non-degenerate function.

De�nition 2.1 Let X = (x1; x2; : : : ; xn) be input
variables. The set of variables in X is denoted by
fXg. (X1;X2; : : : ;Xr) is a partition of X when

fX1g[fX2g[: : :[fXrg = fXg and fXig\fXjg =
� (i 6= j). The number of variables in fXig is

denoted by jXij = ni.

De�nition 2.2 Function f(X) has a disjoint de-
composition if f is represented as f(X) =

g(h(X1);X2). If 1 < jX1j < n, then this decom-
position is non-trivial, and f is decomposable.

The variables in X1 and X2 are bound variables

and free variables, respectively.

De�nition 2.3 Let f(X) be a function, and

(X1;X2) be a partition of X. Let n1 = jX1j and
n2 = jX2j. The decomposition table of f has
2n1 columns and 2n2 rows, each column has dis-

tinct binary label of n1 bits, each row has distinct
binary label of n2 bits, and the each entry of the

table represents the corresponding value of f .

Example 2.1 Let f(X) be the function shown in
Table 2.1, and (X1;X2) be a partition of X, where

X1 = (x1; x2) and X2 = (x3; x4). The correspond-
ing decomposition table is shown in Fig. 2.1.

De�nition 2.4 The number of di�erent column
patterns in the decomposition table is the column

1 0 1 1

1 1 1 1

0 0 0 0

0 1 0 0

x1x2

x3x4

00 01 10 11

00

01

10

11

Figure 2.1: Decomposition table.

multiplicity of the decomposition table and is de-
noted by �. The number of di�erent row patterns

in the decomposition table is the row multiplicity

of the decomposition table and denoted by �.

Lemma 2.1 Let (X1; X2) be a partition of X. In
the decomposition table for f(X), � � 2� and � �
2�.

Corollary 2.1 dlog2�e � � � 2�, where dae de-
notes the smallest integer not smaller than a.

Theorem 2.1 f(X) has the decomposition of the

form
f(X) = g(h(X1);X2); (2.1)

i� the column multiplicity � of the decomposition

table is � � 2.

Theorem 2.2 A function f(X) has a non-trivial
functional decomposition f(X) = �(�(X2);X1) i�

the column multiplicity � of the decomposition ta-
ble (X1; X2) is at most four, and there exists non-
trivial column , and no column other than , � , 0

(constant zero function), and 1 (constant one func-
tion) appear in the table.

Theorem 2.2 shows that the decompositions

f(X) = g(h(X1); X2) and f(X) = �(�(X2); X1)
can be detected simultaneously.

2.2 Complex Disjoint Decomposition [1, 7,

10]

De�nition 2.5 Let (X1; X2; : : : ;Xr) be a par-

tition of X. The decomposition of the form
f(X) = g(h1(X1); h2(X2); : : : ; hr(Xr)) or f(X) =

g(h1(X1); h2(X2); : : : ; hr�1(Xr�1);Xr) is a mul-

tiple disjoint decomposition. The decompo-

sition of the form f(X) = g(h(�(X1); X2); X3)
is an iterative disjoint decomposition. Com-
binations of these forms such as f(X) =

g(h(�(X1); X2); �(X3);X4) is a complex disjoint

decomposition.

2

Lemma 2.2 Let f(X) have two disjoint decompo-

sitions:

f(X) = g(�(X1);X2;X3) = h(X1; �(X2);X3):

Then, f(X) has a multiple disjoint decomposition:

f(X) = (�(X1); �(X2);X3):

Lemma 2.3 Let f(X) have two disjoint decompo-
sitions:

f(X) = g(h(X1;X2);X3) = �(�(X1);X2; X3):

Then, f(X) has an iterative disjoint decomposition:

f(X) = g((�(X1);X2);X3);

where (�(X1); X2) = h(X1;X2).

Lemmas 2.2 and 2.3 show that the complex decom-
position can be found recursively. The computa-

tion time to �nd the decomposition of the form
f(X) = g(h(X1); X2) is proportional to C(n; n1),

where jX1j = n1. Thus, it is more e�cient to �nd
the decomposition with small jX1j �rst. If such a
decomposition exists, then we will try to �nd the

decomposition of a function g(u;X2) with n2 + 1
variables.

III Fast Decomposition Methods

3.1 Functional Decomposition with a Few

Bound Variables

The size of a decomposition table for an n-
variable function is 2n. Thus, the straightforward

method to �nd a decomposition is impractical for a
function with many variables. A method to �nd de-

compositions by using ROBDDs (reduced ordered
binary decision diagrams) is known [18, 12]. How-
ever, this method requires much computation time,

since BDD becomes large during the permutation
of the input variables.

To compute the column multiplicity of a decom-
position, the following algorithm is faster than the

method of [18, 12] when jX1j = n1 = 2. In this
case, the number of di�erent partitions to consider

is n(n � 1)=2. Thus, we can detect such decompo-
sitions very quickly.

Algorithm 3.1 (Decomposition with n1 = 2)
For a multiple-output function, decompose the func-
tion by outputs. Ignore the redundant variables,

and decompose each functions recursively.

For 1 � i < j � n. Let

i j

f00=f(x1; : : : ;0; : : : ;0; : : : ; xn);

f01=f(x1; : : : ;0; : : : ;1; : : : ; xn);

f10=f(x1; : : : ;1; : : : ;0; : : : ; xn);

f11=f(x1; : : : ;1; : : : ;1; : : : ; xn):

If the number of the di�erent functions is two,

then this function has a decomposition f =
g(h(X1);X2), where X1 = (xi; xj).

3.2 Bi-decomposition [20]

De�nition 3.1 If f(X) is represented as f(X) =
g(h1(X1); h2(X2)), then f(X) has a bi-decom-

position.

Bi-decompositions are easy to �nd from ISOPs

(irredundant sum-of-product expressions) and
PPRMs (positive polarity Reed-Muller expres-
sions) [20]. ISOPs and PPRMs can be easily gen-

erated from BDDs and FDDs, respectively. Ex-
perimental results show that many practical logic

functions have bi-decompositions [13, 20].

Algorithm 3.2 For a multiple-output function,
decompose the function by outputs. Decompose

each function recursively.

1. Obtain an ISOP for f . Find the OR type bi-
decomposition.

2. Obtain an ISOP for �f . Find the AND type

bi-decomposition.

3. Obtain the PPRM for f . Find the EXOR type
bi-decomposition.

De�nition 3.2 A completely

bi-decomposable function (CBF) is recursively

de�ned as follows:

1. Constant functions are CBFs.

2. A single variable function is a CBF.

3. If f(X) is a CBF, then �f(X) is also a CBF.

4. If g(X) and h(Y) are CBFs, then f(g(X);
h(Y)) is also a CBF, where X and Y have no

common variables, and f is an arbitrary func-
tion of two variables.

If a function is CBF, then f is realized by a tree
network with two-input gates.

3.3 Decomposition Method using Jacobian

The decomposition methods in the previous sec-
tion are very fast. However, they �nd only lim-

ited classes of decompositions. In this section, we
will present an algorithm to �nd all the disjoint de-

compositions [24, 25]. This method quickly rejects
non-decomposable functions. However, it requires

a more computation time for the functions with de-
compositions.

De�nition 3.3 Let f and g be functions, and x1
and x2 be variables. The Jacobian is

J(f; g=x1; x2) =
df

dx1

dg

dx2
�

df

dx2

dg

dx1
;

3

where df

dx
is a Boolean di�erence of f with respect

to x.

Theorem 3.1 Let xi, xj, and xk be variables in
X and

J(f;
df

dxk
=xi; xj) 6= 0:

If f(X) has a decomposition f(X) = g(h(X1);X2)
and fxi; xjg � fX1g, then xk 2 fX1g.

Theorem 3.1 is used to reduce the number of can-

didate bound sets X1. The computation of all pos-
sible Jacobians for f(X) will show the bounds set

that cannot produce a decomposition. Thus, only
the remaining bound sets must be tested by using

Theorem 2.1.

De�nition 3.4 A bound set graph of a function

f(X) is de�ned as follows:

1) It has n nodes. Each node corresponds to a

variable in X.

2) The edge between nodes xi and xj has weight
Wij, where

Wij =

�
xkjJ(f;

df

dxk
=xi; xj) 6= 0

�
:

De�nition 3.5 If xi 2 Wij, then any bound set

containing xi and xj also contains xk. Thus, any
such bound set must also contain Wik and Wjk.

The process to modify the weight of the bound graph
by these conditions is the augmentation of the

bound set graph.

De�nition 3.6 Let Eij = fxixjg [Wij. In
the augmented bound set graph, if Eij =

fx1; x2; : : : ; xng, then this bound set is trivial, and
the edge fxi; xjg is deleted from the augmented

bound set graph. If Eij = Ekm, then delete the
edge fk;mg. This process to delete trivial bound
set is the reduction of the bound set graph.

Algorithm 3.3 (Decomposition using Jacobian)

a) Construct the bound set graph.

b) Augment the bound set graph.

c) Reduce the bound set graph.

d) Derive the candidate sets of bound set.

e) Check the decomposability by using Theo-
rem 2.1.

IV Decomposition System

Algorithms 3.1 and 3.2 are quick, but �nd

only limited classes of decompositions, while Al-
gorithm 3.3 �nds all disjoint decompositions by

spending more time. Thus, the best strategy is as
follows: First, �nd the decompositions f(X1; X2) =

g(h(X1);X2), where jX1j = 2 by using Algo-
rithm 3.1. Next, �nd bi-decompositions by using
Algorithm 3.2. Finally, �nd remaining disjoint de-

compositions by using Algorithm 3.3.

Algorithm 4.1

1. Find decompositions f(X1;X2) = g(h(X1);

X2), where jX1j = 2 (Algorithm 3.1).

2. Find bi-decompositions (Algorithm 3.2).

3. Find decompositions using Jacobian (Algo-

rithm 3.3).

V Experimental Results

To investigate the usefulness of the strategy,
we applied decomposition algorithms to about two

hundred benchmark functions. Note that most
benchmark functions have multiple-output. We de-
composed each output separately.

5.1 Decompositions with n1 = 2 (Algo-

rithm 3.1)

1) For the most benchmark functions we tried,
Algorithm 3.1 �nished computation in reason-
able time. It found decompositions for 3516

functions out of 4678 functions.

2) Table 5.1 shows the results for selected func-

tions. In this table, In denotes the number
of input variables. Out denotes the number

of output functions. The columns headed by
n1 = 2 denote the results of Algorithm 3.1.

The column headed by BLK denotes the num-
bers of blocks after decompositions. For ex-
ample, apex6 was decomposed into 347 blocks.

The column headed by MAX denotes the max-
imum numbers of inputs after decompositions.

For example, the number of inputs for apex6 is
135, but each block depends on at most 22 vari-
ables after the application of Algorithm 3.1.

5.2 Bi-decompositions (Algorithm 3.2)

1) When Algorithm 3.2 was applied separately.

It always obtained the solutions when the
BDDs and the FDDs can be constructed. How-

ever, it took more computation time than
Algorithm 3.1. 3027 functions out of 4338

functions had bi-decompositions. Furthermore
1460 out of 4338 functions are CBFs. Espe-

cially, all the outputs of the following bench-
mark functions are CBFs: mish, misj, rckl,

4

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16

Figure 5.1: Exact minimal multi-level network for
t481.

t481, e64, i3, i4, i5, cm42a. Note that t481
is a 16-variable single-output function. It is

realized with �fteen 2-input gates. The algo-
rithm obtained an exact minimum multi-level
network shown in Fig. 5.1.

2) In Table 5.1, for the benchmark functions
without * marks, Algorithm 3.2 were applied

to the decomposed results of Algorithm 3.1.
The columns headed by BDC denote the re-
sults for bi-decompositions. For example, in

apex6, the number of blocks became 436 and
each block depends on at most 21 variables.

Benchmark functions with * marks were sep-
arately decomposed by Algorithm 3.2. In the

current version of the program, when the SOPs
for undecomposable blocks are too large, we

have to use each decomposition algorithm sep-
arately, rather than using Algorithm 4.1.

As shown in Table 5.1, disjoint bi-decom-
positions for a function with more than 200

inputs (des) were possible. However, for some
functions, we cannot �nish the computation

due to memory overow or excessive compu-
tation time. The dash (-) denotes that the
computation was not �nished.

5.3 Decompositions by using Jacobian (Al-

gorithm 3.3)

The columns headed by JAC denote the results
of Algorithm 3.3.

1) When Algorithm 3.3 was used separately.

2975 functions out of 3802 functions had dis-

joint decompositions. For all the functions up
to 25 inputs, the algorithm �nished computa-

tions within 10 minutes. However, it could not
�nish the computation for some functions with

more variables. It took longer time than Algo-

rithms 3.1 and 3.2.

2) In Table 5.1, for the benchmark functions
without * marks, Algorithm 3.3 were applied
to the decomposed results of Algorithms 3.1

and 3.2. For example, in apex6, the number
of blocks became 488 and each block depends

on at most 14 variables. Algorithm 4.1 also
successfully decomposed the functions that
were unable to decompose by only using Al-

gorithm 3.3. The column headed by DEC de-
notes the numbers of decomposed outputs. We

assumed that the functions up to two variables
are decomposable. For the functions with *

marks, we may �nd more decompositions. For
these functions, we stopped the algorithm due
to excessive size of intermediate results or ex-

cessive computation time. Thus, the values
may increase after the improvement of the al-

gorithms.

The column headed by CBF denotes the num-

bers of completely decomposable functions
(CBFs). For example, apex6 has 99 outputs,

and all the outputs have disjoint decomposi-
tions. Furthermore, 26 output functions are
CBFs.

5.4 Comparison with [2]

Bertacco and Damiani presented a fast method
to �nd disjoint decompositions [2]. Although their

method is very fast, their method overlooked some
decompositions. In fact, our system found more

decompositions for C3540, C880, apex1, apex4,
apex5, apex7,e64, frc2, k2, pair, rot, vda, and x4.
For example, their method found no decomposi-

tions for any outputs of C3540, however, Algo-
rithm 3.2 found decompositions for 13 outputs.

VI Conclusions and Comments

In this paper, we presented a system to �nd dis-
joint decompositions. It successfully found decom-
positions for functions with more than 200 inputs.

Experimental results show that

1) 3516 out of 4678 functions have decomposi-

tions with the form f(X1; X2) = g(h(X1);X2),
where jX1j = 2.

2) 3027 out of 4338 functions have bi-decom-
positons.

3) 1460 out of 4338 functions are completely bi-

decomposable.

Butler has derived the number of n-variable CBFs

[4]. He showed that even for moderate n, the frac-
tion of CBFs is extremely small. For example, when

5

Table 5.1: Results of decompositions.

Name In Out n1 = 2 BDC JAC DEC CBF

BLK MAX BLK MAX BLK MAX

C3540* 50 22 54 50 { { { { 13 4
C432* 36 7 23 36 23 36 { { 1 1
C880* 60 26 127 41 92 45 { { 26 17
accpla* 50 69 595 34 689 32 { { 69 12
alu4 14 8 14 14 15 14 15 14 4 3
apex1* 45 45 248 33 260 33 { { 43 12
apex2 39 3 36 16 37 15 37 15 3 2
apex3* 54 50 196 42 211 42 { { 39 18
apex4 9 19 19 9 23 9 23 9 5 1
apex5 117 88 792 15 870 14 870 14 88 9
apex6 135 99 347 22 436 21 488 14 99 26
apex7 49 37 223 16 261 14 268 9 37 23
b3 32 20 159 28 177 27 183 27 20 6
b4 33 23 101 14 115 14 120 14 23 8
b9 41 21 78 9 88 8 88 8 21 8
cm42a 4 10 30 2 30 2 30 2 10 10
cm85a 11 3 12 9 16 7 20 3 3 1
count 35 16 152 4 168 3 168 3 16 0
des 256 245 1130 15 1186 14 1374 14 245 4
e64 65 65 2081 2 2081 2 2081 2 65 65
ex4 128 28 46 16 60 15 60 15 28 14
exep 30 63 762 15 767 15 767 15 63 57
frg2 143 139 1038 18 1130 17 1227 17 139 40
i1 25 16 46 4 47 3 47 3 16 15
i2 201 1 181 21 187 6 187 6 1 0
i3 132 6 126 2 126 2 126 2 6 6
i4 192 6 186 2 186 2 186 2 6 6
i5 133 66 606 2 606 2 606 2 66 66
i6 138 67 68 5 69 5 69 5 1 0
i7 199 67 72 6 72 6 72 6 3 3
i8 133 81 131 17 131 17 137 17 18 0
i9 88 63 63 13 63 13 63 13 0 0
ibm 48 17 34 16 34 16 34 16 8 0
in3 35 29 182 25 188 25 195 20 27 8
in4 32 20 172 28 191 27 197 27 20 5
in6 33 23 109 14 123 14 128 14 23 8
jbp 36 57 326 11 343 11 352 10 57 31
k2* 45 45 248 33 260 33 { { 42 12
misex2 25 18 103 8 107 7 107 7 17 12
misg 56 23 43 12 44 11 44 11 23 22
mish 94 43 105 2 105 2 105 2 43 43
misj 35 14 49 2 49 2 49 2 14 14
pair 173 137 1448 30 1547 28 1557 28 137 33
rckl 32 7 216 2 216 2 216 2 7 7
rot* 135 107 508 45 { { { { 104 57
signet 39 8 32 31 32 31 32 31 6 4
soar 83 94 492 14 560 11 560 11 89 47
t481 16 1 15 2 15 2 15 2 1 1
ti 47 72 385 22 431 21 452 21 72 21
vda 17 39 111 17 113 17 113 17 29 7
x1 51 35 234 18 252 17 252 17 35 19
x3 135 99 347 22 436 21 488 14 99 26
x4 94 71 386 9 422 8 443 8 71 35
x2dn 82 56 103 24 105 24 105 24 54 46
x6dn 39 5 28 29 33 28 36 28 5 0
x7dn 66 15 39 25 40 25 43 25 15 0
xparc 41 73 674 30 728 29 744 29 71 11

*: Algorithms were applied separately
BDC: Bi-decomposition
n1 = 2: Decompositions with n1 = 2
JAC: Decompositions using Jacobian
BLK: Number of blocks
MAX: Maximum number of variables for blocks
DEC: Number of decomposed outputs
CBF: Number of completely bi-decomposable functions

6

n = 8, only 10�56 percent of the n-variable func-

tions are CBFs. 1460 CBFs out of 4338 functions
imply that MCNC benchmark functions have very
strong functional properties. We are very surprised

with this results.

As far as we know, this paper �rst demonstrated

such decomposability of benchmark functions by
extensive experiments. Currently, we are improv-

ing the algorithms to make them robust.

Acknowledgments

This work was supported in part by a Grant in
Aid for Scienti�c Research of the Ministry of Edu-

cation, Science, Culture and Sports of Japan. Mr.
Jun-ichi Yamashita and Mr. Yusuke Yauchi devel-
oped prototypes for Algorithms 3.2 and 3.3, respec-

tively, while they were students of KIT.

References

[1] R. L. Ashenhurst, \The decomposition of switch-
ing functions," In Proceedings of an international

symposium on the theory of switching, pp. 74-116,
April 1957.

[2] V. Bertacco and M. Damiani, \The disjunctive
decomposition of logic functions," Proc. ICCAD,
pp. 78-82, Nov. 1997.

[3] S. D. Brown, R. J. Francis, J. Rose, and
Z. G. Vranesic, Field Programmable Gate Arrays,
Kluwer Academic Publishers, Boston 1992.

[4] J. T. Butler, \On the number of functions real-
ized by cascades and disjunctive networks," IEEE
Trans. Comput., Vol. C-24, pp. 681-690, July 1975.

[5] M. J. Ciesielski and Saeyang Yang, \PLADE: A
two-stage PLA decomposition," IEEE Trans. on

CAD, Vol. 11, No. 8, pp. 943-954, Aug. 1992.

[6] S-C. Chang, M. Marek-Sadowska, and T. Hwang,
\Technology mapping for LUT FPGA's based on
decomposition of binary decision diagrams," IEEE
Trans. on CAD, Vol. CAD-15, No. 10, pp. 1226-
1236, Oct. 1996.

[7] H. A. Curtis, A New Approach to the Design of

Switching Circuits, D. Van Nostrand Co., Prince-
ton, NJ, 1962.

[8] S. Devadas, A. Wang, A. R. Newton, and
A. Sangiovanni-Vincentelli, \Boolean decomposi-
tion in multilevel logic optimization," IEEE Jour-

nal of Solid-State Circuits, Vol. 24, pp. 399-408,
April 1989.

[9] M. A. Harrison, Introduction to Switching and Au-
tomata Theory, McGraw-Hill, 1965.

[10] F. J. Hill and G. R. Peterson, Computer Aided

Logic Design with Emphases on VLSI, Wiley,
1993.

[11] U. Kebschull, E. Schubert, and W. Rosenstiel,
\Multilevel logic synthesis based on functional de-
cision diagrams," EDAC 92, pp. 43-47, 1992.

[12] Y-T. Lai, M. Pedram, and S. B. K. Vrudhula,
\EVBDD-based algorithm for integer linear pro-
gramming, spectral transformation, and func-
tional decomposition," IEEE Trans. CAD, Vol. 13,
No. 8, Aug. 1994, pp. 959-975.

[13] Y. Matsunaga, \An attempt to factor
logic functions using exclusive-or decomposition,"
SASIMI'96, pp. 78-83, Nov. 1996.

[14] S. Minato, \Fast generation of prime-irredundant
covers from binary decision diagrams," IEICE

Trans. Fundamentals, Vol. E76-A, No. 6, pp. 976-
973, June 1993.

[15] R. Murgai, R. K. Brayton, and A. Sangiovanni-
Vincentelli, \Optimum functional decomposition
using encoding," Design Automation Conference,
pp. 408-414, June 1994.

[16] R. Murgai, R. K. Brayton, and A. Sangiovanni-
Vincentelli, Logic Synthe-

sis for Field-Programmable Gate Arrays, Kluwer
Academic Publishers, 1995.

[17] T. Sasao, \Application of multiple-valued logic to
a serial decomposition of PLA's," International

Symposium on Multiple-Valued Logic, Zangzou,
China, pp. 264-271, May 1989.

[18] T. Sasao, \FPGA design by generalized functional
decomposition," in (Sasao ed.) Logic Synthesis and
Optimization, Kluwer Academic Publishers, 1993.

[19] T. Sasao and M. Fujita (ed.), Representation of

Discrete Functions, Kluwer Academic Publishers,
1996.

[20] T. Sasao and J. T. Butler, \On bi-decompositions
of logic functions," ACM/IEEE International

Workshop on Logic Synthesis, Tahoe City, Cali-
fornia, May 1997.

[21] H. Sawada, T. Suyama, and A. Nagoya, \Logic
synthesis for look-up table based FPGAs using
functional decomposition and support minimiza-
tion," in ICCAD, pp. 353-359, Nov. 1995.

[22] C. Scholl and P. Molitor, \Communication based
FPGA synthesis for multi-output Boolean func-
tions," in Asia and South Paci�c Design Automa-

tion Conference, pp. 279-287, Aug. 1995.

[23] C. E. Shannon, \The synthesis of two-terminal
switching circuits," Bell Syst. Tech. J., Vol. 28,
No. 1, pp. 59-98, 1949.

[24] V. Y-S, Shen and A. C. Mckellar, \An algo-
rithm for the disjunctive decomposition of switch-
ing functions," IEEE Trans. on Comput., Vol. C-
19, No. 3, pp. 239-248, March 1970.

[25] V. Y-S, Shen, A. C. Mckellar and P. Weiner, \A
fast algorithm for the disjunctive decomposition
of switching functions," IEEE Trans. on Comput.,
Vol. C-20, No. 3, pp. 304-309, March 1971.

[26] B. Wurth, K. Eckl, and K. Anterich, \Functional
multiple-output decomposition: Theory and im-
plicit algorithm," in Design Automation Conf.,
pp. 54-59, June 1995.

[27] S. Yang, \Logic synthesis and optimization bench-

mark user guide, version 3.0," MCNC, Jan. 1991.

7

