On Bi-Decompositions of Logic Functions

Tsutomu Sasao

Department of Computer Science and Electronics Kyushu Institute of Technology Iizuka 820, Japan

Abstract

A logic function f has a disjoint bi-decomposition iff f can be represented as $f = h(g_1(X_1), g_2(X_2))$, where X_1 and X_2 are disjoint set of variables, and h is an arbitrary two-variable logic function. f has a non-disjoint bidecomposition iff f can be represented as $f(X_1, X_2, x) =$ $h(q_1(X_1, x), q_2(X_2, x))$, where x is the common variable. In this paper, we show a fast method to find bidecompositions. Also, we enumerate the number of functions having bi-decompositions.

Ι Introduction

Functional decomposition is a basic technique to realize economical networks. If the function f is represented as $f(X_1, X_2) = h(q(X_1), X_2)$, then f can be realized by the network shown in Fig. 1.1. To find such a decomposition,

position.

Figure 1.1: A simple disjoint decomposition.

Figure 1.2: А Figure 1.3: disjoint bi-decomnon-disjoint bidecomposition.

a decomposition chart with 2^{n_1} columns and 2^{n_2} rows are used, where n_i is the number of variables in X_i (i = 1, 2). When n is large, the decomposition chart is too large to build. Recently, a method using BDDs has been developed [13]. This greatly reduces memory requirements and computation time. However, it is still time consuming, since we have to check all the $\binom{n_1+n_2}{n_1}$ partitions of $n = n_1 + n_2$. In this paper, we consider bi-decompositions of logic functions, a restricted class of functional decompositions that have the form $f(X_1, X_2) = h(g_1(X_1), g_2(X_2))$. Fig. 1.2 shows the realization of this decomposition.

The reasons we consider bi-decompositions are as follows:

1) If f has no bi-decomposition, then the computation time is quite small.

Jon T. Butler

Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5121, U.S.A.

- 2) Some programmable logic devices have two-input logic elements in the outputs.
- 3) If f has a bi-decomposition, then the optimization of the expression is relatively easy.

A resticted class of bi-decompositions has been considered by [8]. The goals of this paper are

- 1) Present a fast method for finding bi-decompositions.
- 2) Enumerate the functions that have bi-decompositions.

Most of the proofs are omitted. They can be available from authors.

Π **Disjoint Bi-Decomposition**

Definition 2.1 Let $X = (X_1, X_2)$ be a partition of the variables. A logic function f has a disjoint bidecomposition iff f can be represented as $f(X_1, X_2) =$ $h(g_1(X_1), g_2(X_2))$, where h is any two-variable logic function.

If f has a disjoint bi-decomposition, then f can be realized by the network shown in Fig. 1.2.

Definition 2.2 Let $X = (X_1, X_2)$ be a partition of the variables. Let n_1 and n_2 be the number of variables in X_1 and X_2 , respectively. A decomposition chart of the function f for a partition (X_1, X_2) consists of 2^{n_1} columns and 2^{n_2} rows of 0s and 1s. The 2^{n_1} distinct binary numbers for X_1 are listed across the top, and the 2^{n_2} distinct binary numbers for X_2 are listed down the side. The entry for the chart corresponds to the value of $f(X_1, X_2)$.

Example 2.1 Two decomposition charts for the function $f(x_1, x_2, x_3, x_4) = x_1 x_2 \oplus x_3 x_4$ are shown in Fig. 2.1 (a) and (b).

Note that the decomposition chart is similar to the Karnaugh map with a different ordering for the cell locations.

Definition 2.3 The number of distinct column (row) patterns in the decomposition chart is called column (row) multiplicity.

Α

Figure 2.1: Decomposition chart.

Figure 3.1: A realization of f(x, y, z) = bi-decomposition for $\bar{x}\bar{y}\bar{z} \lor xyz$. $f(x, y, z) = \bar{x}\bar{y}\bar{z} \lor xyz$.

Example 2.2 In Fig. 2.1 (a), the row and column multiplicities are two. In Fig. 2.1 (b), the row and column multiplicities are four. \Box

Definition 2.4 Let $\mu(f : X_1, X_2)$ be the column multiplicities for f with respect to X_1 and X_2 . Let $\mu(f : X_2, X_1)$ be the row multiplicities for f with respect to X_1 and X_2 .

Theorem 2.1 f has a disjoint bi-decomposition of form $f(X_1, X_2) = h(g_1(X_1), g_2(X_2))$ iff $\mu(f : X_1, X_2) \leq 2$ and $\mu(f : X_2, X_1) \leq 2$.

III Non-Disjoint Bi-Decomposition

Definition 3.1 Let X_1 and X_2 be disjoint sets of variables, and let x be disjoint from X_1 and X_2 . A logic function f has a non-disjoint bi-decomposition iff f can be represented as $f(X_1, X_2, x) = h(g_1(X_1, x), g_2(X_2, x))$, where h is a two-variable logic function. In this case, x is called the common variable.

A function f with a non-disjoint bi-decomposition can be realized by the network shown in Fig. 1.3.

Lemma 3.1 Let $X = (X_1, X_2, x)$ be a partition of the input variables. Let $h(g_1, g_2)$ be an arbitrary logic function of two variables. Then,

$$h(g_1(X_1, x), g_2(X_2, x)) = \bar{x}h(g_1(X_1, 0), g_2(X_2, 0)) \lor xh(g_1(X_1, 1), g_2(X_2, 1))$$

Definition 3.2 Let x be the common variable of the non-disjoint bi-decomposition. Let $f(X_1, X_2, a)$ be a sub-function, where x is set to a 0 or 1.

Figure 3.3: Functions in Example 3.2

Theorem 3.1 $f(X_1, X_2, x)$ has a non-disjoint bi-decomposition of the form $h(g_1(X_1, x), g_2(X_2, x))$ iff $f(X_1, X_2, 0)$ and $f(X_1, X_2, 1)$ have disjoint bi-decompositions $h(g_{01}(X_1), g_{02}(X_2))$ and $h(g_{11}(X_1), g_{12}(X_2))$, respectively.

Example 3.1 Consider the three-variable function: $f(x, y, z) = \bar{x}\bar{y}\bar{z} \lor xyz$. Suppose modules that realizes any function of two variables can be used. The straightforward realization shown in Fig. 3.1 requires five modules. The Shannon expansion with respect to x is $f(x, y, z) = \bar{x}f(0, y, z) \lor xf(1, y, z)$, where f(0, y, z) = $\bar{y}\bar{z}$, and f(1, y, z) = yz. Note that both f(0, y, z) and f(1, y, z) have bi-decompositions with h(x, y) = xy. Since, $g_1(x, y) = \bar{x}g_{01}(X_1) \lor xg_{11}(X_1) = \bar{x}\bar{y} \lor xy$, and $g_2(x, y) =$ $\bar{x}g_{02}(X_2) \lor xg_{12}(X_2) = \bar{x}\bar{z} \lor xz$. We have f(x, y, z) = $g_1(x, y)g_2(x, z) = (\bar{x}\bar{y} \lor xy)(\bar{x}\bar{z} \lor xz)$. From this expression, we have the network in Fig. 3.2. This network requires only three modules. \Box

Example 3.2 Consider the five-variable function $f = \bar{x}_5 f_0 \vee x_5 f_1$, where f_0 and f_1 are shown in Fig. 3.3. Since both f_0 and f_1 have disjoint bi-decompositions of the form $h(g_1(X_1), g_2(X_2)), f = \bar{x}_5 f_0 \vee x_5 f_1$ has a non-disjoint bi-decomposition as follows:

$$\begin{aligned} f &= \bar{x}_5 \{ \bar{x}_1 \bar{x}_2 \oplus x_3 x_4 \} \lor x_5 \{ x_1 x_2 \oplus (x_3 \lor x_4) \} \\ &= \{ \bar{x}_5 (\bar{x}_1 \bar{x}_2) \lor x_5 (x_1 x_2) \} \oplus \{ \bar{x}_5 (x_3 x_4) \lor x_5 (x_3 \lor x_4) \}. \end{aligned}$$

The converse is true also.

Up to now, we only considered the case where there is a single common variable. However, the theorem can be extend to k common variables, where $k \ge 2$.

Definition 3.3 Let X_1 , X_2 , and X_3 be disjoint sets of variables. Let $f(X_1, X_2, \mathbf{a})$ be the sub-functions, where X_3 is set to $\mathbf{a} \in \{0, 1\}^k$, and k denotes the number of variables in X_3 .

Theorem 3.2 Let X_1 , X_2 , and X_3 be disjoint sets of variables. Then, f has a non-disjoint bi-decomposition of form $f(X_1, X_2, X_3) = h(g_1(X_1, X_3), g_2(X_2, X_3))$ iff $f(X_1, X_2, a)$ has a decomposition of the form $h(g_1 a(X_1), g_2 a(X_2))$ for all possible $a \in \{0, 1\}^k$, where k denotes the number of variables in X_3 .

IV A Fast Method for Bi-Decompositions

In this section, we show necessary and sufficient conditions for a function to have a disjoint bi-decomposition. Then, we show efficient algorithms to find disjoint bidecompositions. In the previous sections, $h(g_1, g_2)$ is an arbitrary two-variable logic function. To find a disjoint bi-decomposition, we need to consider only three types:

1) OR type: $f = g_1(X_1) \lor g_2(X_2)$,

- 2) AND type: $f = g_1(X_1)g_2(X_2)$, and
- 3) EXOR type: $f = g_1(X_1) \oplus g_2(X_2)$.

Since f has an AND type disjoint bi-decomposition iff \overline{f} has OR type disjoint bi-decomposition, we only consider the OR type and EXOR type bi-decompositions.

Definition 4.1 x and \bar{x} are literals of a variable x. A logical product which contains at most one literal for each variable is called a product term or a product. Product terms combined with OR operators form a sum-of-products expression (SOP).

Definition 4.2 A prime implicant (PI) p of a function f is a product term which implies f, such that the deletion of any literal from p results in a new product which does not imply f.

Definition 4.3 An irredundant sum-of-products expression (ISOP) is an SOP, where each product is a PI, and no product can be deleted without changing the function represented by the expression.

Definition 4.4 Let f(X) be a function and p be a product of literal(s) in X. The restriction of f to p, denoted by f(X|p) is obtained as follows: If x_i appears in p, then set x_i in 1 in f, and if \bar{x}_i appears in p, then set x_i in 0 in f.

Example 4.1 Let $f(x_1, x_2, x_3) = x_1 x_2 \lor \bar{x}_2 x_3$ and $p = x_1 x_3$. f(X|p) is obtained as follows: Set $x_1 = x_3 = 1$ in f, and we have $f(X|x_1x_3) = f(1, x_2, 1) = x_2 \lor \bar{x}_2 = 1$. \Box

Lemma 4.1 p is an implicant of f(X), iff f(X|p) = 1.

Example 4.2 By Lemma 4.1, x_1x_3 is an implicant of $x_1x_2 \vee \bar{x}_2x_3$, shown in Example 4.1.

Theorem 4.1 (OR type disjoint bi-decomposition) f has a disjoint bi-decomposition of form $f(X_1, X_2) = g_1(X_1) \lor$ $g_2(X_2)$ iff every product in an ISOP for f consists of literals from X_1 only or X_2 only.

Definition 4.5 $x^0 = \bar{x}$. $x^1 = x$.

Corollary 4.1 If $f(x_1, x_2, ..., x_n)$ has a PI of the form $x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$, where $a_i \in \{0, 1\}$, then f has no OR type disjoint bi-decomposition.

Let $x_i (i = 1, 2, ..., n)$ be the input variables of f. Let $p_1 \lor p_2 \lor \cdots \lor p_t$ be an irredundant sum-of-products expression for f, where p_i (i = 1, 2, ..., t) are PIs of f. Let Π_0 be the trivial partition of $\{1, 2, ..., n\}$, $\Pi_0 = [\{1\}, \{2\}, ..., \{n\}]$.

Algorithm 4.1 (OR type disjoint bi-decomposition: $f(X_1, X_2) = g_1(X_1) \lor g_2(X_2)$).

- 1. For i = 1 to t, form Π_i from Π_{i-1} by merging two blocks Ω_1 and Ω_2 of Π_{i-1} if at least one literal in p_i occurs in both Ω_1 and Ω_2 .
- 2. If Π_t has at least two blocks, then $f(X_1, X_2)$ has a disjoint bi-decomposition of the form $f(X_1, X_2) = g_1(X_1) \lor g_2(X_2)$, with X_1 the union of one or more blocks of Π_t and X_2 the union of the remaining blocks.

Example 4.3 Consider the ISOP: $f(x_1, x_2, \ldots, x_6) = x_1x_2 \lor x_2x_3 \lor x_4x_5 \lor x_5x_6$. The products x_1x_2 and x_2x_3 show that x_1 , x_2 , and x_3 are in the same block. Also, the products x_4x_5 and x_5x_6 show that x_4 , x_5 , and x_6 are in the same block. Thus, we have the partition $[\{1, 2, 3\}, \{4, 5, 6\}]$. The corresponding OR type disjoint bi-decomposition is $f(X_1, X_2) = g_1(X_1) \lor g_2(X_2)$, where $X_1 = (x_1, x_2, x_3)$ and $X_2 = (x_4, x_5, x_6)$.

Example 4.4 Consider the function f with an ISOP: $f(x_1, x_2, x_3, x_4, x_5) = x_1 x_2 x_3 \lor x_3 x_4 x_5.$

- 1) The product $x_1x_2x_3$ shows that x_1 , x_2 , and x_3 belong to the same block.
- 2) The product $x_3x_4x_5$ shows that x_3 , x_4 , and x_5 belong to the same block.

Thus, all the variables belong to the same block. From this, it follows that f has no OR type decomposition. \Box

Theorem 4.2 (AND type disjoint bi-decomposition) fhas a disjoint bi-decomposition of form $f(X_1, X_2) = g_1(X_1)g_2(X_2)$ iff every product in an ISOP for \bar{f} consists of literals from X_1 only or X_2 only.

Lemma 4.2 [15] An arbitrary n-variable function can be uniquely represented as

$$f(x_1, x_2, \dots, x_n) = a_0 \oplus (a_1 x_1 \oplus a_2 x_2 \oplus \dots \oplus a_n x_n)$$
$$\oplus (a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus \dots \oplus a_{n-1n} x_{n-1} x_n)$$
$$\oplus \dots \oplus a_{12 \dots n} x_1 x_2 \dots x_n, \qquad (4.1)$$

where $a_i \in \{0, 1\}$. The above expression is called a positive polarity Reed-Muller expression (PPRM).

For a given function f, the coefficients $a_0, a_1, a_2, \ldots, a_{12\cdots n}$ are uniquely determined. Thus, the PPRM is a canonical representation. The number of products in (4.1) is at most 2^n , and all the literals are positive (uncomplemented).

Theorem 4.3 (EXOR type disjoint bi-decomposition) fhas a disjoint bi-decomposition of the form $f(X_1, X_2) = g_1(X_1) \oplus g_2(X_2)$ iff every product in the PPRM for f consists of literals from X_1 only or X_2 only.

Corollary 4.2 If the PPRM of an n-variable function has the product $x_1x_2 \cdots x_n$, then f has no EXOR type disjoint bi-decomposition.

Theorem 4.4 When f has an EXOR type disjoint bidecomposition, the number of true minterms of f is an even number.

Corollary 4.3 When the number of true minterms of f is an odd number, then f does not have an EXOR type disjoint bi-decomposition.

The significance of this observation is that at least one half of the functions can be quickly rejected as candidates for EXOR type disjoint bi-decomposition.

Let x_i (i = 1, 2, ..., n) be the input variables of f. Let $p_1 \oplus p_2 \oplus \cdots \oplus p_t$ be PPRM for f, where p_i (i = 1, 2, ..., t) are products. Let, Π_0 be the trivial partition of $\{1, 2, ..., n\}$, $\Pi_0 = [\{1\}, \{2\}, ..., \{n\}].$

Algorithm 4.2 (EXOR type disjoint bi-decomposition: $f(X_1, X_2) = g_1(X_1) \oplus g_2(X_2)$).

- 1. For i = 1 to t, form Π_i from Π_{i-1} by merging two blocks Ω_1 and Ω_2 of Π_{i-1} if at least one literal in p_i occurs in both Ω_1 and Ω_2 .
- If Π_t has at least two blocks, then f(X₁, X₂) has a disjoint bi-decomposition of form f(X₁, X₂) = g₁(X₁) ⊕ g₂(X₂), with X₁ the union of one or more blocks of Π_t and X₂ the union of the remaining blocks.

Example 4.5 Consider the PPRM: $f(x_1, x_2, \ldots, x_6) = x_1x_2 \oplus x_2x_3 \oplus x_4x_5 \oplus x_5x_6$. The products x_1x_2 and x_2x_3 show that x_1 , x_2 , and x_3 are in the same block. Also, the products x_4x_5 and x_5x_6 show that x_4 , x_5 , and x_6 are in the same block. Thus, we have the partition $[\{1, 2, 3\}, \{4, 5, 6\}]$. The corresponding EXOR type disjoint bi-decomposition is $f(X_1, X_2) = g_1(X_1) \oplus g_2(X_2)$, where $X_1 = (x_1, x_2, x_3)$ and $X_2 = (x_4, x_5, x_6)$.

Algorithm 4.3 (Non-disjoint bi-decomposition).

 $f(X_1, X_2, x_i) = g_1(X_1, x_i) \otimes g_2(X_2, x_i)$, where \otimes denotes either OR, AND, or EXOR. Let (X_1, X_2, x_i) be a partition of the variables x_1, x_2, \ldots , and x_n . For i = 1 to n, do

- i) Let $f_{0i} = f(X_1, X_2, 0)$. (Set x_i to 0). Let $f_{1i} = f(X_1, X_2, 1)$. (Set x_i to 1).
- ii) If both f_{0i} and f_{1i} have the same type of disjoint bidecompositions with the same partition, then f has a non-disjoint bi-decomposition.

V Complexity Analysis of the Algorithms

5.1 OR type disjoint bi-decomposition

We assume that the function is given as an ISOP with t products. Note that $t \leq 2^{n-1}$. The time to form the partition of variables is $O(n \cdot t)$.

5.2 EXOR type disjoint bi-decomposition

A PPRM can be represented by a functional decision diagram (FDD [5, 15]). Each path from the root node to the constant 1 node corresponds to a product in the PPRM. Thus, the partition of the input variables is directly generated from the FDD. The number of paths in an FDD is $O(2^n)$, where n is the number of the input variables. However, we can avoid exhaustive generation of paths as follows: Let p_1 and p_2 be products in a PPRM. If all the literals in p_1 also appear in p_2 , then p_2 need not be generated in the Algorithm, since the product p_1 that contains more literals than p_2 is more important. By searching the paths with more literals first, we can efficiently detect functions with no disjoint bi-decomposition.

Example 5.1 Consider the function f(X) given as a PPRM: $f(X) = x_1 \oplus x_1 x_2 \oplus x_3 x_4 \oplus x_1 x_2 x_5 x_6$. In constructing the partition of X, we need not consider the products x_1 or $x_1 x_2$, since $x_1 x_2 x_5 x_6$ has the literals of x_1 and $x_1 x_2$. In this case, the product $x_1 x_2 x_5 x_6$ shows that x_1, x_2, x_5 , and x_6 belong to the same group. Also, the product $x_3 x_4$ shows that x_3 and x_4 belong to the same group. Thus, X is partitioned as $X = (X_1, X_2)$, where $X_1 = (x_1, x_2, x_5, x_6)$ and $X_2 = (x_3, x_4)$.

Definition 5.1 Let p be a product. The set of variables in p is denoted by $V(p) = \{x_i | x_i \text{ or } \bar{x}_i \text{ appears in } p\}$. For example, $V(x_1 x_2 \bar{x}_4) = \{x_1, x_2, x_4\}$

Definition 5.2 Let F be a PPRM. A product p is said to have maximal variable set V(p) if there is no other product p' such that $V(p) \subset V(p')$.

Example 5.2 For the PPRM, $F = x_1x_2 \oplus x_1x_3 \oplus x_1x_2x_3 \oplus x_4$, $V(x_1x_2) = \{x_1, x_2\}$, $V(x_1x_3) = \{x_1, x_3\}$, $V(x_1x_2x_3) = \{x_1, x_2, x_3\}$, and $V(x_4) = \{x_4\}$. Thus, $x_1x_2x_3$ and x_4 have maximal variable sets. \Box

Theorem 5.1 A function f has an EXOR type disjoint bi-decomposition if a function f' from the PPRM of f by eliminating implicants not having maximal variable sets has an EXOR type disjoint bi-decomposition.

The following theorem says that if a function has an EXOR type disjoint bi-decomposition, then the number of products in the PPRM is relatively small.

Theorem 5.2 If f has a disjoint bi-decomposition of the form $f(X_1, X_2) = g_1(X_1) \oplus g_2(X_2)$, then the number of products in the PPRM is at most $2^{n_1} + 2^{n_2} - 1$, where n_i is the number of variables in X_i (i = 1, 2).

VI Number of Functions with Bi-Decompositions

6.1 Functions with a small number of variables

In the previous sections, we showed that disjoint bidecompositions are easy to find. In this section, we will enumerate the functions with disjoint bi-decompositions.

Definition 6.1 A function f is said to be nondegenerate if for all x_i $f(|\bar{x}_i) \neq f(|x_i)$.

Definition 6.2 Two functions f and g are NPequivalent, denoted by $f \stackrel{\text{NP}}{\sim} g$, iff g is derived from f by the following operations:

- 1) Permutation of the input variables.
- 2) Negations of the input variables.

The following is easy to prove.

Lemma 6.1 If f has a disjoint bi-decomposition and if $\int_{-\infty}^{NP} g$, then g has also the same type of disjoint bi-decomposition.

Lemma 6.2 All the two-variable functions have disjoint bi-decompositions.

Example 6.1 There are $2^{2^3} = 256$ three-variable logic functions of which 218 are nondegenerate. These nondegenerate functions are grouped into 16 NP-equivalence classes as shown in Table 6.1 [9]. In this table, the column headed by N denotes the number of functions in that equivalence class. Eight classes have disjoint bi-decompositions, and three have non-disjoint bi-decompositions. Note that 194 functions have bidecompositions.

The number of functions with AND type disjoint bidecompositions is equal to the number of functions with OR type disjoint bi-decompositions.

In the case of disjoint bi-decompositions, a function has exactly one type of decomposition (Lemma 6.4). On the other hand, in the case of non-disjoint bidecompositions, a function may have more than one type of bi-decompositions.

Example 6.2 Consider the three-variable function $f = \bar{x}_1 x_3 \lor x_1 x_2$. This function has three types of non-disjoint bi-decompositions:

$f = \bar{x}_1 x_3 \lor x_1 x_2$	(OR type bi-decomposition)	
$= \bar{x}_1 x_3 \oplus x_1 x_2$	(EXOR type bi-decomposition)	
$= (x_1 \lor x_3)(\bar{x}_1 \lor$	x_2) (AND type bi-decomposition)	

Table 6.1: NP-representative functions of three variables.

	Representative functions	N	Type	Property
1	$x_1\oplus x_2\oplus x_3$	2	EXOR	
2	$x_1 x_2 x_3$	8	AND	Disjoint
3	$x_1 \lor x_2 \lor x_3$	8	OR	Bi-Decomposition
4	$x_1(x_2 \lor x_3)$	24	AND	_
5	$x_1 \lor x_2 x_3$	24	OR	
6	$x_1(x_2 \oplus x_3)$	12	AND	
-7	$x_1 \lor (x_2 \oplus x_3)$	12	OR	
8	$x_1 \oplus x_2 x_3$	24	EXOR	
9	$x_1 x_2 x_3 \lor \bar{x}_1 \bar{x}_2 \bar{x}_3$	4		
10	$(x_1 \lor x_2 \lor x_3)(\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$	4		Non-Disjoint
11	$\bar{x}_1 x_3 \lor x_1 x_2$	24		Bi-Decomposition
12	$x_1 \overline{x}_2 \overline{x}_3 \lor x_2 x_3$	24		_
13	$(x_1 \lor \bar{x}_2 \lor \bar{x}_3)(x_2 \lor x_3)$	24		
14	$x_1x_2 \lor x_2x_3 \lor x_3x_1$	8		No
15	$x_1 x_2 \lor x_2 x_3 \lor x_1 x_3 \lor \bar{x}_1 \bar{x}_2 \bar{x}_3$	8		Bi-Decomposition
16	$\bar{x}_1 x_2 x_3 \lor x_1 \bar{x}_2 x_3 \lor x_1 x_2 \bar{x}_3$	8		

N: Number of the functions in the class.

Table 6.2: Number of functions.

			n = 2	n = 3	n = 4
All the functions	16	256	65536		
Nondegenerate functions			10	218	64594
	Disjoint	AND	4	44	1660
Functions with		OR	4	44	1660
bi-decomposition		EXOR	2	26	914
	Non-disj	ont	0	80	3860
	Total		10	194	8094

6.2 The number of functions with bi-decompositions

Lemma 6.3 [4]: Let $\alpha(n)$ be the number of nondegenerate functions on n variables. Then,

$$\alpha(n) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} 2^{2^{k}} \sim 2^{2^{n}},$$

where $a(n) \sim b(n)$ means $\lim_{n \to \infty} \frac{a(n)}{b(n)} = 1$.

Lemma 6.4 A nondegenerate function f has at most one type of disjoint bi-decomposition:

1. $f(X_1, X_2) = g_1(X_1) \cdot g_2(X_2),$ 2. $f(X_1, X_2) = g_1(X_1) \lor g_2(X_2), \text{ or }$ 3. $f(X_1, X_2) = g_1(X_1) \oplus g_2(X_2),$

where g_1 and g_2 are nondegenerate functions on one or more variables.

Theorem 6.1 The number of functions $N_{disjoint}(n)$ with disjoint bi-decompositions is $N_{disjoint}(n) = A_{dis}(n) + O_{dis}(n) + E_{dis}(n)$, where

$$A_{dis}(n) = n! \sum_{\substack{k_1, k_2, \dots, k_n \ge 0\\ 1k_1 + 2k_2 + \dots + nk_n = n}} \prod_{i=1}^n \left(\frac{\alpha(i) - A_{dis}(i)}{i!}\right)^{k_i} \frac{1}{k_i!}$$

Decomposition Type		Number of Functions		
Disjoint	AND	853		
	OR	264		
	EXOR	73		
Non-disjoint	AND	162		
	OR	91		
	EXOR	42		

Table 7.1: Number of functions with bi-decompositions.

$$O_{dis}(n) = n! \sum_{\substack{k_1, k_2, \dots, k_n \ge 0\\1k_1 + 2k_2 + \dots + nk_n = n}} \prod_{i=1}^n \left(\frac{\alpha(i) - O_{dis}(i)}{i!}\right)^{k_i} \frac{1}{k_i!}$$
$$E_{dis}(n) = 2n! \sum_{\substack{k_1, k_2, \dots, k_n \ge 0\\1k_1 + 2k_2 + \dots + nk_n = n}} \prod_{i=1}^n \left(\frac{\alpha(i) - E_{dis}(i)}{i!}\right)^{k_i} \frac{1}{2^{k_i}!}$$

where the sums are over all partitions of n except the trivial partition $n = 0 \cdot 1 + 0 \cdot 2 + \cdots + 0 \cdot (n-1) + 1 \cdot n$ (i.e. the sum is over all partitions where $k_n = 0$), and where $A_{dis}(1) = O_{dis}(1) = E_{dis}(1) = 0$.

Table 6.2 shows the number of functions with disjoint bidecompositions up to n = 4.

VII Experimental Results

We analyzed the bi-decomposability of 136 benchmark functions. Over these multiple-output functions, the total number of outputs (functions) is 1908. For each function, we determined whether there exists a disjoint bidecomposition. If none existed, we determined if there exists a non-disjoint bi-decomposition (with a single common variable). Table 7.1 summarizes our results. It is interesting that 1190 out of 1908 functions, or 62 percent, have disjoint bi-decompositions. Of the remaining 718 functions, 295 have non-disjoint decompositions. It should be noted that more than 295 functions have non-disjoint decompositions, since a function with a disjoint bi-decomposition may also have a non-disjoint bidecomposition.

VIII Conclusions and Comments

In this paper, we presented the bi-decomposition, a special case of functional decomposition. Disjoint bidecompositions have the following features:

- 1) They are easy to detect; we use ISOPs or PPRMs rather than decomposition charts.
- 2) Programmable logic devices exist that realize bidecompositions.
- If the function has an OR (AND) type bi-decomposition, then we can optimize the expression separately.

We enumerated functions with bi-decompositions. Among 218 nondegenerate functions of 4 variables, 194 have bidecompositions. Also, we derived formulae for the number of disjoint bi-decompositions.

Since the fraction of functions with decompositions approaches to zero as n increase [4], the fraction of functions with bi-decompositions also approaches to zero as n increases. However, for 1908 functions we analyzed about 78% of them had either disjoint or non-disjoint bi-decompositions.

References

 $k_i!$

- R. L. Ashenhurst, "The decomposition of switching functions," In Proceedings of an International Symposium on the Theory of Switching, pp. 74-116, April 1957.
- [2] J. T. Butler, "On the number of functions realized by cascades and disjunctive networks," *IEEE Trans. Comput.*, Vol. C-24, pp. 681-690, July 1975.
- [3] H. A. Curtis, A New Approach to the Design of Switching Circuits, Princeton, N.J.: Van Nostrand, 1962.
- [4] M. A. Harrison, Introduction to Switching and Automata Theory, McGraw-Hill, 1965.
- U. Kebschull, E. Schubert and W. Rosenstiel, "Multilevel logic synthesis based on functional decision diagrams," *EDAC 92*, 1992, pp. 43-47.
- [6] Y-T. Lai, M. Pedram, S. B. K. Vrudhula, "EVBDD-based algorithm for integer linear programming, spectral transformation, and functional decomposition," *IEEE Trans. CAD*, Vol. 13, No. 8, Aug. 1994, pp. 959-975.
- [7] A. A. Malik, D. Harrison, and R. K. Brayton, "Threelevel decomposition with application to PLDs," *ICCD*-1991, pp. 628-633, Oct. 1991.
- [8] Y. Matsunaga, "An attempt to factor logic functions using exclusive-or decomposition," SASIMI'96, pp. 78-83.
- [9] S. Muroga, Logic Design and Switching Theory, John Wiley & Sons, 1979.
- [10] T. Sasao and K. Kinoshita, "On the number of fanoutfree functions and unate cascade functions," *IEEE Trans.* on Comput., Vol. C-28, No. 1, pp. 866-72, Jan. 1979.
- [11] T. Sasao, "Input variable assignment and output phase optimization of PLA's," *IEEE Trans. Comput.*, Vol. C-33, No. 10, pp. 879-894, Oct. 1984.
- [12] T. Sasao, "Application of multiple-valued logic to a serial decomposition of PLA's," *International Symposium on Multiple-Valued Logic*, Guangzhou, China, pp. 264-271, May 1989.
- [13] T. Sasao (ed.), Logic Synthesis and Optimization, Kluwer Academic Publishers, 1993.
- [14] T. Sasao, "A design method for AND-OR-EXOR three-level networks," ACM/IEEE International Workshop on Logic Synthesis, Tahoe City, California, May 23-26, 1995, pp.8:11- 8:20.
- [15] T. Sasao and M. Fujita (ed.), Representations of Discrete Functions, Kluwer Academic Publishers, 1996.
- [16] T. Sasao and J. T. Butler, "Comparison of the worst and best sum-of-products expressions for multiple-valued functions," (preprint).
- [17] M. Sauerhoff, I. Wegener, and R. Werchner, "Optimal ordered binary decision diagrams for tree-like circuits," *SASIMI'96* (to be published).
- [18] S. Yang, "Logic synthesis and optimization benchmark user guide, version 3.0," MCNC, Jan. 1991.