
On Bi-Decompositions of Logic Functions

Tsutomu Sasao Jon T. Butler

Department of Computer Science Department of Electrical and
and Electronics Computer Engineering

Kyushu Institute of Technology Naval Postgraduate School
Iizuka 820, Japan Monterey, CA 93943-5121, U.S.A.

Abstract

A logic function f has a disjoint bi-decomposition i�

f can be represented as f = h(g1(X1); g2(X2)), where
X1 and X2 are disjoint set of variables, and h is an arbi-

trary two-variable logic fuction. f has a non-disjoint bi-
decomposition i� f can be represented as f(X1;X2; x) =
h(g1(X1; x); g2(X2; x)), where x is the common vari-

able. In this paper, we show a fast method to �nd bi-
decompositions. Also, we enumerate the number of func-

tions having bi-decompositions.

I Introduction

Functional decomposition is a basic technique to realize
economical networks. If the function f is represented as

f(X1;X2) = h(g(X1);X2), then f can be realized by the
network shown in Fig. 1.1. To �nd such a decomposition,

1X

2X

g

h f

Figure 1.1: A
simple disjoint

decomposition.

1X

2X

g

h

g

1

2

f

Figure 1.2: A
disjoint bi-decom-

position.

1X

2X

g

h

g

1

2

x f

Figure 1.3: A
non-disjoint bi-

decomposition.

a decomposition chart with 2n1 columns and 2n2 rows are
used, where ni is the number of variables in Xi (i = 1; 2).

When n is large, the decomposition chart is too large
to build. Recently, a method using BDDs has been de-
veloped [13]. This greatly reduces memory requirements

and computation time. However, it is still time consum-
ing, since we have to check all the

�
n1+n2

n1

�
partitions of

n = n1+n2. In this paper, we consider bi-decompositions
of logic functions, a restricted class of functional decompo-
sitions that have the form f(X1;X2) = h(g1(X1); g2(X2)).

Fig. 1.2 shows the realization of this decomposition.

The reasons we consider bi-decompositions are as fol-
lows:

1) If f has no bi-decomposition, then the computation

time is quite small.

2) Some programmable logic devices have two-input
logic elements in the outputs.

3) If f has a bi-decomposition, then the optimization of

the expression is relatively easy.

A resticted class of bi-decompositions has been considered
by [8]. The goals of this paper are

1) Present a fast method for �nding bi-decompositions.

2) Enumerate the functions that have bi-decom-
positions.

Most of the proofs are omitted. They can be available
from authors.

II Disjoint Bi-Decomposition

De�nition 2.1 Let X = (X1;X2) be a partition of

the variables. A logic function f has a disjoint bi-
decomposition i� f can be represented as f(X1;X2) =

h(g1(X1); g2(X2)), where h is any two-variable logic func-
tion.

If f has a disjoint bi-decomposition, then f can be realized
by the network shown in Fig. 1.2.

De�nition 2.2 Let X = (X1;X2) be a partition of the

variables. Let n1 and n2 be the number of variables in X1

and X2, respectively. A decomposition chart of the func-

tion f for a partition (X1; X2) consists of 2n1 columns
and 2n2 rows of 0s and 1s. The 2n1 distinct binary num-
bers for X1 are listed across the top, and the 2n2 distinct

binary numbers for X2 are listed down the side. The entry
for the chart corresponds to the value of f(X1; X2).

Example 2.1 Two decomposition charts for the function
f(x1; x2; x3; x4) = x1x2 � x3x4 are shown in Fig. 2.1 (a)

and (b). 2

Note that the decomposition chart is similar to the Kar-
naugh map with a di�erent ordering for the cell locations.

De�nition 2.3 The number of distinct column (row) pat-

terns in the decomposition chart is called column (row)
multiplicity.

1

1X

0 0 0 1

0 0 0 1

0 0 0 1

1 1 1 0

00

01

10

11

00 01 10 11

x1=(,)x2 1X

0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0

00

01

10

11

00 01 10 11

x1=(,)x3

(a) (b)

2X x2=(,)x42X x3=(,)x4

Figure 2.1: Decomposition chart.

x

y

x

y

z

z

V

Figure 3.1: A real-
ization of f(x; y; z) =
�x�y�z _ xyz.

x

y

z

Figure 3.2: Non-disjoint

bi-decomposition for
f(x; y; z) = �x�y�z _ xyz.

Example 2.2 In Fig. 2.1 (a), the row and column mul-
tiplicities are two. In Fig. 2.1 (b), the row and column

multiplicities are four. 2

De�nition 2.4 Let �(f : X1;X2) be the column mul-

tiplicities for f with respect to X1 and X2. Let �(f :
X2;X1) be the row multiplicities for f with respect to X1

and X2.

Theorem 2.1 f has a disjoint bi-decomposition of form
f(X1;X2) = h(g1(X1); g2(X2)) i� �(f : X1;X2) � 2 and

�(f : X2;X1) � 2.

III Non-Disjoint Bi-Decomposition

De�nition 3.1 Let X1 and X2 be disjoint sets of vari-

ables, and let x be disjoint from X1 and X2. A logic
function f has a non-disjoint bi-decomposition i� f can

be represented as f(X1;X2; x) = h(g1(X1; x); g2(X2; x)),
where h is a two-variable logic function. In this case, x is
called the common variable.

A function f with a non-disjoint bi-decomposition can be
realized by the network shown in Fig. 1.3.

Lemma 3.1 Let X = (X1;X2; x) be a partition of the

input variables. Let h(g1; g2) be an arbitrary logic function
of two variables. Then,

h(g1(X1; x); g2(X2; x)) =

�xh(g1(X1; 0); g2(X2; 0)) _ xh(g1(X1; 1); g2(X2; 1)):

De�nition 3.2 Let x be the common variable of the
non-disjoint bi-decomposition. Let f(X1; X2; a) be a sub-

function, where x is set to a 0 or 1.

1X

1 0 0 0

1 0 0 0

1 0 0 0

0 1 1 1

00

01

10

11

00 01 10 11

x1=(,)x2 1X

0 0 0 1

1 1 1 0

1 1 1 0

1 1 1 0

00

01

10

11

00 01 10 11

x1=(,)x2

(b) x1 x2 x3 x4f1 = (v)(a) x1 x2 x3 x4f0 =

2X x3=(,)x42X x3=(,)x4

Figure 3.3: Functions in Example 3.2

Theorem 3.1 f(X1;X2; x) has a non-disjoint bi-decom-
position of the form h(g1(X1; x); g2(X2; x)) i�

f(X1;X2; 0) and f(X1; X2; 1) have disjoint bi-decom-
positions h(g01(X1); g02(X2)) and h(g11(X1); g12(X2)),

respectively.

Example 3.1 Consider the three-variable function:
f(x; y; z) = �x�y�z _ xyz. Suppose modules that real-
izes any function of two variables can be used. The

straightforward realization shown in Fig. 3.1 requires �ve
modules. The Shannon expansion with respect to x is

f(x; y; z) = �xf(0; y; z) _ xf(1; y; z); where f(0; y; z) =
�y�z; and f(1; y; z) = yz: Note that both f(0; y; z) and
f(1; y; z) have bi-decompositions with h(x; y) = xy. Since,

g1(x; y) = �xg01(X1)_xg11(X1) = �x�y_xy; and g2(x; y) =
�xg02(X2) _ xg12(X2) = �x�z _ xz: We have f(x; y; z) =

g1(x; y)g2(x; z) = (�x�y _ xy)(�x�z _ xz): From this expres-
sion, we have the network in Fig. 3.2. This network re-

quires only three modules. 2

Example 3.2 Consider the �ve-variable function f =

�x5f0_x5f1, where f0 and f1 are shown in Fig. 3.3. Since
both f0 and f1 have disjoint bi-decompositions of the form

h(g1(X1); g2(X2)), f = �x5f0 _ x5f1 has a non-disjoint bi-
decomposition as follows:

f=�x5f�x1�x2 � x3x4g _ x5fx1x2 � (x3 _ x4)g

=f�x5(�x1�x2) _ x5(x1x2)g � f�x5(x3x4) _ x5(x3 _ x4)g:

The converse is true also. 2

Up to now, we only considered the case where there is
a single common variable. However, the theorem can be
extened to k common variables, where k � 2.

De�nition 3.3 Let X1, X2, and X3 be disjoint sets of
variables. Let f(X1; X2;a) be the sub-functions, where

X3 is set to a 2 f0; 1gk, and k denotes the number of
variables in X3.

Theorem 3.2 Let X1, X2, and X3 be disjoint sets of
variables. Then, f has a non-disjoint bi-decomposition

of form f(X1; X2;X3) = h(g1(X1;X3); g2(X2;X3))
i� f(X1;X2;a) has a decomposition of the form

h(g1a(X1); g2a(X2)) for all possible a 2 f0; 1gk, where
k denotes the number of variables in X3.

2

IV A Fast Method for Bi-Decompositions

In this section, we show necessary and su�cient condi-

tions for a function to have a disjoint bi-decomposition.
Then, we show e�cient algorithms to �nd disjoint bi-

decompositions. In the previous sections, h(g1; g2) is an
arbitrary two-variable logic function. To �nd a disjoint
bi-decomposition, we need to consider only three types:

1) OR type: f = g1(X1) _ g2(X2),

2) AND type: f = g1(X1)g2(X2), and

3) EXOR type: f = g1(X1) � g2(X2).

Since f has an AND type disjoint bi-decomposition i� �f

has OR type disjoint bi-decomposition, we only consider
the OR type and EXOR type bi-decompositions.

De�nition 4.1 x and �x are literals of a variable x. A

logical product which contains at most one literal for each
variable is called a product term or a product. Prod-

uct terms combined with OR operators form a sum-of-
products expression (SOP).

De�nition 4.2 A prime implicant (PI) p of a function f

is a product term which implies f , such that the deletion

of any literal from p results in a new product which does
not imply f .

De�nition 4.3 An irredundant sum-of-products expres-
sion (ISOP) is an SOP, where each product is a PI, and

no product can be deleted without changing the function
represented by the expression.

De�nition 4.4 Let f(X) be a function and p be a product
of literal(s) in X. The restriction of f to p, denoted by

f(X jp) is obtained as follows: If xi appears in p, then set
xi in 1 in f , and if �xi appears in p, then set xi in 0 in f .

Example 4.1 Let f(x1; x2; x3) = x1x2 _ �x2x3 and p =
x1x3. f(Xjp) is obtained as follows: Set x1 = x3 = 1 in

f, and we have f(Xjx1x3) = f(1; x2; 1) = x2 _ �x2 = 1. 2

Lemma 4.1 p is an implicant of f(X), i� f(X jp) = 1.

Example 4.2 By Lemma 4.1, x1x3 is an implicant of
x1x2 _ �x2x3, shown in Example 4.1. 2

Theorem 4.1 (OR type disjoint bi-decomposition) f has

a disjoint bi-decomposition of form f(X1;X2) = g1(X1)_
g2(X2) i� every product in an ISOP for f consists of lit-
erals from X1 only or X2 only.

De�nition 4.5 x0 = �x. x1 = x.

Corollary 4.1 If f(x1; x2; : : : ; xn) has a PI of the form
xa11 xa22 � � �xan

n
, where ai 2 f0; 1g, then f has no OR type

disjoint bi-decomposition.

Let xi(i = 1; 2; : : : ; n) be the input variables of f . Let p1_

p2_� � �_pt be an irredundant sum-of-products expression
for f , where pi (i = 1; 2; : : : ; t) are PIs of f . Let �0 be the

trivial partition of f1; 2; : : : ; ng, �0 = [f1g; f2g; : : : ; fng].

Algorithm 4.1 (OR type disjoint bi-decomposition:

f(X1;X2) = g1(X1) _ g2(X2)).

1. For i = 1 to t, form �i from �i�1 by merging two
blocks
1 and
2 of �i�1 if at least one literal in pi
occurs in both
1 and
2.

2. If �t has at least two blocks, then f(X1; X2) has a
disjoint bi-decomposition of the form f(X1;X2) =

g1(X1) _ g2(X2), with X1 the union of one or more
blocks of �t and X2 the union of the remaining blocks.

Example 4.3 Consider the ISOP: f(x1; x2; : : : ; x6) =
x1x2 _ x2x3 _ x4x5 _ x5x6. The products x1x2 and x2x3
show that x1, x2, and x3 are in the same block. Also,

the products x4x5 and x5x6 show that x4, x5, and x6
are in the same block. Thus, we have the partition

[f1; 2; 3g; f4; 5; 6g]. The corresponding OR type disjoint
bi-decomposition is f(X1; X2) = g1(X1) _ g2(X2), where

X1 = (x1; x2; x3) and X2 = (x4; x5; x6). 2

Example 4.4 Consider the function f with an ISOP:

f(x1; x2; x3; x4; x5) = x1x2x3 _ x3x4x5.

1) The product x1x2x3 shows that x1, x2, and x3 belong

to the same block.

2) The product x3x4x5 shows that x3, x4, and x5 belong
to the same block.

Thus, all the variables belong to the same block. From

this, it follows that f has no OR type decomposition. 2

Theorem 4.2 (AND type disjoint bi-decomposition) f

has a disjoint bi-decomposition of form f(X1; X2) =
g1(X1)g2(X2) i� every product in an ISOP for �f consists

of literals from X1 only or X2 only.

Lemma 4.2 [15] An arbitrary n-variable function can be

uniquely represented as

f(x1; x2; : : : ; xn) = a0 � (a1x1 � a2x2 � � � � � anxn)

�(a12x1x2 � a13x1x3 � � � � � an�1nxn�1xn)

� � � � � a12���nx1x2 � � � xn; (4.1)

where ai 2 f0; 1g. The above expression is called a posi-

tive polarity Reed-Muller expression (PPRM).

For a given function f , the coe�cients a0, a1, a2,: : :, a12���n
are uniquely determined. Thus, the PPRM is a canonical
representation. The number of products in (4.1) is at most

2n, and all the literals are positive (uncomplemented).

3

Theorem 4.3 (EXOR type disjoint bi-decomposition) f

has a disjoint bi-decomposition of the form f(X1; X2) =
g1(X1)�g2(X2) i� every product in the PPRM for f con-

sists of literals from X1 only or X2 only.

Corollary 4.2 If the PPRM of an n-variable function
has the product x1x2 � � �xn, then f has no EXOR type

disjoint bi-decomposition.

Theorem 4.4 When f has an EXOR type disjoint bi-
decomposition, the number of true minterms of f is an

even number.

Corollary 4.3 When the number of true minterms of f
is an odd number, then f does not have an EXOR type

disjoint bi-decomposition.

The signi�cance of this observation is that at least one

half of the functions can be quickly rejected as candidates
for EXOR type disjoint bi-decomposition.

Let xi (i = 1; 2; : : : ; n) be the input variables of f .

Let p1 � p2 � � � � � pt be PPRM for f , where pi (i =
1;2; : : : ; t) are products. Let, �0 be the trivial partition

of f1; 2; : : : ; ng, �0 = [f1g; f2g; : : : ; fng].

Algorithm 4.2 (EXOR type disjoint bi-decomposition:
f(X1;X2) = g1(X1)� g2(X2)).

1. For i = 1 to t, form �i from �i�1 by merging two

blocks
1 and
2 of �i�1 if at least one literal in pi
occurs in both
1 and
2.

2. If �t has at least two blocks, then f(X1;X2) has a dis-
joint bi-decomposition of form f(X1;X2) = g1(X1)�

g2(X2), with X1 the union of one or more blocks of
�t and X2 the union of the remaining blocks.

Example 4.5 Consider the PPRM: f(x1; x2; : : : ; x6) =

x1x2 � x2x3 � x4x5 � x5x6. The products x1x2 and
x2x3 show that x1, x2, and x3 are in the same block.

Also, the products x4x5 and x5x6 show that x4, x5, and
x6 are in the same block. Thus, we have the partition
[f1;2; 3g; f4; 5; 6g]. The corresponding EXOR type dis-

joint bi-decomposition is f(X1;X2) = g1(X1) � g2(X2),
where X1 = (x1; x2; x3) and X2 = (x4; x5; x6). 2

Algorithm 4.3 (Non-disjoint bi-decomposition).

f(X1;X2; xi) = g1(X1; xi)
 g2(X2; xi), where
 denotes
either OR, AND, or EXOR. Let (X1; X2; xi) be a partition

of the variables x1, x2,: : :, and xn. For i = 1 to n, do

i) Let f0i = f(X1;X2; 0). (Set xi to 0). Let f1i =
f(X1; X2; 1). (Set xi to 1).

ii) If both f0i and f1i have the same type of disjoint bi-

decompositions with the same partition, then f has a
non-disjoint bi-decomposition.

V Complexity Analysis of the Algorithms

5.1 OR type disjoint bi-decomposition

We assume that the function is given as an ISOP with
t products. Note that t � 2n�1. The time to form the

partition of variables is O(n � t).

5.2 EXOR type disjoint bi-decomposition

A PPRM can be represented by a functional decision di-

agram (FDD [5, 15]). Each path from the root node to the
constant 1 node corresponds to a product in the PPRM.

Thus, the partition of the input variables is directly gen-
erated from the FDD. The number of paths in an FDD
is O(2n), where n is the number of the input variables.

However, we can avoid exhaustive generation of paths as
follows: Let p1 and p2 be products in a PPRM. If all the

literals in p1 also appear in p2, then p2 need not be gener-
ated in the Algorithm, since the product p1 that contains
more literals than p2 is more important. By searching

the paths with more literals �rst, we can e�ciently detect
functions with no disjoint bi-decomposition.

Example 5.1 Consider the function f(X) given as a

PPRM: f(X) = x1�x1x2�x3x4�x1x2x5x6. In construct-
ing the partition of X, we need not consider the products

x1 or x1x2, since x1x2x5x6 has the literals of x1 and x1x2.
In this case, the product x1x2x5x6 shows that x1, x2, x5,

and x6 belong to the same group. Also, the product x3x4
shows that x3 and x4 belong to the same group. Thus, X is
partitioned as X = (X1;X2), where X1 = (x1; x2; x5; x6)

and X2 = (x3; x4). 2

De�nition 5.1 Let p be a product. The set of variables
in p is denoted by V (p) = fxijxi or �xi appears in pg: For

example, V (x1x2�x4) = fx1; x2; x4g

De�nition 5.2 Let F be a PPRM. A product p is said to
have maximal variable set V (p) if there is no other product

p0 such that V (p) � V (p0).

Example 5.2 For the PPRM, F = x1x2 � x1x3 �

x1x2x3 � x4, V (x1x2) = fx1; x2g, V (x1x3) =

fx1; x3g; V (x1x2x3) = fx1; x2; x3g, and V (x4) = fx4g.
Thus, x1x2x3 and x4 have maximal variable sets. 2

Theorem 5.1 A function f has an EXOR type disjoint

bi-decomposition if a function f 0 from the PPRM of f by
eliminating implicants not having maximal variable sets
has an EXOR type disjoint bi-decomposition.

The following theorem says that if a function has an
EXOR type disjoint bi-decomposition, then the number
of products in the PPRM is relatively small.

Theorem 5.2 If f has a disjoint bi-decomposition of the
form f(X1; X2) = g1(X1) � g2(X2), then the number of
products in the PPRM is at most 2n1 + 2n2 � 1, where ni

is the number of variables in Xi (i = 1; 2).

4

VI Number of Functions with

Bi-Decompositions

6.1 Functions with a small number of variables

In the previous sections, we showed that disjoint bi-

decompositions are easy to �nd. In this section, we will
enumerate the functions with disjoint bi-decompositions.

De�nition 6.1 A function f is said to be nondegenerate
if for all xi f(j�xi) 6= f(jxi):

De�nition 6.2 Two functions f and g are NP-

equivalent, denoted by f NP

�

g, i� g is derived from f by
the following operations:

1) Permutation of the input variables.

2) Negations of the input variables.

The following is easy to prove.

Lemma 6.1 If f has a disjoint bi-decomposition and if

f NP

�

g, then g has also the same type of disjoint bi-
decomposition.

Lemma 6.2 All the two-variable functions have disjoint
bi-decompositions.

Example 6.1 There are 22
3

= 256 three-variable logic

functions of which 218 are nondegenerate. These non-
degenerate functions are grouped into 16 NP-equivalence

classes as shown in Table 6.1 [9]. In this table,
the column headed by N denotes the number of func-
tions in that equivalence class. Eight classes have

disjoint bi-decompositions, and three have non-disjoint
bi-decompositions. Note that 194 functions have bi-

decompositions. 2

The number of functions with AND type disjoint bi-
decompositions is equal to the number of functions with

OR type disjoint bi-decompositions.

In the case of disjoint bi-decompositions, a function

has exactly one type of decomposition (Lemma 6.4).
On the other hand, in the case of non-disjoint bi-

decompositions, a function may have more than one type
of bi-decompositions.

Example 6.2 Consider the three-variable function f =

�x1x3_x1x2. This function has three types of non-disjoint
bi-decompositions:

f=�x1x3 _ x1x2 (OR type bi-decomposition)

=�x1x3 � x1x2 (EXOR type bi-decomposition)

=(x1 _ x3)(�x1 _ x2) (AND type bi-decomposition) 2

Table 6.1: NP-representative functions of three variables.

Representative functions N Type Property

1 x1 � x2 � x3 2 EXOR
2 x1x2x3 8 AND Disjoint
3 x1 _ x2 _ x3 8 OR Bi-Decomposition
4 x1(x2 _ x3) 24 AND
5 x1 _ x2x3 24 OR
6 x1(x2 � x3) 12 AND
7 x1 _ (x2 � x3) 12 OR
8 x1 � x2x3 24 EXOR

9 x1x2x3 _ �x1�x2�x3 4
10 (x1 _ x2 _ x3)(�x1 _ �x2 _ �x3) 4 Non-Disjoint
11 �x1x3 _ x1x2 24 Bi-Decomposition
12 x1�x2�x3 _ x2x3 24
13 (x1 _ �x2 _ �x3)(x2 _ x3) 24

14 x1x2 _ x2x3 _ x3x1 8 No
15 x1x2 _ x2x3 _ x1x3 _ �x1�x2�x3 8 Bi-Decomposition
16 �x1x2x3 _ x1�x2x3 _ x1x2�x3 8

N : Number of the functions in the class.

Table 6.2: Number of functions.

n = 2 n = 3 n = 4

All the functions 16 256 65536

Nondegenerate functions 10 218 64594

Disjoint AND 4 44 1660
Functions with OR 4 44 1660
bi-decomposition EXOR 2 26 914

Non-disjont 0 80 3860

Total 10 194 8094

6.2 The number of functions with

bi-decompositions

Lemma 6.3 [4]: Let �(n) be the number of nondegener-
ate functions on n variables. Then,

�(n) =

nX
k=0

�
n

k

�
(�1)n�k22

k

� 22
n

;

where a(n) � b(n) means lim
n!1

a(n)

b(n)
= 1:

Lemma 6.4 A nondegenerate function f has at most one
type of disjoint bi-decomposition:

1. f(X1;X2) = g1(X1) � g2(X2),

2. f(X1;X2) = g1(X1) _ g2(X2), or

3. f(X1;X2) = g1(X1)� g2(X2),

where g1 and g2 are nondegenerate functions on one or

more variables.

Theorem 6.1 The number of functions Ndisjoint(n) with
disjoint bi-decompositions is Ndisjoint(n) = Adis(n) +
Odis(n) + Edis(n), where

Adis(n)=n!
X

k1;k2;:::;kn�0

1k1+2k2+���+nkn=n

nY
i=1

�
�(i)�Adis(i)

i!

�
ki 1

ki!

5

Table 7.1: Number of functions with bi-decompositions.

Decomposition Type Number of Functions

AND 853

Disjoint OR 264

EXOR 73

AND 162

Non-disjoint OR 91

EXOR 42

O
dis

(n)=n!
X

k1;k2;:::;kn�0

1k1+2k2+���+nkn=n

nY
i=1

�
�(i)�O

dis
(i)

i!

�
ki 1

k
i
!

E
dis

(n)=2n!
X

k1;k2;:::;kn�0

1k1+2k2+���+nkn=n

nY
i=1

�
�(i) �E

dis
(i)

i!

�
ki 1

2kiki!

where the sums are over all partitions of n except the

trivial partition n = 0 �1+0 �2+ � � �+0 � (n�1)+1 �n (i.e.
the sum is over all partitions where kn = 0), and where

Adis(1) = Odis(1) = Edis(1) = 0.

Table 6.2 shows the number of functions with disjoint bi-

decompositions up to n = 4.

VII Experimental Results

We analyzed the bi-decomposability of 136 benchmark

functions. Over these multiple-output functions, the to-
tal number of outputs (functions) is 1908. For each func-
tion, we determined whether there exists a disjoint bi-

decomposition. If none existed, we determined if there
exists a non-disjoint bi-decomposition (with a single com-

mon variable). Table 7.1 summarizes our results. It is
interesting that 1190 out of 1908 functions, or 62 per-

cent, have disjoint bi-decompositions. Of the remain-
ing 718 functions, 295 have non-disjoint decompositions.
It should be noted that more than 295 functions have

non-disjoint decompositions, since a function with a dis-
joint bi-decomposition may also have a non-disjoint bi-

decomposition.

VIII Conclusions and Comments

In this paper, we presented the bi-decomposition, a

special case of functional decomposition. Disjoint bi-
decompositions have the following features:

1) They are easy to detect; we use ISOPs or PPRMs
rather than decomposition charts.

2) Programmable logic devices exist that realize bi-
decompositions.

3) If the function has an OR (AND) type bi-decom-

position, then we can optimize the expression sep-
arately.

We enumerated functions with bi-decompositions. Among

218 nondegenerate functions of 4 variables, 194 have bi-

decompositions. Also, we derived formulae for the number

of disjoint bi-decompositions.

Since the fraction of functions with decompositions ap-
proaches to zero as n increase [4], the fraction of func-

tions with bi-decompositions also approaches to zero as
n increases. However, for 1908 functions we analyzed

about 78% of them had either disjoint or non-disjoint bi-
decompositions.

References
[1] R. L. Ashenhurst, \The decomposition of switching func-

tions," In Proceedings of an International Symposium on

the Theory of Switching, pp. 74-116, April 1957.
[2] J. T. Butler, \On the number of functions realized by cas-

cades and disjunctive networks," IEEE Trans. Comput.,

Vol. C-24, pp. 681-690, July 1975.
[3] H. A. Curtis, A New Approach to the Design of Switching

Circuits, Princeton, N.J.: Van Nostrand, 1962.
[4] M. A. Harrison, Introduction to Switching and Automata

Theory, McGraw-Hill, 1965.
[5] U. Kebschull, E. Schubert and W. Rosenstiel, \Multilevel

logic synthesis based on functional decision diagrams,"

EDAC 92, 1992, pp. 43-47.
[6] Y-T. Lai, M. Pedram, S. B. K. Vrudhula, \EVBDD-based

algorithm for integer linear programming, spectral trans-

formation, and functional decomposition," IEEE Trans.

CAD, Vol. 13, No. 8. Aug. 1994, pp. 959-975.
[7] A. A. Malik, D. Harrison, and R. K. Brayton, \Three-

level decomposition with applicatioin to PLDs," ICCD-

1991, pp. 628-633, Oct. 1991.
[8] Y. Matsunaga, \An attempt to factor logic functions us-

ing exclusive-or decomposition," SASIMI'96, pp. 78-83.
[9] S. Muroga, Logic Design and Switching Theory, John Wi-

ley & Sons, 1979.
[10] T. Sasao and K. Kinoshita, \On the number of fanout-

free functions and unate cascade functions," IEEE Trans.

on Comput., Vol. C-28, No. 1, pp. 866-72, Jan. 1979.
[11] T. Sasao, \Input variable assignment and output phase

optimization of PLA's," IEEE Trans. Comput., Vol. C-

33, No. 10, pp. 879-894, Oct. 1984.
[12] T. Sasao, \Application of multiple-valued logic to a serial

decomposition of PLA's," International Symposium on

Multiple-Valued Logic, Guangzhou, China, pp. 264-271,

May 1989.
[13] T. Sasao (ed.), Logic Synthesis and Optimization, Kluwer

Academic Publishers, 1993.
[14] T. Sasao, \A design method for AND-OR-EXOR

three-level networks," ACM/IEEE International Work-

shop on Logic Synthesis, Tahoe City, California, May 23-

26, 1995, pp.8:11- 8:20.
[15] T. Sasao and M. Fujita (ed.), Representations of Discrete

Functions, Kluwer Academic Publishers, 1996.
[16] T. Sasao and J. T. Butler, \Comparison of the worst

and best sum-of-products expressions for multiple-valued

functions," (preprint).
[17] M. Sauerho�, I. Wegener, and R. Werchner, \Optimal

ordered binary decision diagrams for tree-like circuits,"

SASIMI'96 (to be published).

[18] S. Yang, \Logic synthesis and optimization benchmark

user guide, version 3.0," MCNC, Jan. 1991.

6

