
A Design Method for AND-OR-EXOR

Three-Level Networks

Tsutomu Sasao

Department of Computer Science and Electronics

Kyushu Institute of Technology

Iizuka 820, Japan

Abstract
This paper presents a design method of AND-OR-

EXOR three-level networks, where single two-input
EXOR gate is used for each output. The network re-
alizes an EXOR of two sum-of-products expressions
(EX-SOP): F1 � F2, where F1 and F2 are sum-of-
products expressions (SOPs). The problem is to min-
imize the total number of di�erent products in F1 and
F2. A heuristic optimization algorithm is presented,
and the experimental results are shown. The algo-
rithm uses output phase optimized SOPs and ESOPs
(exclusive-or sum-of-products) as inputs.

Index terms: AND-EXOR, ESOP, Reed-Muller ex-
pression, logic minimization, output phase optimiza-
tion, three-level network, FPGA, decomposition.

1 Introduction
Most logic synthesis systems use AND and OR

gates as basic elements. However, arithmetic func-
tions are e�ciently realized by using EXOR gates as
well as AND and OR gates. For 5-variable functions,
on the average, SOPs (sum-of-products expressions)
require 7.46 products while ESOPs (exclusive-or sum-
of-products expressions) require 6.16 products. To re-
alize an arbitrary function, an SOP requires 16 prod-
ucts, whereas an ESOP requires only 9 products. For
example, to represent f = x1 � x2 � x3 � x4 � x5;
an SOP requires 16 products, while an ESOP requires
only 5 products. However, there exist functions whose
ESOPs require more products than SOPs. For ex-
ample, f = x1x2 _ x3x4 _ � � � _ x2n�1x2n require n
products in an SOP, while 2n � 1 products in an
ESOP. So, we have to choose the better expressions
according to the functions. This paper presents a de-
sign method for AND-OR-EXOR three-level networks,
where single two-input EXOR gate is used for each
output (Fig. 1.1). Such a network can be realized by
an AND-OR-EXOR PLA shown in Fig. 1.2.

An AND-OR-EXOR network realizes an EXOR of
two SOPs (EX-SOP): F = F1 � F2, where F1 and F2
are SOPs. We consider the problem to minimize total
number of products in F1 and F2. Note that F2 can be

Table 1.1: Number of products in various expressions.

t SOP ESOP EX-SOP

0 1 1 1
1 81 81 81
2 1804 2268 2316
3 13472 21744 22896
4 28904 37530 37634
5 17032 3888 2608
6 3704 24
7 512
8 26

m 4.13 3.66 3.62

a constant 0 or a constant 1. Thus, an optimized EX-
SOP requires not more products than SOPs. In the
case of multiple-output functions, PLAs for EX-SOP
never require more products than output phase opti-
mized PLAs (Fig. 1.3). The AND-OR-EXOR archi-
tecture e�ciently realizes adders [21, 13]. In the past,
design methods for EX-SOP were considered [7, 1, 19],
but no e�cient algorithms were presented.

Table 1.1 compares the numbers of 4-variable func-
tions that require t products. To realize an arbitrary
function, an SOP requires 8 products while an EX-
SOP requires at most 5 products. On the average,
EX-SOPs require fewer products than ESOPs [4].

Because two-input EXORs are faster and less ex-
pensive than EXORs with more inputs, the net-
works based on EX-SOPs are quite desirable. AND-
OR-EXOR three level networks, where the output
EXOR gates may have unlimited fan-in were con-
sidered in [17]. AND-OR-AND three-level networks,
where the outputs AND gates have unlimited fan-in
were considered in [14]. AND-OR-AND three-level
networks, where the outputs AND gates have only two
inputs were considered in [10].

2 De�nitions and Basic Prop-

erties
This section introduce a minimization method for

ESOPs, as well as the output phase optimization.

1



AND-OR

AND-OR

F

F1

F2

x

x

Figure 1.1: AND-OR-EXOR three-level network.

AND

x1

xn

OR

Figure 1.2: AND-OR-EXOR PLA.

2.1 ESOP minimization
For the minimization of logical expressions, we use

the rule 1_ 1 = 1 in SOPs, while 1� 1 = 0 in ESOPs.
This implies that in a Karnaugh map for an ESOP,
1-cells must be covered by an odd number of loops.

Example 2.1 Consider the function: f = �z(x _ y _
�w) _ z�x�yw.
1) AND-OR realization.
Fig. 2.1 shows the SOP for f: �zx _ �zy _ �z �w _ z�x�yw.
Fig. 2.2 shows the AND-OR two-level network.
2) AND-EXOR realization.
Fig. 2.3 shows the ESOP for the same function: �z �
�x�yw. Note that the 1-cell for �x�y�zw is covered by two
loops. Fig. 2.4 shows the AND-EXOR two-level net-
work. (End of Example)

When an ESOP is converted into an SOP, the num-
ber of products often increases. However, some ESOPs
can be converted into SOPs without increasing the
number of products.

De�nition 2.1 Let F = p1_ p2_ � � �_pk be an SOP.
F is said to be a disjoint SOP (DSOP) i� pi � pj = 0
(i 6= j).

Lemma 2.1 Let F1 = p1 _ p2 _ � � � _ pk and F2 =
p1 � p2 � � � � � pk. If pi � pj = 0 (i 6= j), then F1 and
F2 represents the same function.

AND

x1

xn

OR

constant 1

f0 = g 10

f1 = g1

f2 = g 12

Figure 1.3: Output phase optimization technique for
AND-OR-EXOR PLA.

1 1 1 1

11

1

1

x

z

y

w

Figure 2.1: Karnaugh map for SOP.

This means that a disjoint SOP can be converted
into an ESOP without changing the number of prod-
ucts. The next lemma shows the case when a given
ESOP can be converted into an EX-SOP.

Lemma 2.2 Let a function f be represented by an
ESOP: F1 = (p1� p2� � � � � pk)� (q1� q2� � � �� qk).
If pi � pj = 0 (i 6= j) and qk � ql = 0 (k 6= l), then f can
be represented by the EX-SOP: F2 = (p1 _ p2 _ � � � _
pk) � (q1 _ q2 _ � � � _ qk).

y

x
y
z
w

z
w

x
z

z

f

Figure 2.2: AND-OR two-level network.

2



1 1 1 1

11

1

1

x

z

y

w

Figure 2.3: Karnaugh map for ESOP.

x
y
w

z

f

Figure 2.4: AND-EXOR two-level network.

Example 2.2 Let an ESOP of the function f be F1 =
(�y �w � �xyw) � (x�z � �xy�z). Since (�y �w)(�xyz) = 0 and
(x�z)(�xz�y) = 0, f can be represented by the EX-SOP:
F2 = (�y �w _ �xyw)� (x�z _ �x�y�z) (Fig. 2.5). The AND-
OR-EXOR three-level realization is shown in Fig. 2.6.

(End of Example)

In the previous example, the given ESOP was con-
verted into an EX-SOP without increasing the number
of products. However, for many ESOPs, converting
into EX-SOPs will increase the number of products.
For example, to convert F = x1�x2�x3�x4�x5�x6
into EX-SOP, we have to increases the number of
products. In Section 3, we will consider a method to
convert ESOPs to EX-SOP that adds as few products
as possible.

2.2 Output Phase Optimization
To realize a function, in many cases, we have an

option to realize f (the positive phase function) or �f
(the negative phase function) [6]. Consider the func-
tion f = x1x2 _x3x4_ � � � _x2n�1x2n. The SOP for f
requires n products, while the SOP for �f requires 2n

products, since �f = (�x1_�x2)(�x3_�x4) � � � (�x2n�1_�x2n).
Thus, this function require fewer products in the posi-
tive phase SOP, than the negative phase SOP. In EX-
SOPs, we can choose the better phase of the function
since F = G � c, where c is 0 or 1. If c = 0, then G
is the positive phase SOP of f , and if c = 1 then G is
the negative phase SOP of f . For m-output case, 2m

di�erent combinations of phases exist. To �nd a set of
phases that minimizes the total number of products is
called an output phase optimization [12].

De�nition 2.2 Given a PLA for m-output function
f0; f1; . . . ; fm�1. The PLA that realizes either fi or �fi

1 1 1

1 1

1

1 1

1

1

1

1 1

1 1

1 1 1

x

w

y

z

=

ESOP

DSOP DSOP

x
z

x
y
z

y
w

x
y
w

1 1

f

Figure 2.5: Decomposition of an ESOP.

x
z

x
y
z

y
w

x
y
w

f

Figure 2.6: AND-OR-EXOR network.

for i = 0; 1; . . . ;m � 1 is called an output phase opti-
mized PLA if the PLA requires the minimum number
of products.

Heuristic algorithms for the output phase optimiza-
tion are available [12, 22].

Example 2.3 Consider the two-bit adder (ADR2):

x1 x0
+) y1 y0
s2 s1 s0

An ordinary PLA for ADR2 requires 11 products.
However if �s2, the complement of s2, is realized
instead of s2, the PLA requires only 9 products.

(End of Example)

3



3 Optimization of EX-SOP

3.1 Generation of EX-SOP
We assume that an output phase optimized SOP

and an optimized ESOP are available for a given
multiple-output function. As shown in the introduc-
tion, some functions require fewer products in ESOPs,
and others require fewer products in SOPs. If the
ESOP requires fewer products than the SOP, then we
use the ESOP as an initial solution, otherwise we use
the SOP as an initial solution.

All the algorithms use the following modi�cations:

F �

1  SOP (F1 � c);

F �

2  SOP (F2 � c);

where SOP (Fi�c) denotes an optimized SOP for Fi�c
(i = 1; 2). The function represented by EX-SOP is
invariant under the above modi�cation, since F �

1 �

F �

2 = (F1�c)� (F2�c) = F1�F2 = f . If the number
of products is reduced, we adopt this modi�cation.

Algorithm 3.1 (Generation of EX-SOP) Suppose
that the ESOP requires fewer products than the SOP.
Then, we use the ESOP as an initial solution, and de-
compose it into two ESOPs: F1 � E2, where F1 is a
disjoint ESOP and E2 is an ESOP consisting of other
products than F1. In this case, we choose F1 so that
the number of products in E2 is minimal. Then, we
convert E2 into an SOP and obtain F2, we denote this
operation as follows: F2  SOP (E2). In many cases,
F2 has more products than E2. In this step, we have
obtained an EX-SOP: F1 � F2, where F1 is a DSOP
and F2 is an SOP derived from E2. From here, we
will reduce the number of products in F1 � F2. For
each product ci in E2, we obtain

F �

1  SOP (F1 � ci); and

F �

2  SOP (F2 � ci):

If the total number of products in F �

1 and F �

2 is re-
duced, then we modify F1 and F2 as follows:

F1  F �

1 ; and

F2  F �

2 :

Example 3.1 Suppose that f = x1 � x2 � x3 � x4 �
x5�x6 is the function to be represented as an EX-SOP.
Note that the ESOP for f requires 6 products, while
the SOP requires 32 products. The initial solution is
F1�E2, where F1 = x1, and E2 = x2�x3�x4�x5�x6.
We convert E2 into SOP: F2  SOP (E2). Note that
F2 requires 16 products. In this step, we obtained EX-
SOP: F1 � F2, where the total number of products is
1 + 16 = 17. Let c1 = x2 be a product of E2. We
obtain the modi�ed functions as follows:

F �

1  SOP (F1 � x2) = SOP (x1 � x2); and

F �

2  SOP (F2 � x2) = SOP (x3 � x4 � x5 � x6):

Here, F �

1 requires 2 products and F �

2 requires 8 prod-
ucts. So, the total number of products is decreased
to 2 + 8 = 10. Because the modi�ed functions require

fewer products, we replace F1 and F2 with the modi�ed
ones:

F1  SOP (x1 � x2); and

F2  SOP (x3 � x4 � x5 � x6):

In the next, let c2 = x3 be a product of E2. We modify
the functions as follows:

F �

1  SOP (F1 � x3) = SOP (x1 � x2 � x3); and

F �

2  SOP (F2 � x3) = SOP (x4 � x5 � x6):

Here, both F �

1 and F �

2 require 4 products. So, the total
number of products is decreased to 4 + 4 = 8. Also,
in this case, modi�ed functions require fewer products,
so we replace F1 and F2 with the modi�ed ones:

F1  SOP (x1 � x2 � x3); and

F2  SOP (x4 � x5 � x6):

Next, we do the same procedure for c3 = x4. However,
the total number of products increases. So, we do not
modify the functions, and stop the procedure. Thus,
we have decomposed the function f = x1 � x2 � x3 �
x4�x5�x6 into F1�F2; where F1 = SOP (x1�x2�x3)
and F2 = SOP (x4 � x5 � x6). (End of Example)

The above procedure often reduces the number of
products.

3.2 Iterative Improvement
Suppose that we have an EX-SOP for a function

f : F1 � F2. Such EX-SOPs are obtained by Algo-
rithm 3.1, or an output phase optimization algorithm.
In the latter case, F1 is the output phase optimized
SOP and, F2 is a constant (0 or 1 for a single output
function, and a binary vector for a multiple-output
function). In this part, we will present two algorithms
to reduce the total number of products in EX-SOPs.
Both algorithms are based on the modi�cation of func-
tions.

F �

1  SOP (F1 � ci); and

F �

2  SOP (F2 � ci):

However, the above modi�cation is very time consum-
ing, since it requires minimization of logical expres-
sions. To reduce the computation time, Algorithm 3.2
�nds a product cj that does not increase the number
of products. Before showing the algorithm, we will
illustrate it by using a simple example.

Example 3.2 Consider the EX-SOP (Fig. 3.1(a))
F = F1 � F2, where

F1 = �x�z �w _ �x�y�zw _ x�yzw _ xz �w; and

F2 = xy�zw _ �xyzw:

In F1, the loops for �x�z �w and �x�y�zw can be merged into
a larger ones if �xy�zw was the 1-cell in the map (the
cell denoted by the dotted loop in Fig. 3.1(b)). So, let
c1 = �xy�zw, and we modify the functions as follows:

F �

1  SOP (F1 _ c1); and

F �

2  SOP (F2 _ c1):

In this step, SOPs for F �

1 and F �

2 are simpli�ed as
shown in the maps of Fig. 3.1(c). So, we adopt this

4



1 1

1

1

1 1

x

y

w

z

1

1

x

y

w

z

(a)

1 1

1

1

1 1

1

1

(b)

1 1

1

1

1 1

1

1

(c)

11

1 1

1

1

1 1

1

1

(d)

11

1 1

1

1

1 1

1

1

(e)

1

1

1

1

Figure 3.1: Iterative improvement I.

modi�cation:

F1 = �x�z _ x�yzw _ xz �w;

F2 = y�zw _ �xyzw:

In the map in Fig. 3.1(d), the loops for x�yzw and xz �w
can be merged into a larger one if xyzw was the 1-cell
(the cell denoted by the dotted loop in Fig. 3.1(d)). So,
let c2 = xyzw, and we modify the function as follows:

F �

1  SOP (F1 _ c2); and

F �

2  SOP (F2 _ c2):

In this step, SOPs for F �

1 and F �

2 are simpli�ed as
shown in Fig. 3.1(e). So, we adopt this modi�cation:

F1 = �x�z _ xz;

F2 = yw:

(End of Example)

To �nd a pair of products that can be merged into a
larger product is easy. Such a pair of products satis�es
the \reshaping condition" [9]. We will use the product
c such that F1 � c = 0 and F2 � c = 0. This means
the modi�cation of the function will not increase the
number of products.

Algorithm 3.2 (Iterative Improvement I)

1. Let the EX-SOP be F = F1 � F2.

2. Find a pair of cubes c1 and c2 in F1 that satis�es
the reshaping condition:

c1 = x�
j
e

c2 = x�
i
x�
j
e;

where x�
i
= xi or �xi, x

�

j
= xj or �xj , and e does

not contain variable xi nor xj.
Let c3 = x�

i
� x�

j
� e. If c3 � F2 = 0, then

F �

1  SOP (F1 � c3); and

F �

2  SOP (F2 � c3):

Example 3.3 Let F1 = �x�z �w _ �x�y�zw _ x�yzw _ xz �w:
Let

c1 = �w(�x�z) and

c2 = �yw(�x�z):

Then, c1 and c2 satisfy the reshaping condition. So,
we generate c3 = yw(�x�z). Also, let

c4 = �w(xz) and

c5 = �yw(xz):

Then, c4 and c5 satisfy the reshaping condition. So,
we generate c6 = yw(xz): (End of Example)

The next algorithm is more powerful, but more time
consuming. First, we will illustrate the idea by a sim-
ple example.

Example 3.4 Consider the EX-SOP shown in
Fig. 3.2(a) and (b): F = F1 � F2, where

F1 = x�z _ y�z _ �zw;

F2 = xyw:

In F1 of Fig. 3.2(a), if the cell for c = �x�y�z �w was the
1-cell, then the map would be simpli�ed. So, we modify
the functions as follows:

F �

1  SOP (F1 _ c); and

F �

2  SOP (F2 _ c):

In this step, SOPs for F �

1 and F �

2 are simpli�ed as
shown in the map of Fig. 3.2(c) and (d). So, we adopt
this modi�cation:

F1 = �z;

F2 = xyw _ �x�y�z �w:

(End of Example)

In Example 3.4, we assumed that the product c =
�x�y�z �w is the 1-cell. Such a product can be found from
the cover for F1 _ F2. The next example will illustrate
this.

5



1

1

1

1

1 1 1

1

x

w

y

z

F1 F2 x

w

y

z

(a)

1

1

1

F3 F1 F2v

(b)

11

1 11 1

c1

(c) (d)

(e)

1

1

1

1

1 1 1

1

11 1

=

Figure 3.2: Iterative improvement II.

Example 3.5 Consider the function in Example 3.4.
F3  SOP (F1 _ F2) is shown in Fig. 3.2(e). Let c1 =
�x�y �w. After the operation, FA  expand(F1;DC =
�x�y �w), we have FA = �z. Because the number of the

cubes in F1 is reduced, we compute c1 = FA � F 1 =
�z(x�z _ y�z _ �zw) = �x�y�z �w. Because c1 is a cube, then
we modify the function as follows:

F1  SOP (F1 � �x�y�z �w)

F2  SOP (F2 � �x�y�z �w):

For other cubes in F3, we cannot reduce the num-
ber of products in F1, so we stop the algorithm.

(End of Example)

Thus, we have the following algorithm.

Algorithm 3.3 (Iterative Improvement II)

1. Let the EX-SOP be F = F1 � F2.

2. F3  SOP (F1 _ F2).

3. For each cube ci in F3, do steps 4 and 5. If all
the cubes are checked, then return.

4. FA  expand(F1; DC = ci). (Expand the cubes
in F1, using ci as a don't care).

5. If (the number of cubes in F1 is reduced) then
c1  FAF 1

x

y
w

z

Figure 3.3: Sharing of a product.

else
choose the next cube ci in F3 and go to 4.

endif.
If (c1 is a cube) then

F1  SOP (F1 � c1),
F2  SOP (F2 � c1), and
go to 2.

else
choose the next cube ci in F3, and go to 4.

endif.

In Step 5, if c1 = FA � F 1 is not a cube, then the
number of products in F2 can increase by more than
one. Thus, the reduction on the number of products
in F1 is usually o�set by the increase of the number
of products in F2. Therefore, we discard c1 if it is not
a cube.

3.3 Final Optimization
In Algorithms 3.1, 3.2, and 3.3, we converted an

ESOP into two SOPs: F1 � F2; and simpli�ed each
SOP independently. However, we can often reduce
the number of products by using multiple-output op-
timization. The following example illustrates this.

Example 3.6 Let the ESOP of the given function be
G1 = w� yz �w�x� �xyz. We can decompose this into
an EXOR of two ESOPs: G2 = (w�yz �w)�(x� �xyz).
Because the products in each ESOP are mutually dis-
joint, G2 can be converted into an EX-SOP: G3 =
(w_yz �w)�(x_�xyz). After simpli�cation of two SOPs,
we have G4 = (w_yz)�(x_yz). Note that the product
yz exists in both SOPs. Thus, we have the network in
Fig. 3.3. This means that simultaneous minimization
of two SOPs is useful. (End of Example)

Note that simultaneous optimization of two SOPs
F1 and F2 can be done by using standard SOP mini-
mizers [2, 9, 11, 12].

4 Design of Adders
Let ADRn be the n-bit adder without carry input

as follows:

xn�1 xn�2 � � � x0
+) yn�1 yn�2 � � � y0
sn sn�1 sn�2 � � � s0

cn�1 cn�2 � � � c0,

6



x1

x0

y1

y0

S 2

S 1

S 0

Figure 4.1: AND-OR-EXOR PLA for ADR2.

AND

OR

Figure 4.2: AND-OR-EXOR PLA with two-bit de-
coders.

where si's are sums and ci's are carries. Note that
sn = cn�1.

In this section, we consider the number of products
to realize adders by EX-SOPs.

4.1 AND-OR-EXOR PLA
For ADRn, we have the following relations:

si = (xi � yi) � ci�1;

ci = xiyi � ci�1(xi � yi);

s0 = x0 � y0; and

c0 = x0y0:

Example 4.1 Let us realize ADR2 by AND-OR-
EXOR PLA (Fig. 1.2). By de�nition, we have

s0 = x0 � y0 = x0�y0 _ �x0y0

s1 = x1 � y1 � c0

= (x1 � y1) � c0 = (x1 � y1)� x0y0

= (x1y1 _ �x1�y1)� (�x0 _ x0�y0)

s2 = c1 = x1y1 � x0y0(x1 � y1)

= x1y1 � (x0y0x1�y1 _ x0y0�x1y1)

Note that x0�y0 in s0 and s1, and x1y1 in s1 and s2 can
be shared. Thus, the total number of di�erent prod-
ucts is 7. Fig. 4.1 shows the PLA realizing ADR2.

(End of Example)

4.2 AND-OR-EXOR PLA with 2-bit

decoders
In an AND-OR-EXOR PLA (Fig. 1.2), replace

the inverters with two-bit decoders [12, 17], and we
have an AND-OR-EXOR PLA with two-bit decoders
(Fig. 4.2).

Theorem 4.1 An AND-OR-EXOR PLA with two-
bit decoders realizes ADRn by using at most (n2 +
n + 2)=2 products.

(Proof) Let Xi = (xi; yi) (i = 0; 1; . . . ; n � 1) be the
partition of the input variables. By de�nition, we have

si = (xi � yi)� ci�1 = X
f01;10g

i
� ci�1

ci = xiyi � ci�1(xi � yi) = X
f11g

i
� ci�1X

f01;10g

i

s0 = x0 � y0 = X
f01;10g

0

c0 = x0y0 = X
f11g

0 :

Note that X
f01;10g

i
= 1 i� Xi = (0; 1) or (1; 0), and

X
f11g

i
= 1 i� Xi = (1; 1), and so on.

Let ti be the number of products in EX-SOP for
ci. Note that t0 = 1, and ti+1 = ti + 1. From these,
we have ti = i + 1. Also, ti denotes the number of
products in EX-SOP for si. For the most signi�cant
two bits, we have

sn = cn�1 = X
f11g

n�1 � cn�2X
f01;10g

n�1

= X
f00;01;10g

n�1 � (�cn�2 _X
f00;11g

n�1 ); and

sn�1 = cn�2 �X
f01;10g

n�1

= �cn�2 �X
f00;11g

n�1

Thus, the products for �cn�2 and X
f00;11g

n�1 can be
shared. So, the total number of products is

n�1X

i=0

ti + 1 = 1 +

n�1X

i=0

(i+ 1) = (n2 + n+ 2)=2:

(Q.E.D.)

Example 4.2 Let us realize ADR2 by an AND-OR-
EXOR PLA with two-bit decoders (Fig. 4.3). By def-
inition, we have

s0 = x0 � y0 = X
f01;10g

0

s1 = (x1 � y1)� c0 = X
f01;10g

1 �X
f11g

0

= X
f00;11g

1 �X
f00;01;10g

0

s2 = c1 = x1y1 � x0y0(x1 � y1)

= X
f11g

1 �X
f01;10g

1 X
f11g

0

= X
f00;01;10g

1 � (X1
f00;11g

_X0
f00;01;10g):

7



x0

y0

x1

y1

S 2

S 1

S 0

X 0

X 1

X 0
{01,10,11}

X 0
{00,10,11}

X 0
{00,01,11}

X 0
{00,01,10}

X 1
{01,10,11}

X 1

X 1

X 1

{00,10,11}

{00,01,11}

{00,01,10}

Figure 4.3: AND-OR-EXOR PLA with 2-bit decoders
for ADR2.

Table 4.1: Number of products for n-bit adder.

n=4

AND-OR 6 � 2n � 4n� 5 75

AND-EXOR 2n+1 � 1 31

AND-OR with
n2 + 1 172-bit decoders

same above
n2 � n+ 2 14OPTOUT

AND-EXOR with
(n2 + n + 2)=22-bit decoders

AND-OR-EXOR 11
with 2-bit same as above
decoders

Note that X
f00;11g

1 and X
f00;01;10g

0 in s1 and s2 can
be shared. Thus, the total number of di�erent prod-
ucts is four. Fig. 4.3 shows the PLA realizing ADR2.

(End of Example)

In this way, we can e�ciently realize the adders
by using AND-OR-EXOR PLAs with two-bit de-
coders [21]. Table 4.1 compares upper bounds on the
number of products for various realizations.

5 Experimental Results
5.1 Randomly generated functions

We generated logic functions with n = 4 to n = 10
by using a pseudo-random generator, where each func-
tion has 2n�1 true minterms. Table 5.1 compares the
number of products of SOPs, ESOPs and EX-SOPs.
For these functions, the ESOPs require the fewest
products among the three.

Table 5.1: Number of products for randomly gener-
ated functions.

n SOP ESOP EX-SOP 

4 4 3 3 0.833
5 6 5 5 0.909
6 13 10 10 0.911
7 24 19 20 0.889
8 46 38 45 1.036
9 86 64 80 0.979
10 167 142 163 1.023

Table 5.2: Number of products for arithmetic func-
tions.

n m SOP SOP ESOP EX- 
optu SOP

ard4 8 5 75 61 31 37 0.611
inc8 8 9 37 36 15 15 0.551
log8 8 8 123 121 99 116 1.257
mlp4 8 8 121 112 67 109 1.201
nrm4 8 5 120 103 71 93 0.960
rdm8 8 8 76 76 32 54 0.947
rot8 8 5 57 48 37 49 1.064
sqr8 8 16 182 175 112 176 1.467
wgt8 8 4 255 186 59 135 0.635

The last column of Table 5.1 shows , the relative
size of PLAs.

 =
size of AND-OR-EXOR PLA

size of AND-OR PLA
;

where

size of AND-OR PLA = W1(2n+m);

size of AND-OR-EXOR PLA = W2(2n+ 2m);

n = number of input variables,

m = number of output functions,

W1 = number of products in SOP, and

W2 = number of products in EX-SOP.

Table 5.1 shows that PLA based realization of EX-
SOP is not so attractive for randomly generated func-
tions. These functions should be realized by random
networks.

5.2 Arithmetic functions with small

number of inputs

We optimized the expressions for arithmetic func-
tions with 8-input. Table 5.2 compare the number of
products. Also in this case, ESOPs require the fewest
products. The column headed with SOP optu shows
the number of products in output phase (near) opti-
mized SOPs. In most cases, EX-SOPs require fewer
products than the output phase optimized SOPs. The
last column of Table 5.2 shows that PLA based real-
izations are e�cient for adr4, inc8, and wgt8.

8



Table 5.3: Number of products for other functions.

NAME n m SOP SOP ESOP EX- 
optu SOP

5xp1 7 10 63 62 33 47 1.057
9sym 9 1 87 72 53 73 0.883
apex5 117 88 1088 1088 398 870 1.018
clip 9 5 118 116 67 92 0.949
rd73 7 3 127 97 35 83 0.769
sao2 10 4 58 37 29 33 0.664
seq 41 35 350 346 259 234 0.869
t481 16 1 481 363 13 364 0.780

Table 5.4: Number of products for n-bit adders.

n SOP ESOP EX-SOP 

2 8 7 7 1.114
5 4 4 1.018

3 31 15 26 1.048
10 8 8 1.000

4 75 31 37 0.611
17 11 11 0.801

5 167 63 79 0.553
26 17 17 0.805

The upper numbers show products

in PLAs with 1-bit decoders.

The lower numbers show products

in PLAs with 2-bit decoders.

5.3 Other benchmark functions
Table 5.3 shows the number of products for MCNC

benchmark functions [23]. In this table, only the
functions whose ESOPs require fewer products than
SOPs are shown. For some functions, only the output
phase optimizations are e�ective, and EX-SOP opti-
mizations were not so e�ective. The last column of
Table 5.3 shows that PLA based realizations are e�-
cient for rd73, sao2 and t481. For apex5, it requires
a larger PLA even if the number of products is re-
duced by 218 products. Thus, this function should be
realized by a random network.

5.4 Adders
We designed ADRn, an n bit adder without carry

inputs, for n = 2 to n = 5. Table 5.4 compares the
number of products for SOPs, ESOPs, and EX-SOPs.
The upper �gures show the number of products of
PLAs with 1-bit decoders, while the lower numbers
show that of PLAs with 2-bit decoders. In the cases
of PLAs with 2-bit decoders, ESOP and EX-SOPs
require the same number of products. For adders,
the PLA based realizations are e�cient for adr8 and
adr10.

5.5 Symmetric functions
We also minimized the expressions for symmetric

functions.

Table 5.5: Number of products for symmetric func-
tions SB(n; k).

SOP ESOP EX-SOP 

SB(8,1) 128 8 16 0.132
SB(8,2) 84 21 61 0.769
SB(8,3) 64 33 52 0.860
SB(8,4) 70 35 58 0.877
SB(8,5) 64 33 42 0.695

SB(9,1) 256 9 24 0.099
SB(9,2) 168 26 110 0.689
SB(9,3) 120 48 109 0.956
SB(9,4) 126 57 91 0.760

De�nition 5.1 SB(n; k) is a symmetric function of
n variables [15]. They are represented by an EXOR
sum of all possible products with k positive literals:

SB(n; k) =
X
�xi1xi2 � � �xik:

For example, SB(4; 2) = x1x2�x1x3�x1x4�x2x3�
x2x4 � x3x4, and SB(n; 1) = x1 � x2 � � � � � xn.

Table 5.5 compares the number of products for
SOPs, ESOPs, and EX-SOPs. For these functions,
EX-SOPs require many fewer products than SOPs.
For SB(n; k) functions, the PLA based realizations
are e�cient in most cases.

5.6 Comparison with other method

Malik-Harrison-Brayton considered a design method
of AND-OR-AND three-level networks, where a sin-
gle two-input AND gate is used for each output [10].
Their method decomposes a function into the form
F = F1 � F2; where F1 and F2 are SOPs. They devel-
oped an algorithm to reduce the total number of prod-
ucts. Unfortunately, the comparison is di�cult, since
their benchmark functions are not explicitly shown.

6 Conclusion and Comments
In this paper, we presented a design method

for AND-OR-EXOR three-level networks (EX-SOPs).
The algorithm uses ESOPs and output phase opti-
mized SOPs as input data. EX-SOPs never require
more products than SOPs, and often require fewer
products. Experimental results show that the EX-
SOPs for arithmetic functions, such as adders require
many fewer products than SOPs. EX-SOPs also e�-
ciently realize symmetric functions such as SB(n; k).
Algorithm 3.1 is not so time consuming, but reduces
the number of products considerably. On the other
hand, Algorithm 3.3 is time consuming, so it should
be used only if it is necessary.

Dr. Masahiro Fujita pointed output that the exact
optimization of EX-SOPs is formulated as an opti-
mization of Boolean relation R:

f(x) = 1, (x; (0; 1)) 2 R or (x; (1; 0)) 2 R

9



However, the current performance of the optimization
tools for Boolean relations seems to be impractical for
the functions with many inputs.

Up to n = 4, we have obtained exact minimum EX-
SOPs for all functions [4]. An EX-SOP with n vari-
ables can be composed of two EX-SOPs with (n � 1)
variables without increasing the total number of prod-
ucts [5]. An optimization tool for EX-SOP based on
this approach is under development. Currently, we
have no exact optimization algorithm for EX-SOPs
with many inputs, so we cannot evaluate the quality of
solutions of the heuristic algorithm. Experimental re-
sults show that many functions are e�ciently realized
by EX-SOPs. In this paper, for illustration, we used
PLA architecture to implement EX-SOPs. However,
in many cases, EX-SOPs are more e�ciently realized
by random networks as shown in Fig. 2.6.

Acknowledgments
The author started this research in 1986. Discus-

sion with the late Prof. Besslich [1] was quite useful.
This work was supported in part by a Grant in Aid for
Scienti�c Research of the Ministry of Education, Sci-
ence and Culture of Japan. The author is also grateful
to Dr. Fujita and reviewers for their useful comments.

References
[1] P. Besslich, Private communication, Dec. 1989.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen,
and A. L. Sangiovanni-Vincentelli, Logic Mini-
mization Algorithms for VLSI Synthesis, Boston,
MA. Kluwer Academic Publishers, 1984.

[3] D. Brand, and T. Sasao, \Minimization of AND-
EXOR expressions using rewrite rules," IEEE
Transactions on Computers, Vol. 42, No. 5, May
1993, pp. 568-576.

[4] D. Debnath, and T. Sasao, \Optimization
of AND-OR-EXOR using table look up ap-
proach,"(in preparation).

[5] E. V. Dubrova, D. M. Miller, and J. C. Muzio,
\Upper bounds on the number of products in
AND-OR-XOR expansion of logic functions,"
Electronics Letters, 30th March, 1995, vol. 31,
No. 7, pp. 541-542.

[6] H. Fleisher and L. I. Maissel, \An introduction
to array logic," IBM J. Res. & Develop., vol. 19,
pp. 98-109, March 1975.

[7] H. Fleisher J. Giraldi, D. B. Martin, R. L.
Phoenix, and M. A. Tavel, \Simulated annealing
as a tool for logic optimization in a CAD envi-
ronment," ICCAD-85, Nov. 1985, pp. 203-205.

[8] M. Helliwell and M. Perkowski,\A fast algorithm
to minimize multi-output mixed-polarity general-
ized Reed-Muller forms," 25th DAC, pp. 427-432,
1988.

[9] S. J. Hong, R. G. Cain and D. L. Ostapko,\MINI:
A heuristic approach for logic minimization,"
IBM J. Res. & Develop. pp. 443-458, Sept. 1974.

[10] A. A. Malik, D. Harrison, and R. K. Brayton,
\Three-level decomposition with application to
PLDs," ICCD-1991, pp.628-633, Oct. 1991.

[11] R. L. Rudell and A. L. Sangiovanni-Vincentelli,
\Multiple-valued minimization for PLA opti-
mization," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
vol. 6, No. 5, Sept. 1987, pp. 727-750.

[12] T. Sasao, \Input variable assignment and out-
put phase optimization of PLA's," IEEE Trans.
Comput., Vol. C-33, No. 10, pp. 879-894, Oct.
1984.

[13] T. Sasao, Programmable Logic Array: How to use
and how to make, (in Japanese) Nikkan Kougyo
Publishing Co., May 1985.

[14] T. Sasao, \On the complexity of three-level logic
circuits," International Workshop on Logic Syn-
thesis, Research Triangle Park, North Carolina,
May 1989.

[15] T. Sasao and P. Besslich, \On the complexity
of MOD-2 sum PLA's," IEEE Trans. Comput.,
vol. 39, No. 2, pp. 262-266, Feb. 1990.

[16] T. Sasao, \EXMIN2: A simpli�cation algorithm
for exclusive-OR sum-of-products expressions for
multiple-valued input two-valued output func-
tions, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol.
12, No. 5, May 1993, pp. 621-632.

[17] T. Sasao (ed.), Logic Synthesis and Optimization,
Kluwer Academic Publishers, 1993.

[18] M.S. Schmookler, \Design of large ALUs using
multiple-PLA macros," IBM Journal of Research
and Development, Vol. 24, No. 1, pp. 2-14, Jan.
1980.

[19] K. Shu, H. Yasuura, and S. Yajima, \Opti-
mization of PLDs with output parity gates,"
(in Japanese) National Convention, Information
Processing Society of Japan, March 1985.

[20] N. Song andM. A. Perkowski, \EXORCISM-MV-
2: Minimization of exclusive sum of products ex-
pressions for multiple-valued input incompletely
speci�ed functions," International Symposium on
Multi-valued Logic, May 1993, pp. 132-137.

[21] A. Weinberger, \High speed programmable logic
array adders," IBM Journal of Research and De-
velopment, vol. 23, pp. 163-178, March 1979.

[22] C-L. Wey and T-Y Chan, \An e�cient output
phase assignment for PLA minimization," IEEE
Transactions on Computer-Aided Design, vol. 9,
No. 1, pp. 1-7, Jan. 1990.

[23] S. Yang,\Logic synthesis and optimization bench-
mark user guide, version 3.0", MCNC, Jan. 1991.

10


