
Multiple-Bit-Flip Detection Scheme

for A Soft-Error Resilient TCAM
Infall Syafalni†, Tsutomu Sasao‡, and Xiaoqing Wen§

†Logic Research Co., Ltd., Japan, ‡Meiji University, Japan, §Kyushu Institute of Technology, Japan
†infall@logic-research.co.jp, ‡sasao@cs.meiji.ac.jp, §wen@cse.kyutech.ac.jp

Abstract—Ternary content addressable memories (TCAMs) are
special memories which are widely used in high-speed network
applications such as routers, firewalls, and network address trans-
lators. In high-reliability network applications such as aerospace
and defense systems, soft-error tolerant TCAMs are indispensable
to prevent data corruption or faults caused by radiation. This
paper proposes a novel soft-error tolerant TCAM for multiple-
bit-flip errors using partial don’t-care keys (X-keys), called k-TX.
k-TX corrects up to k-bit flip errors and significantly enhances
the tolerance of the TCAM against soft errors, where k is the
maximum number of bit flips in a word of a TCAM. k-TX consists
of a TCAM, a preprocessed don’t-care-bit index look-up memory
(X look-up), and an ECC-SRAM. First, k-TX randomly selects
a search key. After that, k-TX detects multiple-bit-flip errors by
the generated X-keys using the X look-up. If the keys match
the different locations, then a soft error is suspected and k-
TX refreshes the TCAM words by using a backup ECC-SRAM.
Experimental results show that the soft-error tolerance capability
of k-TX outperforms other schemes significantly. Moreover, the
hardware overhead of k-TX is small due to the use of only a
single TCAM. k-TX can be easily implemented and is useful for
fault-tolerant packet classifiers.

I. INTRODUCTION

A ternary content addressable memory (TCAM) is a special

memory with three values, i.e., 0, 1, and * (don’t-care). It

simultaneously compares the input vector with the entire list of

registered vectors [7]. TCAM is a de facto standard in routers

and devices for packet classification in high-speed network

applications [2]. Fig. 1 shows a cell of a TCAM. The search

bits (SL1, SL0) are compared with the stored bits (D1, D0).
When there is a match, the match line (ML) sends a signal to

the priority encoder to produce the match address.

SL1 ML SL0

D1 D0

M1 M2

M3 M4

Fig. 1. NOR-type ternary cell

Generally, soft errors are caused by ionizing particles, like

alpha particles, protons, heavy ions, neutrons, etc; in some

cases, this ionizing particles are generated by radioactive atoms

[3]. Several works investigated the effects of scaling down the

size of transistors [4], [5]. A work in [5] shows that moving

from the 130 nm process to the 22 nm process increases the

soft error rates up to 7 times. Furthermore, soft errors tend to

cause more serious problems in low power devices [3].

One of the troubling effects of soft errors in memories is

that they hit memory cells and may change the values of

some cells. Value changes of TCAM cells may lead to errors

or data corruption. A soft error does not damage hardware;

it only changes the data that is being processed, and it can

produce faulty data [6]. TCAMs are more vulnerable to soft

errors than SRAMs since TCAMs are more complicated than

SRAMs. The bit storage of TCAMs uses SRAM cells which

are susceptible to soft errors [7]. Furthermore, high-speed

memories with smaller transistor sizes are more vulnerable to

soft errors [8]. Thus, in applications that require high-reliability

such as finance, aerospace, and defense networks, soft-error

tolerant TCAMs are indispensable. Unfortunately, conventional

ECC (Error Checking and Correction) techniques used for

SRAM is difficult to apply for TCAM [9].

In previous works, hardware and software methods were de-

veloped to mitigate soft errors [6], [10]–[13]. In [11], hardware

modification with XOR-based conditional keepers are used to

overcome noises including soft errors. In [12], a system using

bloom filters detects errors in TCAMs. Furthermore, in [6], a

parallel system using two TCAMs detects and corrects TCAM

words that are attacked by soft errors. However, previous hard-

ware and software methods still suffer from severe drawbacks.

Firstly, hardware methods are very costly to implement since

they modify the circuits of TCAMs. Secondly, for software

methods, researchers are still looking for more efficient way

to tackle the soft-error problem in TCAMs. In [10], a TCAM

with the optimized scrubbing interval is proposed against soft

errors. However, this scheme ignore the fact that some keys

are more frequently used than others in the TCAM which can

lead to more faults when the frequent keys hit the upset word

caused by soft error. In [6], a TCAM checker is proposed that

takes into consideration frequent keys through comparing the

matched words caused by a soft error. However, this scheme

uses two TCAMs, which doubles the hardware overhead and

the power dissipation. In [13], the similarity of two TCAMs is

checked for detecting soft errors.

Table I shows the TCAM encoding. The stored bits are

represented by D1 and D0. Note that the values of D1 and

D0 are not necessarily complementary. The don’t-care value

(*) is represented by (D1, D0) = (1, 1). While the stored

bits represent the value of the TCAM cell, the search lines

represent a search key bit. In the search lines, the don’t-care

value (*) is represented by (SL1, SL0) = (0, 0). If we refer

to the transistor-level representation of the TCAM cell in Fig.

1, then this condition allows transistors M3 and M4 to be off,

2016 IEEE Computer Society Annual Symposium on VLSI

978-1-4673-9039-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ISVLSI.2016.77

679

forcing a match of the bits regardless of the stored bits D1 and

D0. This observation inspires us to propose our method in this

paper.
TABLE I

TCAM ENCODING

Value D1 D0 SL1 SL0

0 0 1 0 1

1 1 0 1 0

* 1 1 0 0

Fig. 2 shows an example of a soft error. A false match is

a match that would be a mismatch if no soft error occurred.

In term of packet classification, a false match can produce

misclassification. Fig. 2(b) shows a misclassification which

matches the third word of the TCAM, but should match the

second word of the TCAM (Fig. 2(a)). The soft error occurs

at the third bit of the second word. If we change the search

key to 10*0, then the TCAM will match the correct word (i.e.,

second word). We call this search key as a partial don’t-care

key (X-key) which will be explained later.

0011

Accept

Discard

1000
Search Key

TCAM SRAM

100* Accept

(a) Correct match

0011 Accept

1000
Search Key

TCAM SRAM

101* Accept

**** Discard

(b) False match
Fig. 2. A soft error in a TCAM

The major contributions of this paper are as follows: 1)

A novel scheme, called k-TX, is proposed that can detect and

correct multiple-bit-flip soft errors in a TCAM. 2) The k-TX

requires no modifications to the TCAM. 3) The k-TX uses only

one TCAM. 4) The soft-error tolerance of k-TX outperforms

existing schemes. The rest of the paper is organized as follows:

Section II defines the basic properties; Section III describes the

proposed scheme, k-TX for multiple-bit-flip errors. Section IV

shows experimental results; and Section V concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

A TCAM consists of words. And a word of a TCAM that

represents a packet classifier rule consists of several fields.

A. Classification Functions

A classification function is defined as a mapping of fields

specified by a set of rules.

Definition 2.1. A classification function with k fields is a

mapping F : P1 × P2 × · · · × Ps → {0, 1, 2, · · · , r}, where

Pi = {0, 1, · · · , 2
ti−1}(i = 1, 2, · · · , s). F is specified by a set

of r rules. A rule consists of s fields, and each field is specified

by an interval of ti bits.

In the field of Internet, a packet classifier is specified by

source and destination addresses, source and destination ports,

and the protocol type. The source and the destination ports are

represented by intervals. Some works on the representation of

classification functions can be found in [14], [15]

B. Soft Error in a TCAM Cell

Definition 2.2. A soft error in a TCAM cell is a non-permanent

error that changes cell values and may cause misclassification.

Definition 2.3. A single-bit-flip error or multiple-bit-flip errors

is (are) a change of value(s) of a TCAM word caused by a soft

error, where the fault model is 0 → {1, ∗}, 1 → {0, ∗}, or

∗ → {0, 1}. The probability of bit-flip errors is Pe = u/w,

where u is the number of bit-flip words and w is the number

of words in a TCAM.

Note that, in this work, the soft errors are assumed to occur

randomly with the probability Pe =
u
w

in a TCAM word or wPe

in a TCAM as a whole. Moreover, the errors i.e, the changes

of the stored values are assumed at the beginning of a test.

III. k-TX: A TX FOR MULTIPLE-BIT-FLIP ERRORS

This section describes our proposed method called k-TX,

where k is the maximum number of soft errors in a word of a

TCAM, T stands for TCAM and X stands for partial don’t-care

keys (X-keys).

Controller

TCAM

Back up

ECC-SRAM

n

n
log2(w)

n
2

log2(w)

1

Data

Refresh bit

n

Search
Key

1

Output

1

log2(w)

Fig. 3. k-TX: A soft-error tolerant TCAM using partial X-keys

A. Properties the k-TX Scheme

k-TX consists of a preprocessing X-key look-up table (in-

cluded in the controller), a TCAM, and an ECC-SRAM for

handling the refresh the operation as shown in Fig. 3. In the

k-TX, no modification to the TCAM is required. The k-TX has

two modes: normal mode and test mode. In the normal mode,

the TCAM looks up a search key in parallel. In the test mode,

the TX generates partial don’t-care keys (X-keys) and detects

soft errors. It works sequentially as follows: First, the k-TX

starts by applying several X-keys to the TCAM. Don’t-care bits

are inserted in the X-keys produced using X look-up memory,

and they are expected to match the words that contain soft

errors. After applying the X-keys to the TCAM, k-TX records

all the returned indices. After that, if the indices are equal, then

no soft error is detected; otherwise a soft error is detected. Fig.

4 shows the flowchart of the k-TX.

1) Partial Don’t-Care Keys (X-Keys): Firstly, we define par-

tial don’t-care keys (X-keys). The X-keys are derived from the

main search key that enters the TCAM for look-up operation.

Definition 3.1. A partial don’t-care key (X-key) is a search

key with inserted don’t-care bits. The key is used to detect a

soft error in TCAM words.

680

Search Key

Word[0]

Word[1]

...

Word[w-1]

Act[0]

Act[�]

...

TCAM SRAM

Act[w-1]

Word[w-2] Act[w-2]

r[0]

r[1]

...

r[w-1]

r[w-2]

Check Indices

Iterations < u

Return index i
Same

Different

Refresh Bits of
TCAM Words

r[i] == 0

Refresh the word
with index i

by ECC-SRAM

No

Yes

Yes No

r[i] == 1

Generate perfect match
covering X-keys

Scrubbing
intervals < 100

Refresh words between
the scrubbing intervals

Yes

No

Fig. 4. Generation of partial don’t-care keys for k-TX

We can set the number of don’t-cares inserted in an X-key

according to the estimated amount of soft errors. The ability to

detect soft errors increases with the number of inserted don’t-

cares. However, if the number of don’t-care bits is greater

than the number of care bits, then the capability of soft-error

detection will decrease.

2) Referesh Bits of TCAM Words: Refresh bits are used to

denote refresh TCAM words. Thus, we can efficiently control

the refresh time and power using these bits.

Definition 3.2. A refresh bit of a TCAM word has a value 1,

when the TCAM word has been refreshed by the ECC-SRAM.

Otherwise, it has a value 0. Every word in the TCAM has a

refresh bit to indicate the status of refreshing of the word. The

total number of refresh bits of TCAM words is w.

3) Detection of Soft Errors Using Partial Don’t-Care Keys:

Now, we describe how soft errors can be detected using partial

don’t-care keys.

Definition 3.3. Let g and h be logic functions. Then, g covers

h if and only if g · h = h.

Theorem 3.1. Soft errors can be detected by X-keys that covers

all bits of the search key. If all the X-keys match the same word,

then the matched word is correct.

Proof: The correct match is represented by the intersection

of all matched X-keys:

f =

p−1∧
i=0

gi,

where p is the number of X-keys, f is a correct match and gi
is an X-key with relations f ⊂ gi and gi �⊂ gj , i �= j. If all of

the X-keys match f , then f is proven to be the correct match,

otherwise some (an) error(s) may have occurred.

Example 3.1. This example illustrates the covering of X-keys to

a correct match x4x3x̄2x1x0 for n (the number of bits) is 5 and

Algorithm 1 Perfect Match Generator (PerfectXKeyGen())

/∗ Input: Search Key (searchKey), n, s, and l, where n is the

number of bits, s is the number of fields in a TCAM word,

and l is the number of don’t-care groups in the X-keys. ∗/
1: Generate index combinations with the number of X-Keys

p =
(
s
l

)
.

2: if s mod l �= 0, g = s, else g = 1.

3: Find perfect matches with the number of perfect covering

of X-keys being u = p

g×l

4: while c �= u do

5: while CoveringV ector[idx]! = g do

6: Invoke the combinations of indices and find the perfect

match. Every combination of indices can be used only

once in order to compact the XLookUp memory.

7: if Contradict then

8: Backtrack by subtracting the previous addition op-

eration in CoveringV ector.

9: else

10: Write the perfect match pairs in the XLookUp
memory.

11: end if

12: end while

13: end while

14: Return XLookUp

q (the number of don’t-care bits inserted in the X-keys) is 3. By

Lemma 3.2, the maximum number of X-keys is p =
(
s

l

)
= 10.

Thus, the correct match is
∧9

i=0 gi = x4x3 ∧ x4x̄2 ∧ x4x1 ∧
x4x0∧x3x̄2∧x3x1∧x3x0∧x̄2x1∧x̄2x0∧x1x0 = x4x3x̄2x1x0.

B. Algorithm and Time Complexity of k-TX

A merit of a TCAM is the matching search keys simulta-

neously. However, in the test mode, the TX uses a sequential

TCAM look-up. Since the operation time of the TX is sig-

nificantly influenced by the TCAM look-up time, we briefly

describe it.

Lemma 3.1. The time for the sequential TCAM is O(wn),
where n is the number of bits in a word and w is the number

of words in the TCAM.

Proof: Checking the TCAM sequentially requires n steps

for each word and there are w words.

1) Generating X-Keys for Look-Up Table: Detection of

multiple-bit-flip errors (k-flip) requires more than k fields in

a word of the TCAM.

Lemma 3.2. The maximum number of X-keys in a look-up table

for multiple-bit-flip errors is:

p =

(
s

l

)
=

s!

l!(s− l)!

where s is the number of fields (segmentation) in a TCAM word

and l is the number of don’t-care groups in the X-keys.

Proof: Consider s baskets and l balls. The number of

combinations of having l balls in the baskets is p =
(
s

l

)
.

681

Algorithm 2 Multiple-Bit-Flip Detection and Correction Using

X-Keys

/∗ Input: A TCAM with w words and n bits each word,

a search key (searchKey), an ECC-SRAM as a back-

up of the TCAM for refresh operation, s (the number of

partition), and l (the number of groups of don’t-care). ∗/
1: Determine the prediction of the maximum number of

multiple-bit-flip in a word of TCAM.

2: Preprocess XLookUp⇐ PerfectXKeyGen(n, s, l).
3: Prob⇐ rand()
4: if Pc ≥ Prob then

5: r ⇐ 0
6: difIdx⇐ 1
7: iterations⇐ 0
8: while (difIdx) ∧ (iterations < u) do

9: XKeys⇐ XLookUp(searchKey, iterations+ 1)
10: for i = (0, · · · , numKey− 1) do

11: Idx[i]⇐ TCAM(XKeys[i])
12: lowIdx⇐ min∀i Idx
13: highIdx⇐ max∀i Idx
14: end for

15: subIdx⇐ min∀i(highIdx− lowIdx)
16: difIdx⇐ CheckIdx(Idx, numKey)
17: if difIdx then

18: for i = (0, · · · , numKey− 1) do

19: if r[Idx[i]] == 0 then

20: Refresh the TCAM word with index Idx[i]
21: r[Idx[i]] ⇐ 1
22: Idx[i]⇐ TCAM(XKeys[i])
23: end if

24: end for

25: difIdx⇐ CheckIdx(Idx, numKey)
26: end if

27: iterations++
28: end while

29: end if

30: if difIdx then

31: If subIdx is less than 100, refresh the scrubbing interval.

32: end if

33: Return TCAM(searchKey)

Definition 3.4. Let the covering of X-Keys be f , where gi is

an X-key, p is the number of X-keys, and h is a TCAM word

(product). The perfect match is described as h = f .

Perfect Match
Generator

X Look-Up
Memory

Controller
Search Key X-Keys

Fig. 5. Controller Illustration

Alg. 1 shows the method for generating perfect match indices

which to be stored in the X look-up memory. The perfect match

generator is a preprocess routine, and can be set based on the

prediction of the maximum number of bit flips in a word in

a TCAM. In this case, we use the array approach to find the

perfect match. Fig. 5 shows the controller that contains the

preprocessing unit: the perfect match generator and the X look-

up memory.

2) Segmentation of TCAM Word:

Definition 3.5. (h1, h2, . . . , hs) is a segmentation of a TCAM

word if and only if h1h2 · · ·hs = h, where s is the number of

the parts, hi is the function represented by the i-th part, and

h is the function represented by the whole word.

64b 40b

32b 32b 40b

32b 32b 32b 8b

16b 32b 32b 8b16b

16b 16b 32b 8b16b 16b

16b 16b 16b 8b16b 16b 16b

s = 2

s = 3

s = 4
s = 5

s = 6

s = 7

Fig. 6. Segmentation TCAM words

Consider the case of s = 5 fields classification function:

32-bit source and destination addresses, 16-bit source and

destination ports, and 8-bit protocol, and the total number

of bits in the TCAM is n = 104 bits. Fig. 6 shows the

segmentation of the word.

0 1 2 3 4 5 6 7 8

1 2 3 5 6 7 840 2 3 5 6 840 1 7

0,3,4

1,2,5
(used/contradict)

1,2,6
(used/contradict)

1,2,7
1 2 3 5 6 840 7

5,6,8

Start

All bits covered

Fig. 7. Example of perfect matching in TCAM word

For example, if we have k-bit-flip errors in a word, it requires

s > l ≥ k to detect all the errors, where s is the number of

partitions and l is the number of don’t-care groups in the X-

keys. Let k = 4, and we choose s = 7 and l = 4. Thus,

we have p = 35 X-keys to detect the errors. However, based

on our observation, if the condition l/s > 0.57 holds (e.g.,

(s = 6, l = 4) or (s = 7, l = 5)), the X-keys cannot detect the

soft errors effectively, since the numbers of don’t cares in the

X-keys are too large. In this case, the X-keys will likely match

only the upper part of the TCAM. Fig. 7 shows the example of

the perfect match covering in the TCAM. In this case, for the

best detection of soft errors, the index of an X-key generated by

combination can be only used once. Thus, when it contradicts,

we have to reorder the X-keys.

3) Scrubbing Interval: To reduce the time overhead, we can

only use small values for s and l. Thus, a short scrubbing

interval is used in the k-TX for improving the tolerance of the

k-TX against soft errors. First, the k-TX compares the lowest

and the highest indices of matched X-keys. If the difference

between the lowest matched index and the highest matched

index is less than the previous stored scrubbing interval, the k-

TX will store the scrubbing interval (Alg. 2, line 15). Finally, if

the X-keys match different indices at the end of the routine, the

TCAM will be refreshed based on the stored scrubbing interval.

Example 3.2. Consider the TCAM in Fig. 8 and assume that

the search key is 0111, where n = 4, s = 4 and l = 2. Perform

detection and correction of a soft error using X-keys. First, the

X look-up memory is filled by perfect match pairs of indices.

The number of generated X-keys is p = 6. The X-keys are 01**,

11, 0*1*, *1*1, *11* and 01. The X-keys are applied to the

TCAM sequentially and the TCAM returns the matched indices.

682

0111

Search Key

01**

1101

1110

01**

0

0

{0,1}

{0,2}

{0,3}

{1,2}

{1,3}

{2,3}

Combinations

01** **11

0*1* *1*1

11 0**1

X-Keys

Soft-Error
TCAM

0

0

0

0
Correct
TCAMPreprocess

Refesh
Bits

Matched
2nd

Matched
2nd

Matched
2nd

Matched
2nd

Matched
2nd A matched

index is
different.

****0

1101

0111

0

0

Refresh by
EEC-SRAM

Search Key looks up the
corrected TCAM

Correct IndexF
or

ill

us
tr

at
io

n

2 bits
upset

1101

1110

1

1

01**0 Matched the
3rd Index

Matched
1st

{0,1} {2,3}

{0,2} {1,3}

{0,3} {1,2}

&

&

&

X Look-Up

Fig. 8. Detection of Multi-Bit-Flip Errors (k = 2) using X-keys

The 1st, 2nd, 3rd, 5th and 6th X-keys match the 1st TCAM

word and only the 4th X-key matches the 2nd TCAM word.

After that, it checks the indices and returns 1 (line 15, Alg. 2),

which means the indices have different values (a soft error is

detected). Next, the refresh bits of TCAM words are checked

with the corresponding indices (line 19, Alg. 2). If the refresh

bit is 0, then a refresh operation for the corresponding TCAM

word is performed using the ECC-SRAM. In this case, the 1st

and 2nd TCAM words are refreshed. Finally, the search key is

applied to the TCAM and matches the 3rd word.

When the TCAM has entries with smaller Hamming distance,

the k-TX may suspect that there is a soft error in the TCAM

by the X-keys. However, the k-TX will check the refresh bits

and refresh all the unrefreshed TCAM words with the corre-

sponding X-key matched indices. Thus, the TCAM words are

updated, regardless of the existence of any soft error. Finally,

the k-TX applies the original search key to the corrected TCAM

(by Return TCAM(searchKey) procedure in Alg. 1, line 32).

The complete procedure of the k-TX is described in Alg. 2.

Theorem 3.2. The k-TX, which uses a sequential TCAM look-

up, requires O(pwn) time, where p is the number of fields in

a TCAM word, l is the number of don’t-care groups in the X-

keys, n is the number of bits in a word, and w is the number

of words in the TCAM.

Proof: The maximum number of iterations is p. Moreover,

each X-key must be applied to the TCAM. If we use sequential

TCAM look-up, then by Lemma 3.1, the total time complexity

of the TX is O(pwn).

IV. EXPERIMENTAL RESULTS

For evaluation, we used packet classification benchmarks

generated by ClassBench [16]. First, we generated rules and

search keys for 5 types ACL filters, 5 types FW filters, and 1

type IPC filter by ClassBench. Then, we used these benchmarks

and evaluated by the computer program in OSX with i7 Intel

machine and 8 GB memory. In this case, we compared our

proposed scheme with two representative schemes from recent

works: the TCAM scrubbing (TS) [10] and the TCAM checker

(TC) [6], as well as the TX for a single-bit flip [17] by

implementing them in the same environment. Table II shows

the numbers of rules and the numbers of search keys.
TABLE II

ACL FILTERS AND THEIR SEARCH KEYS

Type ACL (5 types) FW (5 types) IPC (1 type)

Rules 4739 4356 674

Search Keys 431604 475542 67402

Table III compares the overall times for 9769 rules and

974548 search keys of ACL, FW and IPC filters run by TS,

TC, TX, and k-TX. As shown in Table III, for k-TX, we can

choose the trade-off between time and performance by selecting

s and l. k-TX requires more time, since it has the complexity

proportional to
(
s

l

)
and performs in a short scrubbing interval.

Figs. 9(a)-(c) compare misclassifications for TS, TC, TX, and

k-TX, where the probability of bit flips in a word is Pe = 0.1
and the probability of a scheme being used is Pc = 0.1. The

horizontal axis denotes the maximum number of bit flips in a

word of TCAM, while the vertical axis denotes the ratio of

misclassifications. The ratio of misclassifications is given by:

σ =

∑
Misclassifications at each type of the same filters∑

Numbers of search keys of the filters
.

TX is designed to solve single-bit-flip errors by using toler-

ance degree d, where the number of X-keys is at most p = 2d

[17]. Since it is only targeted for the single-bit-flip errors in the

TCAM words, the number of don’t-care group in the X-keys (l)
is one. In this experiments, we use tolerance degree d = 5 for

TX. As shown in Fig. 9, we can see the significant tolerance

683

TABLE III
COMPARISON OF OVERALL DETECTION AND CORRECTION TIME FOR MULTIPLE-BIT-FLIP ERRORS

Filter TS (sec) TC(sec) TX(sec) k-TX(sec)

(d = 5) (s = 4) (s = 5) (s = 5) (s = 6) (s = 6) (s = 7) (s = 7) (s = 7) (s = 7)
(l = 2) (l = 2) (l = 3) (l = 2) (l = 3) (l = 2) (l = 3) (l = 4) (l = 5)

ACL 13.156 28.291 45.245 26.471 30.879 34.293 32.493 39.402 40.995 68.041 81.296 56.506

FW 21.455 43.355 119.713 46.221 56.336 79.074 62.874 82.177 79.899 129.523 130.144 75.316

IPC 0.859 1.751 5.406 2.040 2.379 2.618 2.975 3.735 3.197 5.856 5.775 4.334

M
is

cl
as

si
fi

ca
tio

n
ra

tio

Maximum number of bit flips in a TCAM words

1x

6.7x

3.2x
2x

9.5x

6.3x

10.2x

14.3x

10x

8.3x 9.2x

4.6x

9.6x

10.1x

4.5x

13.3x

1x 1x 1x 1x

(a) ACL

M
is

cl
as

si
fi

ca
tio

n
ra

tio

Maximum number of bit flips in a TCAM words

1x

3.3x

4.6x

2.6x
1.2x

3.1x
2.5x

2.1x

3.7x

4.5x

3.3x

4.8x

7x

1.3x

2.6x

4.2x

1x
1x

1x

1x

(b) FW

1x

70x

21x16x

55x

42x

14x

78x

19x

68x
27x

10x

22x

69x

9x

50x

1x 1x 1x 1x

M
is

cl
as

si
fi

ca
tio

n
ra

tio

Maximum number of bit flips in a TCAM words

(c) IPC

Fig. 9. Comparison of Misclassification Ratio for TS, TC, TX(d = 5), and
k-TX (s, l)

improvement for the proposed method k-TX. We can see also,

the TX cannot handle multiple-bit-flip errors.

As shown in Fig. 9, in terms of tolerance performance, k-

TX with s = 7 and l = 4 is the best. For the ACL filter, k-TX

outperforms TS up to 14×(k-TX(7,4), k = 3) and TC up to

10×(k-TX(7,4), k = 3). For the FW filter, k-TX outperforms

TS up to 3×(k-TX(7,4), k = 4) and TC up to 5×(k-TX(7,4),

k = 4). And for the IPC filter, k-TX outperforms TS up to

78×(k-TX(6,2), k = 3) and TC up to 42×(k-TX(6,2), k = 2).

However, if we consider the time complexity, we can choose

k-TX(4,2) or k-TX(5,2), so that we can get shorter runtime.

V. CONCLUSIONS

This paper has proposed a novel soft-error tolerant TCAM

for multiple-bit-flip errors using partial don’t-care keys (X-

keys), called k-TX. k-TX corrects up to k-bit flip errors and

significantly enhances the tolerance of the TCAM against soft

errors, where k is the maximum number of bit flips in a word of

a TCAM. k-TX consists of a TCAM, a preprocessed don’t-care

bit index look-up memory (X look-up), and an ECC-SRAM.

First, k-TX randomly selects a search key. After that, k-TX

detects multiple-bit-flip errors using the generated X-keys by

X look-up. If the keys match the different locations, then a

soft error is detected and k-TX refreshes the TCAM words by

using a backup ECC-SRAM. Experimental results show that

soft-error tolerance of k-TX outperforms other schemes up to

more than 70×. Moreover, the hardware overhead of k-TX is

small. k-TX can be easily implemented and is useful for fault

tolerant packet classifiers.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

bers 25280016, 26330072, 15K12003 and JSPS Grant-in-Aid

for the Promotions of Bilateral Joint Research Projects (Japan-

Germany) as well as travel assistance from Logic Research.

REFERENCES

[1] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE JSSC,
vol. 41, No. 3, pp. 712-727, March 2006.

[2] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Computing Surveys, vol. 37, no. 3, pp. 238-275, Sept. 2005.

[3] C. Slayman, “Soft errors-Past history and recent discoveries,” Interna-

tional Integrated Reliability Workshop Final Report, pp. 25-30, Oct. 2010.
[4] A. Dixit and A. Wood, “The impact of new technology on soft error

rates,” IEEE International Reliability Physics Symposium, pp. 5B.4.1-
5B.4.7, April 2011.

[5] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo and T. Toba, “Impact of
scaling on neutron-induced soft error in SRAMs from a 250 nm to a 22
nm design rule,” IEEE Transactions on Electron Devices, vol. 57, no. 7,
pp. 1527-1538, July 2010.

[6] M. Z. Shafiq, C. Meiners, Z. Qin, K. Shen, and A. X. Liu, “TCAM-
Checker: A software approach to the error detection and correlation
of TCAM-based networking system,” Journal of Network and System

Management, vol. 21, no. 3, pp. 335-352, Sept. 2013.
[7] K. Pagiamtzis, N. Azizi, and F. N. Najm, “A soft-error tolerant content

addressable memory (CAM) using an error-correcting-match scheme,”
IEEE CICC, pp. 301-304, Sept. 2006.

[8] W. Leung, F. Hsu, and M. E. Jones, “The ideal SoC memory: 1T-SRAM,”
13th ASIC/SOC Conference, pp 32-36, Sept. 2000.

[9] H. Noda, K. Dosaka, H. J. Mattausch, T. Koide, F. Morishita, and
K. Arimoto, “A reliability-enhanced TCAM architecture with associated
embedded DRAM and ECC,” IEICE Transactions on Electronics, vol.
E89-C, no. 11, Nov. 2006.

[10] S. Baeg, S. Wen, and R. Wong, “Minimizing soft errors in TCAM devices:
A probabilistic approach to determining scrubbing intervals,” IEEE TCAS,
vol. 57, no. 4, pp. 814-822, April 2010.

[11] P.-T. Huang and W. Hwang, “A 65 nm 0.165 fJ/bit/search 256 × 144
TCAM macro design for IPv6 lookup tables,” IEEE Journal of Solid-

State Circuits, vol. 46, no. 2, pp. 507-519, Feb. 2011.
[12] S. Pontarelli, M. Ottavi, A. Evans, and S.-J. Wen, “Error detection in

ternary CAMs using bloom filters,” DATE, pp. 1474-1479, March 2013.
[13] I. Syafalni, T. Sasao, X. Wen, S. Holst, and K. Miyase, “Soft-error tolerant

TCAMs for high-reliability packet classification,” IEEE APCCAS, pp.
471-474, Nov. 2014.

[14] I. Syafalni and T. Sasao, “A TCAM generator for packet classification,”
IEEE ICCD, pp. 322-328, Oct. 2013.

[15] I. Syafalni and T. Sasao, “Head-tail expression for interval functions,”
IEICE Trans. Fund., vol. E97-A, no. 10, pp. 2043-2054, Oct. 2014.

[16] D. E. Taylor, J. S. Turner, “ClassBench: a packet classification bench-
mark,” IEEE/ACM TON, vol. 3, no. 15, pp. 499-511, June 2007.

[17] I. Syafalni, T. Sasao, X. Wen, S. Holst, and K. Miyase, “A soft-error
tolerant TCAM using partial don’t-care keys,” ETS, pp. 1-2, May 2015.

684

