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Abstract—This paper presents a method to generate head-tail
expressions for Ternary Content Addressable Memories (TCAMs).
First, we derive head-tail expressions for interval functions. We
introduce a fast prefix sum-of-product (PreSOP) generator (FP)
which generates products using the bit patterns of the endpoints.
Next, we propose a direct head-tail expression generator (DHT).
Experimental results show that DHT generates much smaller
TCAM than FP. The proposed algorithm is useful for simplified
TCAM generator for packet classification.

I. INTRODUCTION

Packet classification is a fundamental technology in high-
speed internet. This technology is used for many devices such
as routers, firewalls, network address translators, and access
controllers [3], [18], [17]. A Ternary Content Addressable
Memory (TCAM) is the hardware to support high speed packet
classification [9], [13]. Due to its high speed, TCAMs have
become a de facto standard for IP lookup devices in the network
industry. Unfortunately, TCAMs dissipate high-power and are
expensive [1]. These problems tend to be worse with the growth
of the internet [19], [8]. To overcome these drawbacks, reduc-
tion of TCAM words is necessary. The reduction of TCAM
is related to logic minimization, and a logic minimizer such
as Espresso is utilized. Since exact minimization is extremely
time consuming [7], a heuristic approach using a ternary trie
has been developed [2]. Although, it is faster and requires
less memory than the exact minimizer, it still requires a large
memory size and execution time.

In a packet classification, ports are often specified by in-
tervals. When an interval is represented by a prefix sum-of-
product expression (PreSOP), it often requires many products.
This phenomenon is called rule expansion. Various methods to
represent intervals are proposed to suppress rule expansion [5],
[8], [11]. Any interval function can be represented by a sum-of-
products expression (SOP) with at most 2(n−2) products [11],
[14], where n is the number of bits to represent the largest value
in the interval. Moreover, the number of products is reduced
by using SOPs with four-valued variables in [12]. In [8] and
[10], output encoding is used to reduce the number of products.
With this method, any interval function can be represented
with at most n TCAM words. Hardware modification that adds
comparators to represent intervals directly [15] is proposed, but
this method is expensive to implement.

Table I shows an example of a classification function with

TABLE I
EXAMPLE OF CLASSIFICATION FUNCTION

Rule Source Port Destination Port Action

1 (0,16) 2 Accept
2 3 (-1,15) Accept
3 * * Deny

TABLE II
IMPLEMENTATION ON TCAM

Rule Source Port Destination Port Action
x3 x2 x1 x0 x3 x2 x1 x0

1 0 0 0 1 0 0 1 0 Accept
1 0 0 1 * 0 0 1 0 Accept
1 0 1 * * 0 0 1 0 Accept
1 1 * * * 0 0 1 0 Accept
2 0 0 1 1 0 * * * Accept
2 0 0 1 1 1 0 * * Accept
2 0 0 1 1 1 1 0 * Accept
2 0 0 1 1 1 1 1 0 Accept
3 * * * * * * * * Deny

two fields that correspond to the source and the destination
ports represented by intervals. The representation in TCAM is
described in Table II. When each port is specified by either
* (don’t care) or a single value, each rule corresponds to one
word in a TCAM. However, when a port is specified by an
open interval such as (0, 16) or (−1, 15), the interval requires
multiple words in a TCAM [5]. For example, in Table II, both
intervals (0, 16) and (−1, 15) require 4 words. This problem
(i.e., rule expansion) is the main subject of the paper.

In this paper, we present a fast reduction of TCAM using
a head-tail expression (HT). First, we introduce a fast PreSOP
generator (FP). Then, we propose a direct head-tail expression
generator (DHT). Finally, by experimental results, we show
that DHT is faster and produces better solutions than other
algorithms.

II. PRELIMINARIES

Definition 2.1: xi
ai denotes xi when ai = 1, and x̄i when

ai = 0. xi and x̄i are literals of a variable xi. The AND of
literals is a product. The OR of products is a sum-of-products
expression (SOP).

Definition 2.2: A prefix SOP (PreSOP) of an n-variable
function f(xn−1, xn−2, · · · , x0) is an SOP where the first
consecutive literals occur, while all others are missing.
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Example 2.1: f(x2, x1, x0) = x2x1x̄0 ∨ x2x̄1 ∨ x̄2 is a
PreSOP. While, f(x2, x1, x0) = x̄2∨x̄1∨x1x̄0 is not a PreSOP,
but is an SOP.

A PreSOP is a special case of an SOP. Thus, for a given
function f , a PreSOP may require more products than an SOP.
However, PreSOPs are often used in the internet applications
since they can be generated quickly from the tree or a decision
diagram (DD) representing the function. Also, the PreSOPs
generated from trees or DDs are disjoint [18]. This means that
we cannot apply the absorption law to simplify the expression.

On the other hand, to simplify an SOP, we have to apply
the absorption law. The time complexity for the absorption law
to an SOP is O(np2), where n denotes the number of bits to
represent the maximum value of the interval, and p denotes the
number of products. Thus, the SOP minimizer tends to be slow.
This is the reason why PreSOPs are used instead of SOPs in
internet applications.

Definition 2.3: Let A and B be integers such that A < B.
An open interval (A,B) denotes the set of integers X such
that A < X < B. Note that endpoints are not included.

Definition 2.4: An n-input open interval function is:

IN0(n : A,B) =

{
1, if A < X < B

0, otherwise.

An n-input greater-than (GT ) function is:

GT (n : A) =

{
1, if A < X

0, otherwise.

An n-input less-than (LT ) function is:

LT (n : B) =

{
1, if X < B

0, otherwise,

where X =
∑n−1

i=0
xi · 2

i, A and B are integers.
Lemma 2.1: A GT function can be represented by the

PreSOP:

GT (n : A) =

n−2∨
i=0

⎛
⎝ i+1∧

j=n−1

x
aj

j

⎞
⎠xiāi ∨ xn−1ān−1,

where �a = (an−1, an−2, · · · , a1, a0) is the binary representa-
tion of A. It has

∑n−1

i=0
āi disjoint products.

Example 2.1: Consider the PreSOP for GT (n : A), where
n = 4 and A = 0. The binary representation of A is �a =
(0, 0, 0, 0). The PreSOP is x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨ x3.

Lemma 2.2: An LT function can be represented by the
PreSOP:

LT (n : B) =
n−2∨
i=0

⎛
⎝ i+1∧

j=n−1

x
bj
j

⎞
⎠ x̄ibi ∨ x̄n−1bn−1,

where �b = (bn−1, bn−2, · · · , b1, b0) is the binary representation
of B. It has

∑n−1

i=0
bi disjoint products.

Theorem 2.1: Let �a = (an−1, an−2, · · · , a1, a0) and �b =
(bn−1, bn−2, · · · , b1, b0) be the binary representations of A and
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(c) IN0(4 : 0, 15)

Fig. 1. Maps for Example 2.1

B, respectively, and A < B. Let t be the largest index such
that at−1 �= bt−1. Then, IN0(n : A,B) can be represented by:

0∨
i=t−2

[( i+1∧
j=n−1

x
aj

j

)
xiāi ∨

( i+1∧
j=n−1

x
bj
j

)
x̄ibi

]
.

The number of products is
∑t−2

i=0
(āi + bi).

Example 2.2: Let A = 0, B = 15 and n = 4. Note that
�a = (0, 0, 0, 0) and �b = (1, 1, 1, 1). By Lemma 2.1, the PreSOP
for GT (4 : 0) is x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨x3. The number
of products is

∑3

i=0
āi = 4. By Lemma 2.2, the PreSOP for

LT (4 : 15) is x3x2x1x̄0 ∨ x3x2x̄1 ∨ x3x̄2 ∨ x̄3. The number
of products is

∑3

i=0
bi = 4. And, Theorem 2.1 shows that

IN0(4 : 0, 15) requires 3 + 3 = 6 products. The PreSOP for
IN0(4 : 0, 15) is x̄3x̄2x̄1x0∨ x̄3x̄2x1∨ x̄3x2∨x3x̄2∨x3x2x̄1∨
x3x2x1x̄0. Fig. 1 shows their maps, where the integers in the
maps denote X = 8x3+4x2+2x1+x0. Note that a minimum
SOP for IN0(4 : 0, 15) is x0x̄1 ∨ x1x̄2 ∨ x2x̄3 ∨ x3x̄0.

III. REALIZATION OF INTERVAL FUNCTIONS ON TCAM

A ternary content addressable memory (TCAM) shown in
Fig. 2 compares the input vector with the entire list of registered
vectors, simultaneously. When multiple matches occur, the
priority encoder selects the match line with the smallest index.
The RAM stores the corresponding Action for the TCAM
words. A straightforward method to design TCAM is to use
a PreSOP.

Example 3.1: Design the TCAM that represents GT (4 : 0).
The PreSOP for GT (4 : 0) is

f(x3, x2, x1, x0) = x̄3x̄2x̄1x0 ∨ x̄3x̄2x1 ∨ x̄3x2 ∨ x3.

Table III shows the corresponding TCAM realization.

TABLE III
REALIZATION BASED ON PRESOP.

TCAM RAM
x3 x2 x1 x0

0 0 0 1 1
0 0 1 * 1
0 1 * * 1
1 * * * 1
* * * * 0

Note that the first product in the PreSOP corresponds to
the first TCAM word, and the second product in the PreSOP
corresponds to the second TCAM word, etc. In the TCAM, we
append the all don’t care product at to the bottom. This word
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TABLE IV
REALIZATION BASED ON HT.

TCAM RAM
x3 x2 x1 x0

0 0 0 0 0
* * * * 1
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Fig. 2. Realization using TCAM and RAM.

represents the default value for the rest of the combinations.
Thus, the number of TCAM words is τ(PreSOP ) + 1, where
τ(PreSOP ) denotes the number of products in the PreSOP.
In the RAM, the first τ(PreSOP ) entries are 1, while the
τ(PreSOP ) + 1th entry is 0.

However, in the circuit shown in Fig. 2, the interval function
can often be implemented more efficiently. Since GT (4 : 0)
can be represented as

f(x3, x2, x1, x0) = (x̄3x̄2x̄1x̄0) · (1),

f is implemented by the TCAM shown in Table IV. In this
case, the combination that makes f = 0 is first detected, and
other combinations for the default value f = 1 is detected by
the bottom word in the TCAM. Thus, we need only two TCAM
words.

To find more efficient realizations for TCAMs, we need a
new method to represent a function. In the next section, we
introduce such a method.

IV. HEAD-TAIL EXPRESSIONS FOR INTERVAL FUNCTIONS

In this section, we introduce head-tail expressions [6] that
efficiently represent interval functions. As shown in Section II,
the number of products in a PreSOP for an interval function is∑t−2

i=0
(āi+bi). This value increases with the number of 0’s and

1’s in binary representations of A and B, respectively. However,
this problem can be resolved by using a head-tail expression.

Definition 4.1: A head-tail expression (HT) has the form

f =
0∨

i=t

[
s∧

j=1

(h̄ij)

][
v∧

k=1

(gik)

]
, (1)

where for (i = 0, 1, · · · , t), (h̄ij) is the head factor and (gik)
is the tail factor, and hij and gik denote products. In this paper,
(product) and (product) are called factors. When there are no
head factors, the HT is an SOP.

Example 4.1: (x1x2)·(x3x4)·(x5x6)∨(x1x4)·(x2x3)·(x̄5x̄6)
is a head-tail expression.

HTs are a generalization of SOPs, and often require fewer
factors to represent the same function.

Lemma 4.1: An arbitrary logic function f can be represented
by a head-tail expression (Eq. (1)).

The next two theorems show that when the binary represen-
tations of endpoints have special property, HTs can be directly
generated from the binary representations of endpoints.

Theorem 4.1: Let �a = (an−1, an−2, · · · , a1, a0) be the
binary representation of an integer A. Let cp−1, cp−2, · · · , c1, c0
be the starting indexes of consecutive 0’s groups in �a, where
cp−1 > cp−2 > · · · > c1 > c0. Let the isolated 1’s be
acp−2+1 = acp−3+1 = · · · = ac1+1 = ac0+1 = 1, where ck + 1
is the index of isolated 1’s among groups of consecutive 0’s in
�a. Then, the GT (n : A) function can be represented by an HT
with p+ 1 factors:⎛

⎝ c0+1∧
j=n−1

x
aj

j

c0+1−d0∧
i=c0

x̄i

⎞
⎠ ·

⎛
⎝ c1+1∧

j=n−1

x
aj

j

c1−d1∧
i=c1

x̄i

⎞
⎠ · · ·

·

⎛
⎝cp−1+1∧

j=n−1

x
aj

j

cp−1−dp−1∧
i=cp−1

x̄i

⎞
⎠ ·

⎛
⎝cp−1+1∧

j=n−1

x
aj

j

⎞
⎠ ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p− 1, di > 0)
are numbers of consecutive 0’s in the groups which start from
the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note that, in �a,
except for the group of consecutive 0’s, remaining bits are 1’s.

Example 4.2: Let A = 0. The binary representation of A
is �a = (0, 0, 0, 0). By Theorem 4.1, we have a group of
consecutive 0’s, where n = 4, p = 1, cp−1 = c0 = 3 and
d0 = 4. Thus,

GT (4 : 0) =

⎛
⎝ c0+1∧

j=n−1

x
aj

j

c0+1−d0∧
i=c0

x̄i

⎞
⎠ ·

⎛
⎝ c0+1∧

j=n−1

x
aj

j

⎞
⎠

= (x̄3x̄2x̄1x̄0) · (1).

Theorem 4.2: Let �b = (bn−1, bn−2, · · · , b1, b0) be the binary
representation of an integer B. Let cp−1, cp−2, · · · , c1, c0 be the
starting indexes of consecutive 1’s groups in �b, where cp−1 >
cp−2 > · · · > c1 > c0. Let the isolated 0’s be bcp−2+1 =
bcp−3+1 = · · · = bc1+1 = bc0+1 = 0, where ck + 1 is the
index of isolated 0’s among groups of consecutive 1’s in �b. In
this case, LT (n : B) can be represented by an HT with p+ 1
factors:⎛

⎝ c0+1∧
j=n−1

x
bj
j

c0+1−d0∧
i=c0

xi

⎞
⎠ ·

⎛
⎝ c1+1∧

j=n−1

x
bj
j

c1−d1∧
i=c1

xi

⎞
⎠ · · ·

·

⎛
⎝cp−1+1∧

j=n−1

x
bj
j

cp−1−dp−1∧
i=cp−1

xi

⎞
⎠ ·

⎛
⎝cp−1+1∧

j=n−1

x
bj
j

⎞
⎠ ,

where dp−1, dp−2, · · · , d1, d0 (for i = 0, 1, · · · , p− 1, di > 0)
are numbers of consecutive 1’s in the groups which start from
the indexes cp−1, cp−2, · · · , c1, c0, respectively. Note that, in �b,
except for the group of consecutive 1’s, remaining bits are 0’s.

Example 4.3: Represent LT (n : B) by a PreSOP and
a head-tail expression, where n = 8 and B = 247. �b =
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(1, 1, 1, 1, 0, 1, 1, 1) is the binary representation of B. By
Lemma 2.1, we have the PreSOP of LT :

LT (n : B) = x7x6x5x4x̄3x2x1x̄0 ∨ x7x6x5x4x̄3x2x̄1

∨ x7x6x5x4x̄3x̄2 ∨ x7x6x5x̄4 ∨ x7x6x̄5 ∨ x7x̄6 ∨ x̄7.

The number of products is
∑n−1

i=0
bi = 7. However, the head-tail

expression for LT (n : B) requires only three factors (p+ 1 =
2 + 1). By Theorem 4.2, we have:

LT (n : B) = (x7x6x5x4x̄3x2x1x0) · (x7x6x5x4x3) · (1)

The binary representation of B = 247 is:

�b = (

bc1=7

↓

1 ,

b6

↓

1 ,

b5

↓

1 ,

b4

↓

1︸ ︷︷ ︸
d1

,

b3

↓

0 ,

bc0=2

↓

1 ,

b1

↓

1 ,

b0

↓

1︸ ︷︷ ︸
d0

)

There are p = 2 groups of consecutive 1’s, which start from
indexes c0 = 2 and c1 = 7, and the numbers of consecutive 1’s
are d0 = 3 and d1 = 4, respectively.

TABLE V
REALIZATION OF LT (8 : 247) BY TCAM AND RAM

(a)
TCAM RAM

x7 x6 x5 x4 x3 x2 x1 x0

1 1 1 1 0 1 1 0 1
1 1 1 1 0 1 0 * 1
1 1 1 1 0 0 * * 1
1 1 1 0 * * * * 1
1 1 0 * * * * * 1
1 0 * * * * * * 1
0 * * * * * * * 1
* * * * * * * * 0

(b)
TCAM RAM

x7 x6 x5 x4 x3 x2 x1 x0

1 1 1 1 0 1 1 1 0
1 1 1 1 1 * * * 0
* * * * * * * * 1

Table V(a) shows the PreSOP realization for the interval
(−1, 247). Seven TCAM words realize the interval (−1, 247),
and the RAM works as the OR function. On the other hand,
Table V(b) shows HT-realization for the same function: two
TCAM words realize the interval (246, 28), and the RAM
works as the NOR function. Since the RAM can be pro-
grammed freely, the NOR function instead of the OR function
can be implemented. In this way, we can generate a smaller
TCAM than the conventional approach.

V. FAST PREFIX SOP GENERATOR

In this section, we present a fast PreSOP generator (FP).
Various PreSOP generators exist [18], [8], [5]. Fig. 3 shows
the pseudocode of FP. The inputs are V ector(�a) and V ector(�b)
that are binary representations of A and B, respectively. First,
to apply Theorem 2.1, the largest index where as �= bs is found
by s = �log2 (A⊕B)�. After that, each vector of the endpoints
(A,B) represented by V ector[n− 1, . . . , 0] is checked. In this
case, A flg is true iff it is checking V ector(�a), while B flg
is true iff it is checking V ector(�b). Note that A flg = B flg.
If the checked vector value is true, then it produces Output[n−
1, . . . , 0] as the binary representation of the product. Because
at most one product is produced for each variable, and only

FP(A Fast PreSOP Generator):

/∗ Input: The binary representations of A and B which are
stored in V ector(�a) and V ector(�b), respectively. ∗/

/∗ Output: TCAM words for PreSOP. ∗/
1: Find the largest index such that as �= bs,

s← �log2 (A⊕B)�.
2: For both vectors (V ector(�a) and V ector(�b)), perform

below.
3: for i = 0; i < s; i++ do
4: if V ector[s− 1− i] = B flg then
5: Output[n− 1, . . . , s− i]← V ector[n− 1, . . . , s− i]
6: Output[s− 1− i]← A flg
7: end if
8: end for
9: Terminate.

Fig. 3. Pseudocode for FP

s bits are checked, the time complexity for n-bit FP is O(s) ·
n = O(n2). Moreover, the space complexity for FP is O(n2),
because FP uses n bits to represent a vector and at most O(n)
vectors are necessary to represent the function.

VI. DIRECT HEAD-TAIL EXPRESSION GENERATORS

In this section, we present a direct head-tail expression
generator (DHT) to represent intervals (ports). DHT generates
the TCAM words from the lower and the upper endpoints of
the interval (A,B). Fig. 4 shows a DHT. Similar to FP, DHT
finds the largest index such that as �= bs. After that, it checks
every bit in V ector[n− 1, . . . , 0] and returns Mode. A flg is
true iff it is checking V ector(�a), and B flg is true iff it is
checking V ector(�b). Note that A flg = B flg. The detail of
each Mode is as follows:
• Mode 0: Produces no output.
• Mode 1: Theorem 2.1 is used to produce the word.
• Mode 2: Theorem 4.1 or 4.2 is used to produce the word.

Fig. 4 shows that the time complexity for n-bit DHT is O(s) ·
n = O(n2). In every case (Mode), the index i is incremented
after it checks V ector[n−1, . . . , 0] in DHT. Thus, the algorithm
iterates s times, where s = t−1 denotes the largest index such
that as �= bs. Furthermore, the space complexity for DHT is
O(n2), because similar to FP, DHT uses only n bits to represent
a vector and at most O(n) vectors are necessary to represent
the function.

Example 6.1: Let A = 383, B = 441 and n = 9. The binary
representations of A and B are �a = (1, 0, 1, 1, 1, 1, 1, 1, 1) and
�b = (1, 1, 0, 1, 1, 1, 0, 0, 1), respectively. To find the TCAM
words for IN0(9 : 383, 441), the algorithm in Fig. 4 is used.
First, s is computed using s = �log2 (A⊕ B)� = 7. Since
ai = 1 for i = 0 to i = s − 1, no factor is produced from
V ector(�a). Next from V ector(�b), at i = 0, 1 is detected,
goes to Mode 1. At i = 1, 0 is detected, goes to Mode 0 and
generates a word using Theorem 2.1: 110111000 → 1, or the
factor (x8x7x̄6x5x4x3x̄2x̄1x̄0) (Fig. 5, Mode 1a). At i = 2,
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DHT(A Direct HT Generator):

/∗ Input: The binary representations of A and B which are
stored in V ector(�a) and V ector(�b), respectively. ∗/

/∗ Output: TCAM words of the head-tail expression. ∗/
1: Find the largest index such that as �= bs,

s← �log2 (A⊕B)�.
2: For i = 0 to i = s−1, iterate the below for V ector(�a) and

V ector(�b). Checks V ector(�a) iff A flg = 1, and checks
V ector(�b) iff B flg = 1.

3: for i = 0; i < s; i+ + do
4: switch Mode
5: case 0:
6: if V ector[i] = B flg then
7: Mode ← 1: Generate no output.
8: else
9: Mode ← 0

10: end if
11: case 1:
12: if V ector[i] = B flg then
13: Mode ← 2: A group of consecutive 0’s or 1’s

is
detected. By Theorem 4.1 or 4.2, generate
the head factor (h̄i).

14: else
15: Mode ← 0: Only a single 0 or 1 is detected.

Use Theorem 2.1 to generate a product.
16: end if
17: case 2:
18: if V ector[i] = B flg then
19: Mode ← 2
20: else
21: if V ector[i + 1] = B flg then
22: Mode ← 2: Groups of consecutive 0’s or 1’s

are detected. By Theorem 4.1 or 4.2,
generate the factor (h̄i−1 ∨ gi).

23: else
24: Mode ← 0: If groups of consecutives 0’s or

1’s are detected, generate the tail factor (gi)
using Theorem 4.1 or 4.2.

25: end if
26: end if
27: end switch
28: end for
29: Terminate.

Fig. 4. Pseudocode for DHT

Mode is 0. At i = 3, 1 is detected, goes to Mode 1. At i = 4, 1 is
detected, goes to Mode 2 and generates a word using Theorem
4.2: 110111*** → 0, or the factor (x8x7x̄6x5x4x3) (Fig. 5,
Mode 2a, the first output). At i = 5, 1 is detected, stays at Mode
2. At i = 6, 0 is detected, goes to Mode 2. Because the iteration
finishes at s − 1 = 6, and there is a group of consecutive

1 0

0 0Mode 0a:

Mode 1a:

Mode 2a:

Mode 2b:

Generates no output

0
1

1 1 0Mode 1b:

11 0*

1 0*11

1

(Goes to Mode 0)

(Goes to Mode 0)

(Goes to Mode 2)

(Goes to Mode 2)

(Goes to Mode 0)

1 0

Generates no output (Goes to Mode 1)

0Mode 0b:

1 1 * *1 *1 0

* * * ** ** 1

(Goes to Mode 2)

(Goes to Mode 0)

11 0 (Goes to Mode 2)

x1 x0

x2 x1 x0

x2 x1 x0

x2 x1 x0

x5 x4 x2 x1 x0

x6 x5 x4 x3 x2 x1 x0

01 11 *(Theorem 3.1 or 
3.2 is applied 

for p > 1)

(Theorem 2.1 is 
applied) x2 x1 x0

x2 x1 x0

x5 x4 x2 x1 x0

x6 x5 x4 x3 x2 x1 x0

(Theorem 3.1 or 
3.2 is applied 

for p = 1)

x3

* *

x3

1 0 1 11 01

** ** **

1 0 0 11 1

0 *0

Fig. 5. Steps of DHT in Example 6.1

1’s in �b, the algorithm generates the word by Theorem 4.2:
110****** → 1, or the factor (x8x7x̄6) (Fig. 5, Mode 2a, the
second output) and terminates. Note that, the corresponding HT
is (x8x7x̄6x5x4x3x̄2x̄1x̄0) ∨ (x8x7x̄6x5x4x3)(x8x7x̄6). Table
VI shows the produced TCAM pattern.

TABLE VI
REALIZATION OF EXAMPLE 6.1 IN TCAM AND RAM

TCAM RAM
x8 x7 x6 x5 x4 x3 x2 x1 x0

1 1 0 1 1 1 0 0 0 1
1 1 0 1 1 1 * * * 0
1 1 0 * * * * * * 1
* * * * * * * * * 0

Example 6.2: Obtain the HT for IN0(9 : 383, 441) by an
algebraic approach. First, obtain PreSOPs for GT and LT
functions:

GT (9 : 383) = x8x7

LT (9 : 441) = x̄8 ∨ x8x̄7 ∨ x8x7x̄6x̄5 ∨ x8x7x̄6x5x̄4

∨ x8x7x̄6x5x4x̄3 ∨ x8x7x̄6x5x4x3x̄2x̄1x̄0

Next, obtain the PreSOP for the interval function:

GT (9 : 383) · LT (9 : 441) = x8x7x̄6x̄5 ∨ x8x7x̄6x5x̄4

∨ x8x7x̄6x5x4x̄3 ∨ x8x7x̄6x5x4x3x̄2x̄1x̄0.

Finally, obtain the HT for IN0(9 : 383, 441):

x8x7x̄6(x̄5 ∨ x5x̄4 ∨ x5x4x̄3) ∨ (x8x7x̄6x5x4x3x̄2x̄1x̄0)

= (x8x7x̄6)(x5x4x3) ∨ (x8x7x̄6x5x4x3x̄2x̄1x̄0)

= (x8x7x̄6)(x8x7x̄6x5x4x3) ∨ (x8x7x̄6x5x4x3x̄2x̄1x̄0)
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TABLE VII
COMPARISON OF PERFORMANCE

Data Number PreSOP SOP HT
of Products Time(μs) Products Time(ms) Factors Reduction(%) Time(μs)

Rules FP Espresso DHT

ACL1 9760 13675 1.06 13667 786.702 12672 7.335 1.18
ACL2 9827 19449 1.11 19449 873.288 11221 42.306 1.16
ACL3 9323 16794 1.06 16699 740.238 11712 30.261 1.18
ACL4 9670 17179 1.05 17171 731.940 12022 30.019 1.20
ACL5 6457 8713 0.99 8713 723.748 7301 16.206 1.19
FW1 9753 34188 1.03 34188 758.240 12180 64.373 1.16
FW2 9865 19100 1.06 19100 824.233 11712 38.681 1.17
FW3 9583 25923 1.02 25923 705.497 11251 56.598 1.18
FW4 9517 62406 1.25 62406 670.166 17066 72.653 1.10
FW5 9513 22553 1.05 22553 723.124 11139 50.610 1.24
IPC1 9590 12969 1.03 12955 806.414 10439 19.508 1.13
IPC2 10000 10000 0.96 10000 775.081 10000 0.000 1.06

Note that DHT directly generates the TCAM patterns from the
endpoints.

Fig. 5 illustrates the steps of DHT in Example 6.1. It
compares each bit of the lower and the upper endpoints;
decides which mode be enter; and generates the reduced TCAM
patterns.

VII. EXPERIMENTAL RESULTS

Since no benchmark data for packet classifications is avail-
able, ClassBench [17] was used to generate classification func-
tions. First, we generated PreSOPs for various functions. Then,
we reduced the number of products in PreSOPs by Espresso
[4]. Note that Espresso produces SOPs, which often require
fewer products than PreSOPs. Table VII compares PreSOPs
and SOPs. However, Espresso did not significantly reduce the
sizes of PreSOPs inspite of its long computation time.

Second, we applied the head-tail expression generator DHT
to the same classification functions. Since the DHT in Fig. 4
is only for a single field function, we applied DHT twice to
obtain the HT. As shown in Table VII, the maximum reduction
occurred in FW4, where the reduction ratio is more than 70%.
In this case, many intervals that require many products in the
PreSOP are reduced by the HT. On the other hand, no reduction
occurred in IPC2, where each interval is represented by a
single product and cannot be reduced by an HT. In terms of
the speed, DHT is about 6× 105 times faster than Espresso.

In these experiments, we generated simplified expression
for each rule independently, but we did not check for the
redundancy among rules. Thus, we may still be able to reduce
the number of factors by spending extra time.

VIII. CONCLUSION

In this paper, we used head-tail expressions to represent
interval functions. We introduced a fast prefix SOP generator
(FP) which generates products using the bit patterns of the
endpoints. We proposed DHT to produce head-tail expressions
directly from the endpoints (A,B). Experimental results showed
that DHT is 6×105 times faster and produces smaller TCAMs
than Espresso.
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