
Easily Reconstructable Logic Functions
Tsutomu Sasao

Department of Computer Science,
Meiji University, Kawasaki, 214-8571, Japan

Abstract—This paper shows that sum-of-product expression
(SOP) minimization produces the generalization ability. We show
this in three steps. First, various classes SOPs are generated.
Second, minterms of SOP are randomly selected to generate
partially defined functions. And, third, from the partially defined
functions, original functions are reconstructed by SOP minimiza-
tion. We consider Achilles heel functions, majority functions,
monotone increasing cascade functions, functions generated from
random SOPs, and monotone increasing random SOPs. As for
generalization ability, the presented method is compared with
Naive Bayes, multi-level perceptron, support vector machine,
JRIP, J48, and random forest.

Index Terms—complexity of logic function, random func-
tion, monotone function, threshold function, logic minimization,
partially defined function, classification, data mining, machine
learning, generalization ability.

I. INTRODUCTION

Memorization is to memorize the training set, and can
be performed by just storing the training set into a memory
device. On the other hand, learning not only memorizes the
training set, but also predicts outputs for unknown inputs in
the test set. Thus, learning gains generalization ability. In
machine learning, increasing the generalization ability is a very
important issue.

In [15], we showed that a logic minimizer can be used
for machine learning in handwritten digit recognition, where
unknown values are predicted by don’t care assignment of a
logic minimizer.

In this paper, we investigate how a logic minimizer predicts
the unknown values for special classes of functions. We are
interested in the class of functions that are easy to recon-
struct. Functions that have simple representations are easy to
reconstruct. Our method is as follows: Given a function f
represented by a simple sum-of-products expression (SOP),
randomly select the minterms of f to generate a partially de-
fined function f̂ . From f̂ , we reconstruct the original function
f using an SOP minimizer.

When the faction of the selected minterms is large, the
original function can be reconstructed easily. However, when
the fraction of the selected minterms is small, the reconstruc-
tion of the original function is difficult. Benchmark functions
include: Achilles heel functions; symmetric threshold func-
tions; randomly generated non-monotone SOP, and randomly
generated monotone SOP. For these functions, we compare the
performance of machine learning methods including:

• SOP minimization of partially defined function.
• Naive Bayes method.
• Multi-level perceptron (neural network).

• Support vector machine.
• Decision tree.
• Random forest.
The rest of this paper is organized as follows: Section II

shows definitions of various functions and their properties.
Section III shows the method to perform experiments. Section
IV shows the method to evaluate the performance of the
reconstruction. Section V compares the performance various
machine learning methods. Section VI shows the experiments
with multi-valued input functions. Section VII surveys related
works. Section VIII concludes the paper.

II. DEFINITIONS

Definition 2.1: Let ON , OFF , and DC be subsets of Bn,
where B = {0, 1}, ON ∩ OFF = ∅, ON ∩ DC = ∅,
OFF ∩DC = ∅, and ON ∪OFF ∪DC = Bn. Consider a
function f such that, for any �a ∈ Bn,

�a ∈ ON ⇒ f(�a) = 1,

�a ∈ OFF ⇒ f(�a) = 0.

When DC = ∅, f is totally defined, while when DC �= ∅,
f is partially defined.

Problem 1: Given a partially defined function f , find the
simplest sum-of-products expression (SOP) that is consistent
with f .

This process is called logic minimization. However, it can
be also used for reconstruction of a function.

Definition 2.2: A minimum sum-of-products expression
(minimum SOP) for f has the fewest products, and the number
of literals are also minimal among all the SOPs for f .

Lemma 2.1: [14] A minimum SOP can be represented as a
sum of prime implicants (PIs).

Definition 2.3: The SOP degree of f is the maximum
number of literals in a product of a minimum SOP for f across
all products.

Example 2.1: Consider the partially defined function f̂
whose ON and OFF sets are shown in Table 2.1. Suppose
that Table 2.1 is the training set. Predict the output for the
function for the input �a = (x1, x2, x3, x4) = (1, 1, 0, 1). Since
the vector �a is not contained in the training set, nobody knows
the output for this input.

Fig. 2.1 show the map for f̂ , where blank cells denote don’t
cares. If we perform an SOP minimization using the map in
Fig. 2.2, we have the simplified expression for f̂ :f = x1x2.
Although the value of f(�a) is undefined, if the value is 1, and
if the values of f for other blank cells are 0, then the SOP for

TABLE 2.1
PARTIALLY DEFINED FUNCTION

x1 x2 x3 x4 f
ON 1 1 0 0 1

1 1 1 0 1
1 1 1 1 1

OFF 0 0 0 0 0
0 1 0 0 0
0 1 0 1 0
1 0 0 0 0
1 0 1 0 0

Fig. 2.1. Partially defined function
f̂

x3

x2

x4

x1

10

0

1

0 0

1

0

Fig. 2.2. Simplified SOP for the
function f̂ .

f becomes simpler. Occam’s razor [4] recommends to use
simple rules. So, we assume that the function value for �a to
be 1.

Next, predict the output value for the input �b = (0, 0, 0, 1).
In this case, the output is assumed to be 0, since this makes
the SOP simpler. Such operation is called generalization in
machine learning.

Lemma 2.2: The SOP degrees of functions are
• n for n-variable AND, OR, and parity function.
• r + 1 for (2r + 1)-variable majority function.
• 2 for (2r)-variable Achilles heel function [14]:

Ach2(r) = x1y1 ∨ x2y2 ∨ · · · ∨ xryr.

Example 2.2: Consider the Achilles heel function with 6
variables:

Ach2(3) = x1y1 ∨ x2y2 ∨ x3y3.

The complement of Ach2(3) is

Ach2(3) = (x̄1 ∨ ȳ1)(x̄2 ∨ ȳ2)(x̄3 ∨ ȳ3)

= x̄1x̄2x̄3 ∨ x̄1x̄2ȳ3 ∨ x̄1ȳ2x̄3 ∨ x̄1ȳ2ȳ3 ∨
ȳ1x̄2x̄3 ∨ ȳ1x̄2ȳ3 ∨ ȳ1ȳ2x̄3 ∨ ȳ1ȳ2ȳ3.

The last SOP is the minimum, and the maximum number of
literal is three. So, the SOP degree of Ach2(3) is three.

Example 2.3: Consider the partially defined function f in
Table 2.2, where the OFF and the ON sets are shown. Note
that the ON set consists of two vectors: {�a1,�a2}, while the
OFF set consists of two vectors:{�b1,�b2}.

The minimal SOPs for f are F1 = x1x4 ∨ x̄1x̄4, and F2 =
x̄2 ∨ x3. The maps for these SOPs are shown in Figs 2.3 and
2.4. The minimal SOPs for f̄ are F3 = x1x̄4 ∨ x̄1x4, and
F4 = x2x̄3. Thus, F4 is the exact minimum. The maps of

TABLE 2.2
PARTIALLY DEFINED FUNCTION

x1 x2 x3 x4 f
ON �a1 1 0 0 1 1

�a2 0 1 1 0 1

OFF �b1 1 1 0 0 0
�b2 0 1 0 1 0

x3

x2

x4

x1

1

0
0

1

Fig. 2.3. SOP for f : F1. Fig. 2.4. SOP for f : F2.

these SOPs are shown in Figs 2.5 and 2.6. The maximum
number of literals in a product is two. Note that these SOPs
depend on only two variables.

Definition 2.4: Let �a and �b be elements of Bn. If f satisfies
f(�a) ≥ f(�b), for any vectors such that �a ≥ �b, then f is a
monotone increasing function.

Theorem 2.1: Let f be a monotone increasing function of
n variables. Then,

1) All the prime implicants of f are essential prime impli-
cants.

2) There is a unique minimum SOP for f .

III. EXPERIMENTS

A. SOP Minimizer for Machine Learning

In this experiment, a modified version of MINI [5] [6]
logic minimizer was used. The following algorithm shows the
outline:

Algorithm 3.1: (MINI13)
1) From the ON and the OFF sets, generate the DC set by

DC = ON ∪OFF .

x3

x2

x4

x1

1

0

0

1

Fig. 2.5. SOP for f̄ : F3.

x3

x2

x4

x1

1

0
0

1

Fig. 2.6. SOP for f̄ : F4.

TABLE 3.1
RECONSTRUCTION OF ACHILLES HEEL FUNCTIONS (n = 12)

of Minterms # of Products SOP
100 200 400 f Not(f) degree

Ach2(6) × © © 6 64 2
Ach3(4) © © © 4 81 3
Ach4(3) © © © 3 64 4
Ach6(2) × × © 2 36 6

2) Simplify the SOP for the ON set, and the SOP for the
OFF set using DC, independently.

3) Count the numbers of products in the simplified SOPs.
Let f1 and f0 be the totally defined functions for
the simplified SOPs for the ON and the OFF sets,
respectively.

4) If the simplified SOP for f1 has a fewer products, then
replace the SOP for f0 by the simplified SOP for f0f1.
Otherwise, replace the simplified SOP for f1 by the
simplified SOP for f1f0.

The last step is used to make the resulting SOPs disjoint. Also,
it improves the generalization ability for imbalanced data set.

B. Achilles Heel Function

Example 3.1: Consider the following Achilles heel func-
tions:

Ach2(6) = x1y1 ∨ x2y2 ∨ x3y3 ∨ x4y4 ∨ x5y5 ∨ x6y6.

Ach3(4) = x1y1z1 ∨ x2y2z2 ∨ x3y3z3 ∨ x4y4z4.

Ach4(3) = x1y1z1w1 ∨ x2y2z2w2 ∨ x3y3z3w4.

Ach6(2) = x1y1z1w1u1v1 ∨ x2y2z2w2u2v2.

These functions have 12 variables. Thus, the total number of
input combinations is 212 = 4096. The numbers of minterms
in the ON sets for Ach2(6), Ach3(4), Ach4(3), and Ach6(2)
are 3367, 1695, 721, and 127, respectively.

We generated partially defined functions with different
number of selected minterms, and tried to reconstruct the
original functions by the logic minimizer. The results are
shown in Table 3.1. In the table, © shows that the logic
minimizer successfully reconstructed the original function,
while × shows that the logic minimizer failed to reconstruct
the original function. This result shows that Ach3(4) and
Ach4(3) are easier to be reconstructed, while Ach6(2) is
harder to be reconstructed. Also, with the increase the number
of selected minterms, the reconstruction of functions became
easier.

C. Other Monotone Increasing Functions

A symmetric threshold function with n variables and
threshold T is defined as

Th(n, T)(x1, x2, . . . , xn) = 1 ⇔
n∑

i=1

xi ≥ T.

It is a monotone increasing function.

TABLE 3.2
RECONSTRUCTION OF OTHER MONOTONE INCREASING FUNCTIONS

(n = 8)

of Minterms # of Products SOP
60 120 160 200 f Not(f) degree

Th(8,2) × × × × 28 8 2
Th(8,4) × × × × 70 56 4
MCF(8) × × © © 5 4 5

TABLE 3.3
RECONSTRUCTION OF RANDOM FUNCTIONS (n = 8)

of Minterms # of Products SOP
N 80 100 120 160 f Not(f) degree
SOP(8,4,3) © © © © 4 11 3
SOP(8,5,3) × × × © 5 15 3
SOP(8,6,3) × × © © 6 11 3
MoSOP(8,4,3) × © © © 4 13 3
MoSOP(8,5,3) × © © © 5 17 3
MoSOP(8,6,3) × © © © 6 15 3

Th(8,4) is an 8-variable symmetric threshold function,
where the threshold is four. SOPs for Th(8,4) has

(
8
4

)
= 70

prime implicants, while Th(8, 4) has
(
8
5

)
= 56 prime impli-

cants.
Table 3.2 shows the experimental results. SOP minimiza-

tions could not reconstruct Th(n,T). For these functions, the
number of the prime implicants is large.

A monotone cascade function (MCF) can be realized by
a cascade of two-input logic cells, where OR cells and AND
cells are connected alternately.

MCF (8) = (((x1 ∨ x2)x3 ∨ x4)x5 ∨ x6)x7 ∨ x8.

The numbers of the prime implicants of MCF(n) is �n
2 �+ 1,

while that of the complement of MCF(n) is n
2 �.

Table 3.2 also shows the results. Reconstruction of the
original functions from the MCF(n) functions with randomly
selected minterms was easier than from the Th(n,T) function
with randomly selected minterms.

D. Functions Generated by Random Expressions

To specify the complexity of SOPs, we use the following
parameters: n is the number of variables; m is the number of
products; and k is the number of literals.

SOP(n,m, k) is a randomly generated non-monotone SOP
with n variables, m products, and k literals in each product.

MoSOP(n,m, k) is a randomly generated monotone SOP
with n variables, m products, and k positive literals in each
product. Table 3.3 compares the experimental results for 8-
variable functions.

IV. EVALUATION OF METHODS

To evaluate classifiers, we use the confusion matrix shown
in Table 4.1, where TP denotes true positive, FP denotes false
positive, FN denotes false negative, and TN denotes true
negative.

TABLE 4.1
CONFUSION MATRIX

Predicted
Actual Positive Negative
Positive TP FN
Negative FP TN

Here, we use four measures: Accuracy, Precision, Recall
and Matthews Correlation Coefficient (MCC) [2]

Definition 4.1:

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

MCC =
TP · TN − FP · FN

√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

If the classifier reconstructed the original function perfectly,
then FN = FP = 0, and Accuracy = Precision =
Recall = MCC = 1.00.

When, the fraction of the positive instances is very small,
the classifier that classifies all the instances to Negative has a
very high Accuracy. However, both Precision and Recall are
zero. Thus, the predictive power for the positive instances is
zero.

When, the fraction of the positive or negative instances
is small, the data set is called imbalanced. To show the
real performance for imbalanced data sets, MCC is used.
MCC shows the quality of two-class classifications. When
FN = FP = 0, MCC = 1.00, while when TN = TP = 0,
MCC = −1.00. For the classifier that classifies all the
instances to Negative (TP = FP = 0), or all the instances to
Positive (TN = FN = 0), MCC is undefined (UD). In this
case, the denominator of MCC is zero.

Example 4.1: Consider the function shown in Fig. 4.1. It is
an Achilles heel function with 4 variables:

Ach2(2) = x1x2 ∨ x3x4.

Consider the function shown in Fig. 2.1, where eight minterms
were randomly selected. The blank cells are don’t cares.

Fig. 4.2 shows the minimized function. The colored cells are
predicted by the logic minimizer. Among them, red cells are
incorrectly predicted, while green cells are correctly predicted.
From Fig. 4.2, we have the confusion matrix:[

TP FN
FP TN

]
=

[
4 3
0 9

]

From this, we have Accuracy=0.8125, and MCC=0.6547.
In section III, a logic minimizer reconstructed the original

functions from the functions whose minterms were randomly
selected. In Tables 3.1, 3.2 and 3.3, instances with © show
that the reconstructions are perfect. That is FP=FN=0, and
Accuracy=MCC=1.00.

Fig. 4.1. Achilles hill function f Fig. 4.2. Function after logic min-
imization of f̂ .

These experiments show that SOP minimization increased
generalization ability.

V. COMPARISON WITH OTHER METHODS

A. Performance of the Proposed Method

Here, we analyze ten cases with × marks in Tables 3.1, 3.2
and 3.3. The last line headed with MINI13 in Tables 4.2 and
4.3 show the Accuracy and MCC obtained by the proposed
method. In Tables 4.2 and 4.3, bold figures show the largest
MCC. These data shows that the logic minimizer predicted
unknown data fairly well. The Accuracy is, in many cases,
acceptable. However, MCC for Ach2(6) and Ach6(2) is lower.
Note that for Ach2(6), |ON | = 3369 and |OFF | = 727, while
for Ach6(2), |ON | = 127 and |OFF | = 3969. In other words,
these data sets are imbalanced. Imbalanced data sets are known
to be hard to reconstruct [8].

B. Performance of Other Methods

We investigated the performance of the following classifiers
in WEKA [18] system.

• Bayes is a statistical learning algorithm based on Bayes’
theorem. It is also called Naive Bayes method, and
assumes that variables are independent.

• MLP (a Multi-Layer Perceptron) is a feed-forward artifi-
cial neural network.

• SMO is an extension of a support vector machine using
a sequential minimal optimization algorithm [11].

• JRIP is a rule learner based on the RIPPER (Repeatedly
Incremental Pruning to Produce Error Reduction) algo-
rithm [3].

• J48 is a decision tree classifier, and is a Java implemen-
tation of C4.5 algorithm [12].

• Random Forest (RF) is an ensemble classifier that consists
of many decision trees.

The parameters for classifiers were set to default values of
WEKA. As for the test data, we used the set of all input
combinations, i.e., 2n vectors, since we know the correct
values for all possible input combinations1.

1This is different from a common method to measure the accuracy, since
generation of all possible input combinations are usually impractical.

TABLE 4.2
ACCURACY AND MCC FOR VARIOUS CLASSIFIERS (TWO-VALUED INPUTS)

Ach2(6) Ach6(2) Th(8,2) Th(8,4) MCF(8)
100 Minterms 200 Minterms 200 Minterms 200 Minterms 120 Minterms
ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

Bayes 0.851 0.373 0.972 0.345 0.968 0.328 0.972 0.942 0.953 0.896
MLP 0.863 0.502 0.961 0.396 1.000 1.000 1.000 1.000 0.992 0.983
SMO 0.864 0.457 0.969 UD 0.996 0.941 1.000 1.000 0.961 0.918
JRIP 0.832 0.402 0.969 0.494 0.972 0.700 0.867 0.724 0.980 0.956
J48 0.840 0.407 0.969 UD 0.965 0.453 0.816 0.599 0.988 0.974
RF 0.870 0.479 0.971 0.246 0.996 0.941 0.965 0.924 0.996 0.991
MINI13 0.874 0.561 0.965 0.479 0.980 0.760 0.945 0.887 0.996 0.991

TABLE 4.3
ACCURACY AND MCC FOR VARIOUS CLASSIFIERS (TWO-VALUED INPUTS)

SOP(8,5,3) SOP(8,6,3) MoSOP(8,4,3) MoSOP(8,5,3) MoSOP(8,6,3)
120 Minterms 100 Minterms 80 Minterms 80 Minterms 80 Minterms
ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

Bayes 0.738 0.476 0.730 0.441 0.809 0.575 0.812 0.615 0.801 0.597
MLP 0.770 0.544 0.883 0.759 0.832 0.638 0.859 0.707 0.879 0.755
SMO 0.730 0.463 0.746 0.479 0.797 0.546 0.844 0.674 0.840 0.674
JRIP 0.773 0.547 0.895 0.784 0.875 0.726 1.000 1.000 0.938 0.874
J48 0.766 0.535 0.832 0.679 0.859 0.689 0.812 0.609 0.906 0.813
RF 0.832 0.664 0.906 0.807 0.910 0.804 0.887 0.764 0.902 0.803
MINI13 0.957 0.917 0.984 0.966 0.877 0.737 0.879 0.753 0.892 0.783

Tables 4.2 and 4.3 also compare the performance of other
methods: Bayes, MLP, SMO, JRIP, J48, and RF.

• The bold numbers show the highest MCCs.
• The method that produced rules with the highest MCC

also produced rules with the highest Accuracy.
• Bayes produced the lowest MCCs for five functions.
• MLP produced the highest MCCs for Th(8,2) and

Th(8,4).
• SMO produced the highest MCCs for Th(8,4). This result

is reasonable, since Th(8,4) can be represented by a
simple threshold gate.

• JRIP produced the highest MCCs for three functions.
• RF produced the highest MCCs for two functions.
• MINI13 produced the highest MCCs for four functions.
• For Ach6(2), two algorithms SMO and J48 produced

MCC with UD. In these cases, the algorithms classified
all the data into the negative class. Thus, TP=FP=0, and
the values of MCC and Precision are undefined (UD).
And, Recall is 0.00. This function is imbalanced, and is
hard to reconstruct.

In addition to the Accuracy and MCC, we have to consider
the complexity of the models (rules). In general, MLP, J48
and RF are too complex to analyze, while SOPs generated by
JRIP and MINI13 are relatively easy to analyze.

VI. EXTENSION TO MULTI-VALUED INPUT FUNCTIONS

In this part, we extend the theory to multi-valued input
functions. For simplicity, we consider the data sets for the
functions that are generated by random SOPs:

f : {0, 1, 2, 3}5 → {0, 1}.

We assume that each SOP has m products and k literals, and
each literal has one of the following forms:

X{3}, X{2,3}, X{1,2,3}, X{0,1,2,3}.

This implies that the functions are monotone increasing.
We did similar experiments to the two-valued cases. Table

5.1 shows the experimental results. The first column shows
the function name: MVSOP(n,m, k), where n denotes the
number of variables, m denotes the number of products, and
k denotes the number of literals in a product. Note that the
total numbers of input combinations for these functions are
45 = 1024. The first row of Table 5.1 shows that to reconstruct
MV SOP (5, 3, 2), 100 selected minterms were not sufficient,
but with 150 selected minterms, MINI13 could reconstruct the
original function. With the increase of the selected minterms,
the Accuracy and MCC tend to increase. Also, with the
increase of the numbers of products (m) and literals (k), the
reconstruction tend to be more difficult.

When the numbers of products m and the number of
literals k in each product are small, less than 10% of the
input combinations are sufficient to reconstruct more than
90% of the truth table of the original functions. Thus, SOP
minimizations improved the generalization ability in the case
of multi-valued inputs.

To compare with an existing method, we did similar exper-
iment using JRIP program, which is a rule-based method for
machine learning [3]. Table 5.2 shows the results. Roughly
speaking, MINI13 produced competitive solutions to JRIP.

VII. RELATED WORKS

Learning of Boolean functions was considered in the pa-
pers [1], [10]. Reconstruction of partially defined monotone

TABLE 5.1
ACCURACY AND MCC FOR RANDOM SOPS (FOUR-VALUED INPUTS:MINI13)

100 Minterms 150 Minterms 200 Minterms 300 Minterms 400 Minterms 600 Minterms
Function ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

MVSOP(5,3,2) 0.973 0.933 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MVSOP(5,4,2) 0.968 0.918 0.972 0.929 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MVSOP(5,6,2) 0.978 0.932 0.951 0.868 0.970 0.909 0.979 0.936 0.984 0.953 1.000 1.000
MVSOP(5,3,3) 0.911 0.813 0.968 0.933 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MVSOP(5,4,3) 0.949 0.902 0.985 0.971 0.997 0.994 0.997 0.994 0.997 0.994 0.997 0.994
MVSOP(5,6,3) 0.939 0.878 0.873 0.762 0.957 0.913 0.996 0.992 0.990 0.980 0.992 0.984

TABLE 5.2
ACCURACY AND MCC FOR RANDOM SOPS (FOUR-VALUED INPUTS:JRIP)

100 Minterms 150 Minterms 200 Minterms 300 Minterms 400 Minterms 600 Minterms
Function ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

MVSOP(5,3,2) 0.941 0.873 0.973 0.933 0.988 0.971 0.988 0.971 1.000 1.000 1.000 1.000
MVSOP(5,4,2) 0.910 0.787 0.957 0.893 0.988 0.972 1.000 1.000 1.000 1.000 1.000 1.000
MVSOP(5,6,2) 0.885 0.610 0.947 0.846 0.990 0.970 0.990 0.970 0.994 0.983 0.998 0.994
MVSOP(5,3,3) 0.953 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MVSOP(5,4,3) 0.921 0.850 0.974 0.948 0.996 0.992 1.000 1.000 1.000 1.000 1.000 1.000
MVSOP(5,6,3) 0.889 0.783 0.936 0.871 0.959 0.918 0.957 0.914 0.992 0.984 0.996 0.992

increasing logic functions was considered in the work [9].
It analyzed the complexity of computing. Learning of logic
functions using support vector machines was considered in
the paper [13]. It compared its performance with C4.5 and
naive Bayes classifiers. Experimental results of a rule-based
classifier for various benchmark functions were also shown in
the paper [7].

VIII. CONCLUSION

In this paper, we showed that SOP minimization produces
the generalization ability. Experimental results showed that the
following functions are easily reconstructable:

• Functions with a small number of products in their SOPs.
• Functions with a small number of literals in each products

in their SOPs.
• Monotone functions.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for
Scientific Research of the JSPS. Prof. Jon T. Butler and
reviewers’ comments improved presentation.

REFERENCES

[1] A. Blum, C. Burcht, and J. Langford, “On learning monotone
Boolean functions,” Proc. Symposium on Foundations of Com-
puter Science, FOCS-1998, pp. 408-415, 1998.

[2] D. Chicco, G. Jurman, “The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy
in binary classification evaluation, “BMC Genomics, Vol. 21,
No. 6, 2020.

[3] W. W. Cohen,“Fast effective rule induction,” Twelfth Interna-
tional Conference on Machine Learning, pp. 115-123,1995.

[4] P. Domingos, “The role of Occam’s razor in knowledge discov-
ery,” Data Mining and Knowledge Discovery, Vol. 3, pp. 409-
425, 1999.

[5] S. J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A heuristic
approach for logic minimization,” IBM J. Res. and Develop.,
pp. 443-458, Sept. 1974.

[6] S. J. Hong,“R-MINI: An Iterative approach for generating
minimal rules from examples,” IEEE Trans. Knowl. Data Eng.
Vol. 9, No. 5. pp. 709-717, 1997.

[7] M. H. Ibrahim, and M. Hacibeyoglu, “A novel switching
function approach for data mining classification problems,” Soft
Comput, vol.24, pp.4941-4957, 2020.

[8] B. Krawczyk, “Learning from imbalanced data: open chal-
lenges and future directions,” Progress in Artificial Intelli-
gence,Vo. 5, pp. 221-232, 2016.

[9] M. Muselli and E. Ferrari, “Coupling logical analysis of data
and shadow clustering for partially defined positive Boolean
function reconstruction,” in IEEE Transactions on Knowledge
and Data Engineering, vol. 23, no. 1, pp. 37-50, Jan. 2011.

[10] B. K. Natarajan,“On learning Boolean functions,” Proc.ACM
Symposium on Theory of Computing, (STOC-1987), pp. 296-
304, Jan. 1987.

[11] J. C. Platt, “Fast training of support vector machines us-
ing sequential minimal optimization,” In B. Schoelkopf and
C. Burges and A. Smola, ed., Advances in Kernel Methods -
Support Vector Learning, MIT Press, Jan. 1998.

[12] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers, San Mateo, California, 1993.

[13] K. Sadohara, “On a capacity control using Boolean kernels for
the learning of Boolean functions,” 2002 IEEE International
Conference on Data Mining, pp. 410-417, 2002.

[14] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[15] T. Sasao, Y. Horikawa, and Y. Iguchi, “Classification functions
for handwritten digit recognition,” IEICE Transactions on In-
formation and Systems, Vol. 104. No. 8 , pp.1076-1082, Aug.
2021.

[16] T. Sasao, “A method to generate classification rules from
examples,” International Symposium on Multiple-Valued Logic,
(ISMVL-2022), May 2022.

[17] https://archive.ics.uci.edu/ml/datasets.php (Accessed 2 Febu-
rary 2023)

[18] https://www.cs.waikato.ac.nz/ml/weka/index.html (Accessed 2
Feburary 2023)

