
Data Mining Using Multi-Valued Logic
Minimization

Tsutomu Sasao
Department of Computer Science, Meiji University, Kanagawa, Japan

Abstract—In a partially defined classification function, each
input combination represents features of an example, while
the output represents the class of the example. Each variable
may have different radix. In this paper, we show a method to
minimize the number of variables. Combined with a multiple-
valued logic minimizer, data sets of examples are represented
by a compact set of rules. Experimental results using University
of California Irvine (UCI) benchmark functions show the effec-
tiveness of the approach, especially for imbalanced data sets.
The results are compared with J48 and JRIP. This approach
produces explainable 100% correct rules, which are promising
for bio-medical applications.

Index Terms—multi-valued logic, partially defined function,
classification, decision tree, imbalanced data set, variable min-
imization

I. INTRODUCTION

Data mining is a process of discovering knowledge in sam-
ple data sets. Compact representation of large data enables us
to find knowledge in the data set [1]. In many cases, the size
of the sample data set is much smaller than the all possible
input combinations. In such a case, the number of variables
can be often reduced. By reducing the number of variables,
and by simplifying the multiple-valued expression, we can
derive a compact set of rules. These rules are explainable [7],
[10] . In this paper, we show a method to reduce the number
of input variables of such functions. The method generates
rules consistent with the sample data set. For University of
California Irvine (UCI) benchmark functions, we show that
many variables can be reduced, and compact set of rules can
be generated.

Contributions of this paper are

• Presented a new method to derive rules for a given set
of examples.

• The accuracy of the generated rules is 100%.
• Compared with C4.5 [15] (a standard decision tree

algorithm), and JRIP [6] , and showed the usefulness
of the approach, especially for imbalanced data sets.

The rest of the paper is organized as follows: Section II
shows definitions and basic properties of classification func-
tions; Section III shows a method to minimize the number of
variables; Section IV introduces words in data mining and
logic minimization; Section V shows experimental results
for standard UCI data sets; Section VI shows experimental
results for imbalanced data sets; Section VII compares results
with existing methods; and Section VIII concludes the paper.

TABLE 2.1
REGISTERED VECTOR TABLE

X1 X2 X3 X4 f
�a1 2 3 3 2 1 F1
�a2 1 3 2 3 1
�b1 3 2 2 1 2 F2
�b2 3 1 2 1 2
�c1 2 3 2 1 3 F3
�c2 1 3 2 1 3

II. DEFINITIONS AND BASIC PROPERTIES [18]

Definition 2.1: Let n ≥ 1 and, for each 1 ≤ i ≤ n, Pi =
{1, 2, . . . , pi}, where pi ≥ 1. Let P be the Cartesian product
composed of P1, P2, . . . , Pn, i.e., P = P1 × P2 × · · · × Pn,
and D be a non-empty subset of P , i.e., ∅ �= D ⊂ P . Let
k = |D| and M = {1, 2, . . . ,m} for some m satisfying
2 ≤ m ≤ k. An element of D is called a registered vector.
A mapping f : D → M is a classification function. A value
of f is called a class.

We sometimes write Fi = f−1(i), i ∈ M , when f is
understood. It is clear that D =

⋃m
i=1 Fi. We assume that

Fi �= ∅ for every i ∈ M .
Example 2.1: The registered vector table in Table 2.1

shows a classification function with n = 4, m = 3 and
k = 6.

Let D,M and m be given in Definition 2.1. Suppose that a
sequence 〈F1, F2, . . . , Fm〉, where Fi ⊂ D for each i ∈ M ,
is a partition of D, that is D =

⋃m
i=1 Fi and Fi∩Fj = ∅ for

i, i ∈ M with i �= j. Then the function f : D → M such that
Fi = f−1(i) for i ∈ M will be denoted by (F1, F2, . . . , Fm).

For the next definition, two functions with different do-
mains are considered. So, one has to be careful about
determining m and, hence M .

Definition 2.2: For classification functions f : D → M
and g : E → M with the same range M = {1, 2, . . . ,m}
where 2 ≤ m ≤ min{|D|, |E|}, g is an extension of f if
f−1(i) ⊆ g−1(i) for all i ∈ M .

Definition 2.3: [2] For a subset U ⊆ D and S ⊆
{1, 2, . . . , n}, we denote by U |S the projection of U to S.
In other words, U |S is obtained from U by considering only
the j-th components, where j ∈ S.

Example 2.2: Let U = {(1, 2, 3, 1), (3, 1, 1, 2), (2, 3, 1, 2)}
and S = {2, 3}. Then, we have the projection U |S =
{(∗, 2, 3, ∗), (∗, 1, 1, ∗), (∗, 3, 1, ∗)}.

TABLE 2.2
REDUCED REGISTERED VECTOR TABLE

X2 X4 f
3 2 1
3 3 1
2 1 2
1 1 2
3 1 3
3 1 3

Given a partially defined function, many extensions exist.
In this paper, we seek an extension of f that depends on the
fewest variables.

Definition 2.4: Let Fi ⊂ D (i = 1, 2, . . . ,m). Given a
classification function (F1, F2, . . . , Fm) of n variables, and
a subset S ⊆ {1, 2, . . . , n}, if Fi|S ∩ Fj |S = ∅, (i �=
j) holds, then S is a support set. In such a case,
(F1|S , F2|S , . . . , Fm|S) is independent of the variable Xj ,
where j ∈ {1, 2, . . . , n} \ S. In this case, Xj is redundant.

Example 2.3: Consider the function (F1, F2, F3) shown in
Table 2.1. In this case, S = {2, 4} is a support set, since for

F1|S = {(∗, 3, ∗, 2), (∗, 3, ∗, 3)},
F2|S = {(∗, 2, ∗, 1), (∗, 1, ∗, 1)},
F3|S = {(∗, 3, ∗, 1), (∗, 3, ∗, 1)},

Fi|S ∩Fj |S = ∅ holds for i < j. Thus, this function can be
represented by two variables, as shown in Table 2.2.

III. MINIMIZATION OF VARIABLES

In this part, we show a method to minimize the number
of variables in the support set.

Definition 3.1: Let f : D → M be a classification function
with n variables. If there exist �a = (a1, a2, . . . , an), �b =
(b1, b2, . . . , bn) ∈ D and i ∈ {1, 2, . . . , n} such that aj = bj
for any j ∈ {1, 2, . . . , n} \ {i}, ai �= bi and f(�a) �= f(�b),
then f is said to depend on the i-th variable.

Theorem 3.1: If a function f depends on xi, any support
set of f contains i.

(Proof) If a support set does not contain i, then there are
no vectors �a and �b such that f(�a) �= f(�b) and �ei = �a ⊕�b.
This means that f is independent of xi. �

When a function f depends on xi, then xi is said to be
essential, and any SOP for f requires xi.

Example 3.1: Consider the function shown in Table 2.1.
It depends on X4, since

�a2 = (1, 3, 2, 3) ∈ F1 and
�c2 = (1, 3, 2, 1) ∈ F3.

Thus, X4 is essential.
The following algorithm is an extension of two-valued

cases to multi-valued cases.
Algorithm 3.1: (Minimization of Variables)
1) For each pair (�a,�b) such that �a ∈ Fα and �b ∈ Fβ ,

(α �= β) make a clause

C(�a,�b) = z1 ∨ z2 ∨ · · · ∨ zn,

where
zj =

{
0 if aj = bj
yi if aj �= bj .

2) For all the pairs (�a,�b) in �a ∈ Fα and �b ∈ Fβ , construct
the product of the clauses.

R =
∧
(�a,�b)

C(�a,�b).

3) Covert the expression of R into a sum-of-products,
and simplify it. A product with the fewest literals
corresponds to a minimum support set.

Example 3.2: Consider the function in Table 2.1.
1) The set of clauses are:

C(�a1,�b1) = y1 ∨ y2 ∨ y3 ∨ y4, C(�a1,�b2) = y2 ∨ y3 ∨ y4,
C(�a1,�c1) = y3 ∨ y4, C(�a1,�c2) = y1 ∨ y3 ∨ y4,

C(�a2,�b1) = y1 ∨ y2 ∨ y4, C(�a2,�b2) = y1 ∨ y2 ∨ y4,
C(�a2,�c1) = y1 ∨ y4, C(�a2,�c2) = y4,

C(�b1,�c1) = y1 ∨ y2, C(�b1,�c2) = y1 ∨ y2,

C(�b2,�c1) = y1 ∨ y2, C(�b2,�c2) = y1 ∨ y2,

2) Forming the product of all the clauses yields:

R = (y1 ∨ y2 ∨ y3 ∨ y4)(y2 ∨ y3 ∨ y4)(y3 ∨ y4)

(y1 ∨ y3 ∨ y4)(y1 ∨ y2 ∨ y4)(y1 ∨ y4)y4(y1 ∨ y2).

3) The simplified expression is

R = (y1 ∨ y2)y4 = y1y4 ∨ y2y4.

The minimum support set is {1, 4} and {2, 4} .

IV. DATA MINING AND LOGIC DESIGN

In this part, we show relations between data mining and
logic minimization. Note that the same notion is often called
differently in different specializations. Table 4.1 shows the
relations of words used in two specializations.

TABLE 4.1
TERMINOLOGY IN DIFFERENT AREAS OF SPECIALIZATION.

Logic minimization Data mining
minterm example, instance, sample
implicant rule
SOP covering rule set
variable feature, attribute

In the data mining, each row in Table 2.1 corresponds to
an example, an instance, or a sample.

Data mining is to find a simple representation of the
sample set.

Definition 4.1: A set of rules is complete if it covers all
the examples in each class. A set of rules is consistent if
each rule covers examples in only one class, and none of
examples in multiple classes.

Definition 4.2: Two examples are inconsistent or conflict-
ing if they have the same input parts, but belong to different
classes.

Minimization of the number of rules corresponds to min-
imization of the number of products in a sum-of-products
expression (SOP). In logic design, specifications are often
given by the ON sets and the DC (don’t care) sets. On
the other hand, in data mining, specifications are given by
examples. Combinations not shown by the examples are
undefined.

Example 4.1: Consider the function in Table 2.2. By a
minimization of SOP of multiple-valued inputs, we have the
following:

F1 = X
{2,3}
4 , F2 = X

{1,2}
2 ·X{1}

4 , F3 = X
{3}
2 ·X{1}

4 .

When English is used to represent the function, we have:
1) If (X4 = 2 OR 3), then f = 1, else
2) if (X2 = 1 OR 2) AND (X4 = 1), then f = 2, else
3) if (X2 = 3) AND (X4 = 1), then f = 3.
For the function in Table 2.1, the output values for only

6 combinations are specified, while the number of possible
input combinations is 34 = 81. Thus, the values for other
81 − 6 = 75 combinations are undefined. On the other
hand, in Table 2.2, each row shows 32 = 9 combinations,
and the last two rows are the same. Thus, Table 2.2 shows
5 × 9 = 45 combinations. For example, for the vector
(X1, X2, X3, X4) = (0, 3, 0, 2), the output is undefined in
Table 2.1. However, in Table 2.2, the output is specified to
f = 1. Fig. 4.1 show the map of the rules. In this case,
value 1 are assigned to four blank cells. Note that these four
combinations are undefined in Table 2.2. The logic minimizer
assigned the value 1 to these cells. Thus, the rules have
generalization ability for unseen input combinations.

However, it may be possible to have a map as shown in
Fig. 4.2. In this case, value 2 are assigned to four blank
cells. Note that the logic minimizer does not assign value 3
to these blank cells.

Fig. 4.1. Value 1 are assigned Fig. 4.2. Value 2 are assigned

V. EXPERIMENTS WITH STANDARD BENCHMARKS

To show the effectiveness of the approach, we derived
rules for selected benchmark functions from the UCI (Uni-
versity of California, Irvine) machine learning repository
[22].

Table 5.1 summarizes the experimental results. The first
column shows the name of the function. The second column
shows the number of original variables: n. The third column
shows the number of instances: k. The fourth column shows
the number of classes: m. The fifth column shows the number

of variables after variable minimization: ne. The sixth col-
umn shows the number of rules after SOP minimization: re.
Rules are generated for m classes. For example, in the case
of Monks (m = 2), rules for both F1 and F2 were generated.
However, in many cases, only one of two is sufficient. The
seventh column shows the rule complexity: α = ne ·re. The
eighth column shows nt, the number of variables obtained
by J48 1. The ninth column shows rt, the number of rules
obtained by J48. The tenth column shows the rule complexity
of J48: β = nt · rt. The eleventh column shows accuracy for
J48. The last four columns show the same things for JRIP. To
minimize the number of variables, Algorithm 3.1 was used,
while to minimize SOPs with multi-valued inputs, heuristic
algorithm MINI10 in [20] was used.

A. Breast Cancer
This function classifies the patients into two classes: (1)

malignant, and (2) benign. The original dataset consists of
699 instances. We removed 16 incomplete instances (i.e.,
instances with missing entries), and six conflicting instances.
Each variable takes 10 values.

B. Chess3196
This function shows whether the white can win or not for

k = 3196 starting positions. We assume that each player
plays optimally. Variables take 2, 3, or 4 values.

C. Connect-4
This function classifies the positions of the game into

three: (1) player X wins, (2) player Y wins, or (3) draw.
We assume that each player plays optimally. Each variable
takes 3 values: empty, X, or Y.

D. Dermatology
This function classifies the patients into six classes. 10

conflicting instances were removed from the original data.
Variables take 2, 3, 4, or 76 values.

E. Letter Recognition
This function classifies the image data of English alphabets

into 26 classes. Each variable takes 16 values.

F. Monks
This function shows the relation of input variables. There

are 6 variables: two of them take 2 values; three of them
take 3 values; and one of them takes 4 values. The number
of instances is k = 22×33×4 = 432. Note that this function
is totally defined.

G. Mushroom
This function classifies the mushrooms into two classes:

(1) edible, and (2) not edible. Originally, it contained 8124
instances, but 2480 incomplete instances were removed. Note
that [12] shows a solution with five rules which depend on
8 variables, while our method produced a solution with five
rules which depend on only 3 variables.

1J48 is a Java implementation of C4.5 on WEKA [23]. C4.5 is a standard
decision tree classifier [24].

TABLE 5.1
RESULT FOR STANDARD BENCHMARK SETS.

Orig. Orig. Class Our Classifier J48 JRIP
Var. Inst. Var. Rule Comp. Var. Rule Comp. Acc. Var. Rule Comp. Acc.
n k m ne re α nt rt β % nt rt γ %

Breast Cancer 9 677 2 4 15 60 7 12 84 99.0 7 6 42 98.5
Chess3196 36 3196 2 29 41 1189 22 30 660 99.7 22 17 374 99.6
Connect-4 42 67557 3 34 8356 284104 42 3871 162582 86.9 33 82 2706 75.5
Dermatology 34 358 6 6 53 318 7 8 56 98.0 10 8 80 96.9
Letter Recog 16 20000 26 11 1394 15334 16 1226 19616 96.3 16 428 6848 93.6
Monks 6 432 2 3 7 21 1 2 2 75.0 1 2 2 75.0
Mushrooms 22 5644 2 3 5 15 6 8 48 100.0 6 6 36 100.0
Promoter 57 106 2 4 10 40 7 10 70 98.1 7 4 28 93.4
Splice 60 3174 3 10 544 5440 41 101 4141 98.4 29 13 377 96.0
Teaching Assis 5 143 3 3 18 54 5 35 175 88.8 3 4 12 58.0
Tic Tac Toe 9 958 2 8 62 496 9 49 441 93.9 9 11 99 98.7
Vote 16 435 2 9 23 207 5 7 35 97.5 1 2 2 94.5
Zoo 16 101 7 5 9 45 8 9 72 99.0 8 7 56 94.1

H. Promoter

This function classifies the gene sequences (DNA) into
two classes: (1) positive or (2) negative. Each variable takes
4 values: (1) A, (2) G, (3) T, and (4) C.

I. Splice

This function classifies the gene sequences (DNA) into
three classes: (1) donor, (2) acceptor, (3) neither. Originally,
it contained 3191 instances, but 16 ambiguous instances were
removed. Each variable takes 4 values: (1) A, (2) G, (3) T,
and (4) C.

J. Teaching Assistant Evaluation

This function classifies the performance of teaching as-
sistants into three classes (1) low, (2) medium, and (3)
high. Originally, it contained 151 instances, but 8 conflicting
instances were removed. Variables take 2, 23 or 42 values.

K. Tic-Tac-Toe

This function classifies the patterns of the marking in a
3×3 grid into two classes: (1) player X wins, and (2) player
X does not win. We assume that each player plays optimally.
Each variable takes 3 values.

L. Vote

This function classifies the members of U.S. House of
Representatives into two classes: (1) democrat, and (2)
republican. Each variable takes 3 values.

M. Zoo

This function classifies 101 animals into 7 classes: (1)
Mammals, (2) Birds, (3) Reptiles, (4) Fish, (5) Amphibians,
(6) Insects, (7) Others.

Among 16 variables, X13 shows the number of legs and
takes 6 values. Other variables take 2 values. Two variables
X6 and X13 are essential. There are seven minimal sets
consisting of five variables.

VI. EXPERIMENTS WITH IMBALANCED DATA SET

When the number of instances in one class is much larger
than the number of instances in the other class, the set is
imbalanced [3]. Many practical classification problems have
imbalanced class distributions.

In this part, we consider experimental results for imbal-
anced data sets. Table 6.1 shows the results. The meanings
of the columns are the same as that of Table 5.1. In this part,
we use the following data sets.

A. Hepatitis

This function classifies the patients into two classes: (1)
death and (2) survival. Incomplete instances were removed.
The number of instances in Class 1 and Class 2 are 13 and
67, respectively. Variables take 2, 5, 6, 7, or 11 values.

B. Thoracic

This data is related to the post-operative life expectancy
in the lung cancer patients. The number of instances is 470.
Among them, Class 1 (death within one year after surgery)
consists of 70 instances, while Class 2 (survival) consists of
400 instances. The number of variables is n = 16: three of
them are numerical, one takes 3, one takes 4, one takes 7
values, and ten of them take 2 values.

VII. COMPARISON WITH OTHER CLASSIFIERS

More than 179 classifiers have been developed [8]. Among
them, C4.5 [15], a classifier based on decision trees, is well
known [9], [24]. Thus, we compare our method with J48,
a Java implementation of C4.5 on WEKA [23]. JRIP is a
rule learner based on the RIPPER (Repeatedly Incremental
Pruning to Produce Error Reduction) algorithm [6], which is
similar to our approach. Thus, we also compare with JRIP.

A. Comparison of Goals

The goals of these classifiers are different. The goal of our
classifier is to derive a compact set of rules that is consistent
with the training set. Thus, the accuracy for the training set
is 100%. On the other hand, the goals of C4.5 and JRIP are
to derive a compact set of rules with high accuracy for both
the training set and the test set. That is, to derive the rules

TABLE 6.1
RESULTS FOR IMBALANCED DATA SETS.

Orig. Orig. Class Our Classifier J48 JRIP
Var. Inst. Var. Rule Comp. Var. Rule Comp. MCC Var. Rule Comp. MCC
n k m ne re α nt rt β nt rt γ

Hepatitis 19 80 2 4 8 32 3 4 12 0.703 2 2 4 0.689
Thoracic 16 470 2 4 28 112 0 1 0 UD 0 1 0 UD

with high generalization ability. In other words, our goal is
logic synthesis for the training set, while the goals of C4.5
and JRIP are approximate logic synthesis for the training
set.

Our classifier not only memorizes the training set, but also
analyzes the data and generalizes them by

• Reduction of variables, and
• Assignment of values to don’t care elements, which is

done during SOP minimization. (Examples are shown
in Figs. 4.1 and 4.2.)

C4.5 obtains its generalization ability by
• Pruning the tree, and
• Limiting the depth of the tree.

B. Comparison of Solutions

In the experiment, for each benchmark data, all the exam-
ples were used to train the decision trees. The parameters for
J48 and JRIP were set to the default values of WEKA [23].

We assume that a solution with a smaller rule complexity
is simpler. We also assume that the number of leaves of the
tree is equal to the number of rules, because a path from the
root node to a leaf corresponds to a rule.

To evaluate the performance of classifiers, we use the
confusion matrix shown in Table 7.1, where TP denotes
true positive, FP denotes false positive, FN denotes false
negative, and TN denotes true negative.

TABLE 7.1
CONFUSION MATRIX

Predicted
Actual Positive Negative
Positive TP FN
Negative FP TN

To show the performance of a classifier for imbalanced
data sets, we use Matthews Correlation Coefficient (MCC)
[5]. which is given by

TP · TN − FP · FN
√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

When FN = FP = 0, MCC = 1.00, while when TN =
TP = 0, MCC = −1.00. For the classifier that classifies
all the instances to Negative (TP = FP = 0), or all the
instances to Positive (TN = FN = 0), MCC is undefined
(UD). In this case, the denominator of MCC is zero.

Analysis of Table 5.1
For Monks, J48 and JRIP produced poor solutions, i.e., the
accuracy was 75%, although the sizes of their trees were

small. Among 15 benchmark functions, only this function
was totally defined. That is, the values of this function are
specified for all possible input combinations.

For Connect-4, J48 and JRIP produced poor solutions,
i.e., the accuracy was 86.9%, and 75.5%, respectively, while
our classifier produced 100% accuracy. However, the rule
complexities for J48 and JRIP were smaller.

For Mushrooms, three classifiers produced solutions with
100% accuracy, while our classifier produced the simplest
solution.

In general, J48 produced solutions with higher accuracy
than JRIP. Our classifier always produced solutions with
100% accuracy.

Analysis of Table 6.1
Here, we analyze the results for imbalanced data sets.
For hepatitis, our classifier produced 8 rules with four vari-
ables, and with MCC=1.00, while J48 produced decision tree
with three variables, and four rules, and with MCC=0.793.
JRIP produced two rule with two variables and MCC=0.689.

For Thoracic, our classifier produced 28 rules with four
variables and MCC=1.00, while J48 produced a decision tree
with only one leaf, and classified all the data into Class 2
(survival). In this case, MCC=UD. Thus, J48 is useless for
this data set. JRIP produced the same solution.

C. Improvement by SMOTE and Cost-Sensitive Method

In general, straightforward applications of conventional
classifiers to imbalanced sets results in poor solutions. Thus,
various methods have been developed [13]. Among them,
SMOTE (Synthetic minority over-sampling technique) [4]
creates artificial data using an interpolation strategy that its
k minority class nearest neighbors [3].

On the other hand, in the Cost-Sensitive Method [14],
penalty of the error for the minor class is increased.

Example 7.1: Consider the case of hepatitis. The confusion
matrices of our classifier, J48, and JRIP are shown in the
upper and the middle rows. The confusion matrices of J48
and JRIP after applying SMOTE are shown in the bottom
row.

Mour =

[
13 0
0 67

]

MJ48 =

[
7 6
0 67

]
, MJRIP =

[
10 3
4 63

]

MSJ48 =

[
63 2
1 66

]
, MSJRIP =

[
64 1
8 59

]

In the original data, MCC by J48 and JRIP are 0.703 and
0.689, respectively.

TABLE 7.2
EFFECT OF SMOTE AND COST-SENSITIVE APPROACH FOR IMBALANCED DATA SETS.

J48 JRIP Method
var rule Comp MCC var rule Comp MCC

Hepatitis 6 8 48 0.955 4 4 16 0.869 SMOTE4x
Hepatitis 7 8 56 0.881 5 4 20 0.848 Cost5x
Thoracic 12 55 660 0.741 10 12 120 0.666 SMOTE6x
Thoracic 14 61 854 0.684 11 18 198 0.501 Cost5x

Table 7.2 shows the results after applying SMOTE and
Cost-Sensitive Methods. Note that SMOTE augmented 42
artificial positive data to improve the classifier, and improved
MCC for J48 and JRIP to 0.955 and 0.869, respectively.
On the other hand, the cost-sensitive approach improved the
MCC for J48 and JRIP to 0.881 and 0.848, respectively.
Note that our method produced MCC with 1.00, while the
complexity of the rules are small.

VIII. CONCLUSION AND COMMENTS

This paper showed a method to reduce the number of
variables for partially defined classification functions. With
this strategy, numbers of variables for various functions
were reduced successfully. Also, a multiple-valued SOP
minimizer was used to reduce the number of rules. This
method produces set of rules with 100% accuracy for given
set of examples. It also compared rule complexity with
C4.5 (J48) and JRIP. This method is useful for data mining,
especially for bio-medical applications, since the obtained
rules are simple and explainable. In bio-medical applications,
the number of the samples are relatively small, and the
data are often imbalanced [21], while rules with very high
accuracy are required.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for
Scientific Research of the JSPS. The author thanks Prof. Jon
T. Butler for discussion, and also thank the referee whose
comments improved definitons.

REFERENCES

[1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. War-
muth, “Occam’s razor,” Information Processing Letters,
Vol. 24, Issue 6, pp. 377-380,1987.

[2] E. Boros, T. Horiyama, T. Ibaraki, K. Makino, and M. Yag-
iura, “Finding essential attributes from binary data,” Annals
of Mathematics and Artificial Intelligence, Vol. 39, No. 3,
pp. 223-257, Nov. 2003.

[3] P. Branco, L. Torgo, and R. P. Ribeiro, “ A survey of
predictive modeling on imbalanced domains,” ACM Comput.
Surv. Vol. 49, No. 2, Article 31, pp. 1-50, June 2017.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, ”SMOTE: Synthetic minority over-
sampling technique,” J. Artif. Int. Res., Vol. 16, No. 1,
pp. 321-357, Jan. 2002.

[5] D. Chicco, G. Jurman, “The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy
in binary classification evaluation, “BMC Genomics, Vol. 21,
No. 6, pp. 1-13, 2020.

[6] W. W. Cohen,“Fast effective rule induction,” Twelfth Interna-
tional Conference on Machine Learning, pp. 115-123,1995.

[7] A. Cano, A. Zafra, and S. Ventura, “An interpretable
classification rule mining algorithm,” Information Sciences,
Vol. 240, pp. 1-20, Aug. 2013.

[8] M. Fernandez-Delgado, E. Cernadas, S. Barro, and
D. Amorim, “Do we need hundreds of classifiers to solve
real world classification problems?,” Journal of Machine
Learning Research, Vol. 15, pp. 3133-3181, Oct. 2014.

[9] M. A. Hall, and G. Holmes, “Benchmarking attribute se-
lection techniques for discrete class data mining,” IEEE
Transactions on Knowledge and Data Engineering, vol. 15,
no. 6, pp. 1437-1447, Nov.-Dec. 2003.

[10] P. L. Hammer and T. O. Bonates, “Logical analysis of data–
An overview: From combinatorial optimization to medical
applications,” Annals of Operations Research, Vol. 148,
No. 1. pp. 203-225, Nov. 2006.

[11] S. J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A
heuristic approach for logic minimization,” IBM J. Res. and
Develop., pp. 443-458, Sept. 1974.

[12] S. J. Hong,“R-MINI: An iterative approach for generating
minimal rules from examples,” IEEE Trans. Knowl. Data
Eng. Vol. 9, No. 5. pp. 709-717, 1997.

[13] B. Krawczyk, “Learning from imbalanced data: open chal-
lenges and future directions,” Progress in Artificial Intelli-
gence,Vo. 5, pp. 221-232, 2016.

[14] X. Liu and Z. Zhou, “The influence of class imbalance on
cost-sensitive learning: An empirical study,” Sixth Interna-
tional Conference on Data Mining (ICDM’06), pp. 970-974,
2006.

[15] J. R. Quinlan, C4.5: Programs for Machine Learning, Mor-
gan Kaufmann Publishers, San Mateo, California, 1993.

[16] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[17] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[18] T. Sasao, “On a minimization of variables to represent sparse

multi-valued input decision functions,” International Sym-
posium on Multiple-Valued Logic ISMVL-2019, Fredericton,
Canada, pp. 182-187, May 21-23, 2019.

[19] T. Sasao, Index Generation Functions, Morgan & Claypool,
Oct. 2019.

[20] T. Sasao, “Easily reconstructable logic functions,” Interna-
tional Symposium on Multiple-Valued Logic, (ISMVL-2023),
May 2023.

[21] T. Sasao, A. Holmgren, and P. Eklund, “A logical method
to predict outcomes after coronary artery bypass grafting,”
International Symposium on Multiple-Valued Logic, May
2023.

[22] https://archive.ics.uci.edu/ml/datasets.php (Accessed Febu-
rary 2, 2023)

[23] https://www.cs.waikato.ac.nz/ml/weka/index.html (Accessed
Feburary 2, 2023)

[24] X. Wu, V. Kumar, and J R. Quinlan, et al.,“Top 10 algo-
rithms in data mining,” Knowledge and Information Systems,
Vol. 14, pp. 1-37, 2008.

